Skip to main content

Advertisement

Log in

Differential impact of glomerular and tubule-interstitial histological changes on kidney outcome between non-proteinuric and proteinuric diabetic nephropathy

  • Original article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Studies on kidney function and histological findings in diabetic nephropathy (DN) with low urinary protein (UP) are few. We examined the differential impact of histological changes on kidney outcomes between non-proteinuric and proteinuric DN.

Methods

Patients diagnosed with DN by renal biopsy during 1981–2014 were divided into non-proteinuric (UP ≤ 0.5 g/day) and proteinuric (UP > 0.5 g/day) DN. The Cox proportional hazard model was used to examine the association of glomerular lesions (GLs) and interstitial fibrosis and tubular atrophy (IFTA) with end-stage kidney disease (ESKD) development after adjusting for relevant confounders.

Results

The non-proteinuric and proteinuric DN groups included 197 and 199 patients, respectively. During the 10.7-year median follow-up period, 16 and 83 patients developed ESKD in the non-proteinuric and proteinuric DN groups, respectively. In the multivariable Cox hazard model, hazard ratios (HRs) [95% confidence intervals (CIs)] of GL and IFTA for ESKD in proteinuric DN were 2.94 [1.67–5.36] and 3.82 [2.06–7.53], respectively. Meanwhile, HRs [95% CIs] of GL and IFTA in non-proteinuric DN were < 0.01 [0–2.48] and 4.98 [1.33–18.0], respectively. IFTA was consistently associated with higher incidences of ESKD regardless of proteinuria levels (P for interaction = 0.49). The prognostic impact of GLs on ESKD was significantly decreased as proteinuria levels decreased (P for interaction < 0.01).

Conclusions

IFTA is consistently a useful predictor of kidney prognosis in both non-proteinuric and proteinuric DN, while GLs are a significant predictor of kidney prognosis only in proteinuric DN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Afkarian M, Zelnick LR, Hall YN, Heagerty PJ, Tuttle K, Weiss NS, et al. Clinical manifestations of kidney disease among US adults with diabetes, 1988–2014. JAMA. 2016;316(6):602–10. https://doi.org/10.1001/jama.2016.10924.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jiang G, Luk AOY, Tam CHT, Xie F, Carstensen B, Lau ESH, et al. Progression of diabetic kidney disease and trajectory of kidney function decline in Chinese patients with Type 2 diabetes. Kidney Int. 2019;95(1):178–87. https://doi.org/10.1016/j.kint.2018.08.026.

    Article  PubMed  Google Scholar 

  3. Yamanouchi M, Furuichi K, Hoshino J, Toyama T, Hara A, Shimizu M, et al. Nonproteinuric versus proteinuric phenotypes in diabetic kidney disease: a propensity score-matched analysis of a nationwide. Biopsy-Based Cohort Study Diabetes Care. 2019;42(5):891–902. https://doi.org/10.2337/dc18-1320.

    Article  CAS  PubMed  Google Scholar 

  4. Espinel E, Agraz I, Ibernon M, Ramos N, Fort J, Seron D. Renal biopsy in type 2 diabetic patients. J Clin Med. 2015;4(5):998–1009. https://doi.org/10.3390/jcm4050998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sharma SG, Bomback AS, Radhakrishnan J, Herlitz LC, Stokes MB, Markowitz GS, et al. The modern spectrum of renal biopsy findings in patients with diabetes. Clin J Am Soc Nephrol. 2013;8(10):1718–24. https://doi.org/10.2215/cjn.02510213.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Klessens CQ, Woutman TD, Veraar KA, Zandbergen M, Valk EJ, Rotmans JI, et al. An autopsy study suggests that diabetic nephropathy is underdiagnosed. Kidney Int. 2016;90(1):149–56. https://doi.org/10.1016/j.kint.2016.01.023.

    Article  PubMed  Google Scholar 

  7. Ekinci EI, Jerums G, Skene A, Crammer P, Power D, Cheong KY, et al. Renal structure in normoalbuminuric and albuminuric patients with type 2 diabetes and impaired renal function. Diabetes Care. 2013;36(11):3620–6. https://doi.org/10.2337/dc12-2572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yamanouchi M, Furuichi K, Hoshino J, Ubara Y, Wada T. Nonproteinuric diabetic kidney disease. Clin Exp Nephrol. 2020;24(7):573–81. https://doi.org/10.1007/s10157-020-01881-0.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Robles NR, Villa J, Gallego RH. Non-proteinuric diabetic nephropathy. J Clin Med. 2015;4(9):1761–73. https://doi.org/10.3390/jcm4091761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. An Y, Xu F, Le W, Ge Y, Zhou M, Chen H, et al. Renal histologic changes and the outcome in patients with diabetic nephropathy. Nephrol Dial Transplant. 2015;30(2):257–66. https://doi.org/10.1093/ndt/gfu250.

    Article  CAS  PubMed  Google Scholar 

  11. Shimizu M, Furuichi K, Toyama T, Kitajima S, Hara A, Kitagawa K, et al. Long-term outcomes of Japanese type 2 diabetic patients with biopsy-proven diabetic nephropathy. Diabetes Care. 2013;36(11):3655–62. https://doi.org/10.2337/dc13-0298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mise K, Hoshino J, Ubara Y, Sumida K, Hiramatsu R, Hasegawa E, et al. Renal prognosis a long time after renal biopsy on patients with diabetic nephropathy. Nephrol Dial Transplant. 2014;29(1):109–18. https://doi.org/10.1093/ndt/gft349.

    Article  CAS  PubMed  Google Scholar 

  13. Shimizu M, Furuichi K, Yokoyama H, Toyama T, Iwata Y, Sakai N, et al. Kidney lesions in diabetic patients with normoalbuminuric renal insufficiency. Clin Exp Nephrol. 2014;18(2):305–12. https://doi.org/10.1007/s10157-013-0870-0.

    Article  CAS  PubMed  Google Scholar 

  14. Gohda T, Murakoshi M, Koshida T, Ichikawa S, Li ZI, Adachi ERI, et al. Concept of diabetic kidney disease - paradigm shift from albuminuria-based to GFR-based kidney disease. Juntendo Medical Journal. 2019;65(6):510–6. https://doi.org/10.14789/jmj.2019.65.JMJ19-R16.

    Article  CAS  Google Scholar 

  15. Morimoto K, Matsui M, Samejima K, Kanki T, Nishimoto M, Tanabe K, et al. Renal arteriolar hyalinosis, not intimal thickening in large arteries, is associated with cardiovascular events in people with biopsy-proven diabetic nephropathy. Diabet Med. 2020;37(12):2143–52. https://doi.org/10.1111/dme.14301.

    Article  CAS  PubMed  Google Scholar 

  16. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53(6):982–92. https://doi.org/10.1053/j.ajkd.2008.12.034.

    Article  CAS  PubMed  Google Scholar 

  17. Geistanger A, Arends S, Berding C, Hoshino T, Jeppsson JO, Little R, et al. Statistical methods for monitoring the relationship between the IFCC reference measurement procedure for hemoglobin A1c and the designated comparison methods in the United States, Japan, and Sweden. Clin Chem. 2008;54(8):1379–85. https://doi.org/10.1373/clinchem.2008.103556.

    Article  CAS  PubMed  Google Scholar 

  18. Tervaert TW, Mooyaart AL, Amann K, Cohen AH, Cook HT, Drachenberg CB, et al. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol. 2010;21(4):556–63. https://doi.org/10.1681/ASN.2010010010.

    Article  PubMed  Google Scholar 

  19. Furuichi K, Yuzawa Y, Shimizu M, Hara A, Toyama T, Kitamura H, et al. Nationwide multicentre kidney biopsy study of Japanese patients with type 2 diabetes. Nephrol Dial Transplant. 2018;33(1):138–48. https://doi.org/10.1093/ndt/gfw417.

    Article  CAS  PubMed  Google Scholar 

  20. Gilbert RE, Cooper ME. The tubulointerstitium in progressive diabetic kidney disease: more than an aftermath of glomerular injury? Kidney Int. 1999;56(5):1627–37. https://doi.org/10.1046/j.1523-1755.1999.00721.x.

    Article  CAS  PubMed  Google Scholar 

  21. Bonventre JV. Can we target tubular damage to prevent renal function decline in diabetes? Semin Nephrol. 2012;32(5):452–62. https://doi.org/10.1016/j.semnephrol.2012.07.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Okada T, Nagao T, Matsumoto H, Nagaoka Y, Wada T, Nakao T. Histological predictors for renal prognosis in diabetic nephropathy in diabetes mellitus type 2 patients with overt proteinuria. Nephrology (Carlton). 2012;17(1):68–75. https://doi.org/10.1111/j.1440-1797.2011.01525.x.

    Article  CAS  PubMed  Google Scholar 

  23. Eriguchi M, Lin M, Yamashita M, Zhao TV, Khan Z, Bernstein EA, et al. Renal tubular ACE-mediated tubular injury is the major contributor to microalbuminuria in early diabetic nephropathy. Am J Physiol Renal Physiol. 2018;314(4):F531–42. https://doi.org/10.1152/ajprenal.00523.2017.

    Article  CAS  PubMed  Google Scholar 

  24. Sawaf H, Thomas G, Taliercio JJ, Nakhoul G, Vachharajani TJ, Mehdi A. Therapeutic Advances in Diabetic Nephropathy. J Clin Med. 2022;11(2). doi: https://doi.org/10.3390/jcm11020378.

  25. Chao EC, Henry RR. SGLT2 inhibition–a novel strategy for diabetes treatment. Nat Rev Drug Discov. 2010;9(7):551–9. https://doi.org/10.1038/nrd3180.

    Article  CAS  PubMed  Google Scholar 

  26. Cherney DZ, Perkins BA, Soleymanlou N, Maione M, Lai V, Lee A, et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation. 2014;129(5):587–97. https://doi.org/10.1161/circulationaha.113.005081.

    Article  CAS  PubMed  Google Scholar 

  27. Anders H-J, Huber TB, Isermann B, Schiffer M. CKD in diabetes: diabetic kidney disease versus nondiabetic kidney disease. Nat Rev Nephrol. 2018;14(6):361–77. https://doi.org/10.1038/s41581-018-0001-y.

    Article  CAS  PubMed  Google Scholar 

  28. Pirklbauer M, Schupart R, Fuchs L, Staudinger P, Corazza U, Sallaberger S, et al. Unraveling reno-protective effects of SGLT2 inhibition in human proximal tubular cells. American Journal of Physiology-Renal Physiology. 2019;316(3):F449–62. https://doi.org/10.1152/ajprenal.00431.2018.

    Article  PubMed  Google Scholar 

  29. Bauersachs J, Jaisser F, Toto R. Mineralocorticoid receptor activation and mineralocorticoid receptor antagonist treatment in cardiac and renal diseases. Hypertension. 2015;65(2):257–63. https://doi.org/10.1161/HYPERTENSIONAHA.114.04488.

    Article  CAS  PubMed  Google Scholar 

  30. Agarwal R, Kolkhof P, Bakris G, Bauersachs J, Haller H, Wada T, et al. Steroidal and non-steroidal mineralocorticoid receptor antagonists in cardiorenal medicine. Eur Heart J. 2021;42(2):152–61. https://doi.org/10.1093/eurheartj/ehaa736.

    Article  CAS  PubMed  Google Scholar 

  31. Haller H, Bertram A, Stahl K, Menne J. Finerenone: a New Mineralocorticoid Receptor Antagonist Without Hyperkalemia: an Opportunity in Patients with CKD? Curr Hypertens Rep. 2016;18(5):41. https://doi.org/10.1007/s11906-016-0649-2.

    Article  CAS  PubMed  Google Scholar 

  32. Ito S, Shikata K, Nangaku M, Okuda Y, Sawanobori T. Efficacy and Safety of Esaxerenone (CS-3150) for the treatment of type 2 diabetes with microalbuminuria: a randomized, double-blind, placebo-controlled, phase II Trial. Clin J Am Soc Nephrol. 2019;14(8):1161–72. https://doi.org/10.2215/cjn.14751218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bakris GL, Agarwal R, Anker SD, Pitt B, Ruilope LM, Rossing P, et al. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N Engl J Med. 2020;383(23):2219–29. https://doi.org/10.1056/NEJMoa2025845.

    Article  CAS  PubMed  Google Scholar 

  34. Tomita I, Kume S, Sugahara S, Osawa N, Yamahara K, Yasuda-Yamahara M, et al. SGLT2 inhibition mediates protection from diabetic kidney disease by promoting ketone body-induced mTORC1 Inhibition. Cell Metab. 2020;32(3):404-19.e6. https://doi.org/10.1016/j.cmet.2020.06.020.

    Article  CAS  PubMed  Google Scholar 

  35. Lattenist L, Lechner SM, Messaoudi S, Le Mercier A, El Moghrabi S, Prince S, et al. Nonsteroidal mineralocorticoid receptor antagonist finerenone protects against acute kidney injury-mediated chronic kidney disease: role of oxidative stress. Hypertension. 2017;69(5):870–8. https://doi.org/10.1161/hypertensionaha.116.08526.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

This work was supported by grants from the Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 18K15984) to KS.

Author information

Authors and Affiliations

Authors

Contributions

Research idea and study design: FF and ME; Drafting the manuscript: FF; Revising the manuscript: ME, data analysis/interpretation: FF and ME; statistical analysis: FF; supervision or mentorship: HT, TU, HT, RF, MN, TK, KTa, KM, KO, MM, KS, and KTs. Each author contributed important intellectual content during manuscript drafting or revision and accepts accountability for the overall work by ensuring that questions on the accuracy or integrity of any portion of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Masahiro Eriguchi.

Ethics declarations

Conflict of interest

All authors have nothing to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 335 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukata, F., Eriguchi, M., Tamaki, H. et al. Differential impact of glomerular and tubule-interstitial histological changes on kidney outcome between non-proteinuric and proteinuric diabetic nephropathy. Clin Exp Nephrol 28, 282–292 (2024). https://doi.org/10.1007/s10157-023-02433-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-023-02433-y

Keywords

Navigation