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Abstract
Background  Urinary albumin excretion (UAE) is a risk factor for cardiovascular diseases, metabolic syndrome, chronic 
kidney disease, etc. Only a few genome-wide association studies (GWAS) for UAE have been conducted in the European 
population, but not in the Asian population. Here we conducted GWAS and identified several candidate genes harboring 
single nucleotide polymorphisms (SNPs) responsible for UAE in the Japanese population.
Methods  We conducted GWAS for UAE in 7805 individuals of Asian ancestry from health-survey data collected by Tohoku 
Medical Megabank Organization (ToMMo) and Iwate Tohoku Medical Megabank Organization (IMM). The SNP genotype 
data were obtained with a SNP microarray. After imputation using a haplotype panel consisting of 2000 genome sequencing, 
4,962,728 SNP markers were used for the GWAS.
Results  Eighteen SNPs at 14 loci (GRM7, EXOC1/NMU, LPA, STEAP1B/RAPGEF5, SEMA3D, PRKAG2, TRIQK, SERTM1, 
TPT1-AS1, OR5AU1, TSHR, FMN1/RYR3, COPRS, and BRD1) were associated with UAE in the Japanese individuals. A 
locus with particularly strong associations was observed on TSHR, chromosome 14 [rs116622332 (p = 3.99 × 10−10)].
Conclusion  In this study, we successfully identified UAE-associated variant loci in the Japanese population. Further study 
is required to confirm this association.
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Introduction

Chronic kidney disease (CKD) is one of the most severe 
global public health problems [1]. The proportion of patients 
with end-stage renal disease is growing, and thus, the result-
ant cost poses a big problem in health economics [2]. It is 
important to diagnose renal failure in the early stages to 

prevent disease progression. However, it is very difficult to 
do so as the typical symptoms of renal failure rarely emerge 
in the earlier stages. The risks of mortality, myocardial 
infarction, and progression to kidney failure associated 
with a particular value of estimated glomerular filtration rate 
(eGFR) are increased independently in patients with mod-
erate to severe urinary albumin excretion (UAE) [3]. Apart 
from CKD, UAE is known biomarker of cardiovascular dis-
eases, diabetes mellitus, obesity, hypertension, and all-cause 
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mortality [4–8]. Even albuminuria of less than 30 mg/gCr 
(lower than microalbuminuria) is known as a marker of these 
diseases [7, 8].

While a few genome-wide association studies (GWAS) on 
UAE have been conducted in individuals with type 2 diabe-
tes mellitus [9] and type 1 diabetes mellitus [10] in European 
ancestral cohorts [11–13], there is no such GWAS conducted 
in the Asian population. Here we have conducted GWAS 
using health-survey data collected in the Tohoku Medical 
Megabank Organization (ToMMo) and Iwate Tohoku Medi-
cal Megabank Organization (IMM) to identify the several 
candidate genes harboring single nucleotide polymorphisms 
(SNPs) responsible for UAE in the Japanese population.

Material and methods

Study subjects

This research was conducted as a part of the residential 
cohort study of Tohoku Medical Megabank (TMM), a joint 
organization of the Tohoku University and the Iwate Medi-
cal University in Japan, established in 2011 after the Great 
East Japan Earthquake for creating an advanced medical 
system.

Over 80,000 almost healthy adult individuals living in the 
Miyagi and Iwate Prefectures along the Pacific coast of the 
Tohoku district of northern Japan were recruited from May 
2013 to March 2016 for the TMM Project. The participants 
were of 20–75 years old and completed questionnaires cov-
ering a wide range of topics including socio-demographic 
factors, lifestyle habits, and medical history. Blood and urine 
tests were performed at baseline survey. The participants 
living in the Miyagi Prefecture and Iwate Prefecture were 
recruited by Tohoku University and Iwate Medical Univer-
sity, respectively [14, 15]. We obtained approval from the 
relevant ethics committees of both the facilities. We obtained 
written informed consent from each participant when they 
were enrolled in the TMM cohort study. This study was 
conducted according to the principals of the Declaration of 
Helsinki.

From the 10,000 individuals whose data were collected 
up to 2013, we were able to obtain data of 9,966 individu-
als after excluding 34 people who withdrew their consent 
after collection. The data were released as dbToMMo 1.1. 
Among these 9,966 individuals, 4974 were from the Miyagi 
prefecture and 4992 were from the Iwate prefecture. Thus, 
both represented a roughly equal proportion.

Sample quality control

Genotyping was performed for 964,193 SNP markers using 
Illumina’s Human Omni Express Exome- 8 version 1.2 

BeadChips. Upon conducting quality control of the samples 
based on the genotyping data, some people were excluded 
owing to data loss (n = 1), genotype defect (low call rate: call 
rate < 0.98, n = 5), or close relationship pairs (identity-by-
descent estimates, PI_HAT > 3/32, n = 2155) [16, 17]. Finally, 
the data sampled from 7805 individuals passed quality control.

Marker quality control

As quality control of the genotyped marker, SNPs with low 
call rates (< 0.95), and low p values in the Hardy Weinberg 
equilibrium (HWE) test (p value < 1.0 × 10−4), low minor allele 
frequencies (MAF < 0.01), and low-quality markers among 
the duplication markers were filtered out. As a result, 595,171 
SNPs remained for the downstream analysis.

Genotype imputation

Genotype imputation was performed using SHAPEIT v2.r837 
[18] and IMPUTE2 v2.2.2 [19] software packages with 
TMM 2KJPN high-quality haplotype reference panel based 
on the 2049 drafts of the whole genome sequencing and was 
implemented in the TMM [20]. After genotype imputation, 
we adjusted the imputation quality (INFO scores) and MAF. 
The variants with low imputation quality (INFO scores < 0.5) 
and low minor allele frequency (MAF < 0.03) variants were 
excluded. Ultimately, 4,962,728 variants were retained for the 
GWAS.

Phenotype

Phenotype information was obtained from the questionnaires 
covering age, sex, physical measurement including body mass 
index (BMI), and systolic blood pressure (SBP). For standard-
izing the blood pressure estimation, we did not use the antihy-
pertensive medication history because systolic blood pressure 
strongly influences the glomerular pressure and UAE [21].

Urinary Na (UNa), urinary K (UK), urinary creatinine 
(UCr), urinary albumin (Ualb), serum creatinine (sCre), serum 
cystatin C (sCysC), hemoglobin A1c (HbA1c), and eGFR were 
estimated at baseline. We selected eGFR calculated by serum 
cystatin C (eGFRcys) for the evaluation of renal functional 
instead of eGFR calculated by serum creatinine (eGFRcre) 
because serum cystatin C was a better marker of early-stage 
CKD than serum creatinine [22]. eGFRcys was calculated by 
the Japanese equation for eGFR from serum cystatin C as fol-
lows [23, 24]; 

eGFRcys mL/min/1.73 m2 = 104 × SCysC−1.019

× 0.996age × 0.929(if female) − 8
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Statistical analyses

After performing a standard linear regression analysis of 
UAE (PLINK version 1.9 software package) for each SNP, 
we performed GWAS for UAE. We used UAE corrected by 
creatinine (continuous variable) as a response variable. The 
analysis was adjusted for the relevant covariates including 
age, sex, BMI [25], SBP [26], UNa [27], UK [27], HbA1c 
[26], eGFRcys [28], and the top significant 26 principal 
components of the genotypes. These are reported confound-
ing factors for albuminuria.

We constructed a Manhattan plot and Quantile–quantile 
plot (Q-Q plot) to visually evaluate the analysis result. We 
used the statistical software R with “qqman” package. We 
constructed Regional plot to evaluate the linkage disequi-
librium (LD) structure around the SNPs with Locus Zoom 
[URL; https://​locus​zoom.​org]. We evaluated the result of 
the expression Quantitative Trait Loci (eQTL) analysis for 
some genome-wide significant SNPs by the Genotype Tissue 
Expression Project (GTEx) portal [29].

Results

Basic characteristics of the study subjects

The genotype data from 7805 individuals passed qual-
ity control and were used for the analysis. The detailed 
characteristics of the analyzed data are shown in Table 1. 
There were 60.7% patients of CKD stage 1, 36.6% patients 
of CDK stage 2, and 2.71% patients of CKD stage ≥ 3. In 
this setting, cystatin C seemed to be more appropriate for 
kidney function marker. The mean age of the patients was 
61.8 ± 11.2 years, and 34.8% of the patients were male. 
The average systolic blood pressure of these patients was 
127 ± 17.8 mm Hg and the median of UAE was 7.4 mg/
gCr [interquartile range (IQR) 8.8]. About one-fourth 
(24.5%) of the patients were hypertensive [defined as sys-
tolic blood pressure > 140 mmHg or diastolic blood pres-
sure > 90 mmHg in accordance with The Japanese Society 
of Hypertension Guidelines for the Management of Hyper-
tension (JSH 2014)] [30]. In this study, the individuals tak-
ing antihypertensive medications were also diagnosed as 
hypertensive.

About 10% of patients had UAE of > 30 mg/gCr, and 
hence most of the patients had microalbuminuria. The mean 
age of the UAE positive patients was 64.4 ± 8.64 years and 
43.6% of these patients were males. The mean systolic blood 
pressure of these patients was 137 ± 19.9 mmHg and their 
average eGFRcys was 89.5 ± 23.7 ml/min/1.73 m2. The 
mean age of the UAE negative patients was 60.4 ± 11.5 years 
and 33.7% of these patients were male. The mean systolic 

blood pressure of these patients was 126 ± 17.2 mmHg and 
their average eGFRcys was 98.4 ± 21.3 ml/min/1.73 m2.

When we evaluate correlation between each covariant and 
urinary albumin excretion, there is no significant correla-
tion (Table S1). When we evaluate correlation between each 
covariant and other covariant, there are weak correlations 
between age and eGFRcys (correlation factor 0.56), SBP 
and BMI (correlation factor 0.48), UNa and UK (correlation 
factor 0.44) (Table S2).

Table 1   Demographic characteristics of the study population

SBP systolic blood pressure, DBP diastolic blood pressure, HTN_
treat the person treated as hypertension from questionnaire, HTN_
diag the persons diagnosed based on The Japanese Society of Hyper-
tension Guidelines for the Management of Hypertension (JSH 2014), 
Ualb/UCr urinary albumin excretion corrected by urinary creatinine, 
UNa urinary sodium, UK urinary potassium, HbA1c(NGSP) hemo-
globin A1c valued as National Glycohemoglobin Standardization 
Program, sCre serum creatinine, sCysC serum cystatin C, eGFR-
cre estimated glomerular filtration rate calculated by serum creati-
nine, eGFRcys estimated glomerular filtration rate calculated by 
serum cystatin C, CKD stage 1 eGFRcys ≥ 90, CKD stage 2  ≤ 60 
eGFRcys < 90, CKD stage 3a 45 ≤ eGFRcys < 60, CKD stage 3b 
30 ≤ eGFRcys < 45, CKD stage 4 15 ≤ eGFRcys < 30, CKD stage 5 
eGFRcys < 15, Ualb − the group without microalbuminuria nor overt 
albuminuria, Ualb + the group of microalbuminuria or overt albumi-
nuria, IQR interquartile range
 *Median value

Characteristics Total Ualb –  Ualb + 
n = 7805 n = 6970 n = 827

Age, years 60.8 ± 11.2 60.4 ± 11.5 64.8 ± 8.64
Sex, male (%) 2716 (34.8) 2349 (33.7) 360 (43.5)
BMI 23.5 ± 3.6 23.4 ± 3.52 24.6 ± 3.76
SBP, mmHg 127 ± 17.8 126 ± 17.2 137 ± 19.9
DBP, mmHg 75.4 ± 10.8 74.9 ± 10.6 79.7 ± 11.9
HTN_treat (%) 211 (2.7) 275 (2.53) 31 (3.79)
HTN_diag (%) 1912 (24.5) 1540 (22.1) 369 (44.6)
Ualb/UCr, mg/gCr (IQR) 7.4 (8.8)* 6.7 (6.2)* 64.7 (99)*
 <  30 mg/gCr (%) 6970 (89.3)
 ≧ 30 mg/gCr (%) 827 (10.6)
UNa, g/l 3.02 ± 1.34 3.05 ± 1.28 2.91 ± 1.23
UK, g/l 1.63 ± 1.09 1.66 ± 1.04 1.50 ± 0.91
HbA1c(NGSP), % 5.56 ± 0.59 5.52 ± 0.54 5.81 ± 0.85
sCre, mg/dl 0.69 ± 0.24 0.68 ± 0.15 0.75 ± 0.43
sCysC, mg/l 0.77 ± 0.19 0.76 ± 0.15 0.85 ± 0.15
eGFRcre, ml/min/1.73 m2 78.1 ± 15.6 78.4 ± 0.15 74.8 ± 0.15
eGFRcys, ml/min/1.73 m2 97.4 ± 21.9 98.4 ± 0.15 89.5 ± 0.15
CKD stage 1 (%) 4737 (60.7) 4346 (62.4) 390 (47.2)
CKD stage 2 (%) 2857 (36.6) 2499 (35.9) 351 (42.4)
CKD stage 3a (%) 174 (2.23) 112 (1.60) 63 (7.58)
CKD stage 3b (%) 27 (0.35) 12 (0.17) 15 (1.83)
CKD stage 4 (%) 8 (0.10) 1 (0.01) 7 (0.86)
CKD stage 5 (%) 2 (0.03) 1 (0.01) 1 (0.12)

https://locuszoom.org
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Genome‑wide association study for UAE 
in the Japanese populations

We performed GWAS in 7805 individuals. After genotyping, 
595,171 SNPs passed the quality controls and were used for 
the following imputation analysis. For the imputation analy-
sis, a haplotype reference panel based on the 2049 drafts of 
the whole genome sequencing was used. Finally, 4,962,728 
variants were used for the GWAS. The Q-Q plot is shown in 
Fig. 1. The genomic inflation factor (λ) showed 0.987 sug-
gesting that the population substructure should not have any 
substantial effects on the association analysis [14]. Under 
these conditions, we obtained 18 genome-wide significant 
SNPs (Table 2). We constructed a Manhattan plot of this 
GWAS as shown in Fig. 2.

With respect to the SNPs meeting the significance level, 
we constructed a regional plot to visually examine LD 
with the surrounding SNPs (around 1 Mbp) and identified 
the gene in or around which the SNPs were located. We 
attached the result of eQTL analyses for genome-wide sig-
nificant SNPs by GTEx (Fig. 3, Fig S1). Three SNPs were 
located in TSHR on chromosome 14q31 [rs116622332 
(p = 3.99 × 10−9), rs199612558 (p = 1.00 × 10−9), and 
rs17111387 (p = 3.42 × 10−8)] (Fig. 3). Two SNPs were 
located in GRM7 on chromosome 3p26.1 [rs143146694 
(p = 2.69 × 10−11, and rs74971332 (p = 8.91 × 10−10) (Fig 
S1(a)). One SNP was located in LPA on chromosome 6q25.3 
[rs146871152 (p = 7.16 × 10–11)] (Fig S1(b)). One SNP was 
located in PRKAG2 on chromosome 7q36.1 [rs118160950 
(p = 3.43 × 10−8)] (Fig S1(c)). Two SNPs were located 

Fig. 1   Q-Q plots of GWAS about UAE in the TMM cohort study. The 
negative logarithm of the observed (y-axis) and the expected (x-axis) 
p-value was plotted for each SNP (dot), and the red line (y = x) indi-
cates the null hypothesis of no true association. The regression 
genomic inflation factor (λ score) is 0.987 (SE 6.07 × 10−6) to ade-
quately control the population stratification

Table 2   UAE associated SNPs reaching a genome-wide significance

Chr Chromosome, SNP single-nucleotide polymorphism, Position Chromosome position (GRCh37/hg19), Gene The name of Gene where the 
SNP is located, ref reference allele, alt alternative allele, EA effective allele, EAF effective allele frequency, BETA regression coefficient, SE 
Standard error of regression coefficient, INFO INFO score, AR2 Adjusted coefficient of determination. Bold type signifies that the SNPs were 
located on the gene. Normal type signifies that the SNPs were around the gene

Chr SNP Position Gene(s) ref alt EA EAF BETA SE INFO p value AR2

3 rs143146694 6,263,450 GRM7 G T T 0.035 37.81 5.667 0.931 2.69 × 10–11 0.034
3 rs74971332 7,058,507 GRM7 C G G 0.055 26.43 4.307 0.97 8.91 × 10–10 0.034
4 rs75938525 56,659,946 EXOC1/NMU G C C 0.048 31.06 5.029 0.956 6.93 × 10–10 0.034
6 rs146871152 160,984,637 LPA C T T 0.034 37.28 5.713 0.97 7.16 × 10–11 0.037
7 rs146418897 22,440,870 STEAP1B/RAPGEF5 T C C 0.033 36.85 5.743 0.941 1.49 × 10–10 0.034
7 rs140221313 84,600,098 SEMA3D G A A 0.038 31.17 5.534 0.934 1.84 × 10–8 0.034
7 rs118160950 151,277,450 PRKAG2 C T T 0.036 30.48 5.517 0.975 3.43 × 10–8 0.036
8 rs141491217 94,068,096 TRIQK A G G 0.039 33.01 5.84 0.932 1.63 × 10–8 0.035
13 rs79163227 37,208,221 SERTM1 A G G 0.056 25.92 4.664 0.941 2.84 × 10–8 0.035
13 rs142317900 45,963,584 TPT1-AS1 G A A 0.033 31.13 5.693 0.98 4.68 × 10–8 0.037
13 rs151183316 46,021,543 TPT1-AS1 C T T 0.035 30.6 5.54 0.981 3.43 × 10–8 0.035
14 chr14:21617499_TCTCA_T 21,617,499 OR5AU1 TCTCA​ T T 0.052 28.48 5.126 0.871 2.87 × 10–8 0.034
14 rs116622332 81,506,821 TSHR T C C 0.046 30.67 4.897 0.98 3.99 × 10–10 0.036
14 rs199612558 81,508,922 TSHR T TA TA 0.046 29.57 4.835 0.983 1.00 × 10–9 0.037
14 rs17111387 81,515,680 TSHR C T T 0.068 22.24 4.025 0.996 3.42 × 10–8 0.037
15 rs140272046 33,494,078 FMN1/RYR3 G A A 0.042 33.38 5.886 0.886 1.47 × 10–8 0.034
17 rs148283070 30,129,004 COPRS A G G 0.034 34.15 5.922 0.972 8.42 × 10–9 0.036
22 chr22:49949123_GA_G 49,949,123 BRD1 GA G G 0.052 27.83 4.805 0.945 7.22 × 10–9 0.034
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in TPT1-AS1 on chromosome 13q14.13 [rs142317900 
(p = 4.68 × 10−8) and rs151183316 (p = 3.43 × 10−8)] (Fig 
S1(d)). One SNP was located in EXOC1/NMU on chromo-
some 4q12 [rs75938525 (p = 6.93 × 10−10)] (Fig S1(e)). 
One SNP was located in STEAP1B/RAPGEF5 on chro-
mosome 7p15.3 [rs146418897 (p = 1.49 × 10−10)] (Fig 
S1(f)). One SNP was located in SEMA3D on chromo-
some 7q21.11 [rs140221313 (p = 1.84 × 10−8)] (Fig S1(g)). 
One SNP was located in TRIQK on chromosome 8q22.1 
[rs141491217 (p = 1.63 × 10−8)] (Fig S1(h)). One SNP was 
located in SERTM1 on chromosome 13q13.3 [rs79163227 
(p = 2.84 × 10−8)] (Fig S1(i)). One SNP was located in 
OR5AU1 on chromosome 14q11.2 [chr14:21617499_
TCTCA_T (p = 2.87 × 10−8)] (Fig.  3j). One SNP was 
located in FMN1/RYR3 on chromosome 15q13.3 
[rs140272046 (p = 1.47 × 10−8)] (Fig S1(k)). One SNP was 
located in COPRS on chromosome 17q11.2 [rs148283070 
(p = 8.42 × 10−9)] (Fig S1(l)). One SNP was located in 
BRD1 on chromosome 22q13.33 [chr22:49949123_GA_G 
(p = 7.22 × 10−9)] (Fig S3(m)).

Discussion

We performed GWAS for UAE in the Japanese general 
population and identified 18 SNPs, of which, 17 were not 
reported in any previous report. rs118160950 was already 
reported as a SNP related to UAE by GWAS performed 
in the European ancestry [31]. In the previous reports of 
GWAS for UAE, the study subjects were not a general cohort 
but consisted of diabetes patients, heart failure patients, or 
pregnant women with hypertension. In addition, the study 
subjects were mainly European or African American but not 
Asians. Our GWAS has profound significance among the 
Japanese general population.

In previous studies, rs10795433 [9] and rs1801239 [13] 
were reported as the significant SNPs associated with UAE. 
They are located on the CUBN gene locus. CUBN encodes 

cubilin protein acting as a receptor for vitamin B12-intrin-
sic factor complexes. It was hypothesized that the SNPs 
found in CUBN on chromosome 10 were significantly 
(p = 1.0 × 10−11) involved in UAE. However, these loci were 
not found to be significantly associated in our study. The rea-
sons seem to be related to the difference in the studied popu-
lation, because the reported significant covariates were not 
replicated in our population. We showed evidence of genetic 
differences between the Europeans and the East Asians. The 
other possibility is that these SNPs on CUBN are associated 
with UAE only in the diseased condition. There may be big 
differences in the mechanism between pathophysiological 
albuminuria and physiological albuminuria.

When we evaluated the functional class of 18 SNPs, 
6 SNPs (rs74971332, rs146871152, rs118160950, 
rs116622332, rs199612558, and rs17111387) were 
intronic, 11 SNPs (rs143146694, rs75938525, rs146418897, 
rs140221313, rs141491217, rs79163227, rs151183316, 
chr14:21617499_TCTCA_T, rs140272046, rs148283070, 
and chr22:49949123_GA_G) were intergenic, and 1 SNP 
(rs142317900) was on the non-coding exons. No SNP was 
located on the coding exons. These candidates may possibly 
affect the factors regulating the transcription of the genes 
encoding the proteins involved in UAE.

In our study, the SNPs located in TSHR showed strong 
peaks. TSHR encodes TSHR (thyroid stimulating hormone 
receptor), and the TSH receptor is a member of the G pro-
tein-coupled receptor superfamily of integral membrane 
proteins which is coupled to the Gs protein [32, 33]. TSHR 
expresses mainly on the surface of the thyroid follicular 
cells and contributes to thyroid hormone secretion. Several 
pathways are proposed for kidney injury and proteinuria 
mediated by thyroid dysfunction [34, 35]. In hyperthyroid-
ism, intra-glomerular hypertension, consequent hyperfiltra-
tion, increased production of free radicals, and increased 
renin–angiotensin–aldosterone system are risk factors for 
albuminuria. In hypothyroidism, GFR and tubular trans-
port capacity are reduced. Hypothyroidism also results in 

Fig. 2   Manhattan plot of the 
GWAS for UAE in the TMM 
cohort study. The X-axis 
represents the chromosomal 
positions and the Y-axis repre-
sents the – log10 p-values. The 
red horizontal line indicates 
the genome-wide significance 
threshold of p = 5 × 10−8 and the 
blue horizontal line indicates 
the genome-wide suggestive 
threshold of p = 5 × 10−5. The 
name of the genes where the 
SNPs were located is typed in 
Manhattan plot
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increased glomerular capillary permeability to proteins 
directly causing proteinuria [36]. The other possibility is 
that TSHR could have direct effects on albumin re-uptake 
on the tubular cells of the kidney. TSHR is also expressed 
in other tissue, for e.g. adipose tissues and fibroblasts. It is 
known that a small amount of TSHR exists in the kidneys 

and mainly in the tubules [37–39]. We evaluated the expres-
sion of TSHR by immunohistochemistry in the renal biopsy 
specimens. We found a weak expression of TSHR in the kid-
ney mainly in the tubules. A significant association between 
the staining level of TSHR and proteinuria was not detected 

Fig. 3   Association signals around the significant loci in TSHR locus. 
The upper panel is association signals around significant loci. The 
X-axis represents chromosomal positions (GRC37/hg19) and the 
Y-axis represents − log10 p -values. The lead variant is shown in pur-
ple. Colors represent the degree of LD (r2) between each variant and 
the lead variant. The LD (r2) was calculated based on the combined 
dataset of TMM subjects. The lower panels represent the Single-tis-

sue eQTL analyses, where the target was mostly expressed. The data 
were from GTEx (V8). The X-axis is represents chromosomal posi-
tions (GRC38/hg38) and the Y-axis represents − log10 eQTL p -val-
ues. The X-axis between the upper and the lower panel is adjusted by 
calculating with hgLiftOver [https://​genome.​ucsc.​edu/​cgi-​bin/​hgLif​
tOver].

https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://genome.ucsc.edu/cgi-bin/hgLiftOver
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(data not shown) and further study should be required to 
prove this concept.

PRKAG2 coding 5′-AMP-activated protein kinase subu-
nit gamma-2. AMP-activated protein kinase (AMPK) is a 
heterotrimeric protein composed of a catalytic alpha subu-
nit, a noncatalytic beta subunit, and a noncatalytic regula-
tory gamma subunit [40]. AMPK is an important energy-
sensing enzyme that monitors the cellular energy status 
and functions by inactivating the key enzymes involved in 
regulating the de novo biosynthesis of fatty acids and cho-
lesterol. Mutations in this gene have been associated with 
WPW (Wolff-Parkinson-White) syndrome [41, 42], famil-
ial hypertrophic cardiomyopathy [43, 44], and enlarged 
kidneys [45]. Studies in transgenic mice indicate that these 
mutations cause glycogen storage disease of the heart [46]. 
Several other hereditary glycogen storage diseases present 
with renal pathologies, such as renal tubular dysfunction 
[47]. PRKAG2 did not indicate any stronger significance in 
our GWAS. However, we may consider that renal tubular 
dysfunction induced by glycol storage can affect the UAE.

We used the GTEx database to examine eQTL of signii-
cant variants and suggestive variants in each locus. Unfor-
tunately, no eQTL was found in the lead significant variants 
(Table S3). Then we extended the candidates for including 
suggestive variants whose p value was less than 1.0 × 10–5, 
and also that has strong LD against each significant SNP 
(r2 > 0.2). There are significant eQTL of NMNAT1P1 
pseudo-gene on TSHR gene locus in rs17111387, 
rs74771569, rs78176261, which three SNPs had strong 
LD against rs116622332 (the lead variant in Chromosome 
14). Though NMNAT1P1 itself is a pseudo-gene, many 
significant eQTL variants are also shared with TSHR and 
NMNAT1P1. Additionally, about the genes around every 
lead variant, we can find the consistency between the peak 
of Manhattan plot and the peak of eQTL information about 
TSHR in thyroid (Fig. 3). That means there is a probability 
that rs116622332 allele on chromosome 14, affects TSHR 
and NMNAT1P1 expression in thyroid. eQTL analysis identi-
fied that rs77317344 ,which is in strong LD with rs14237900 
(the lead variant in Chromosome 13), affects the expression 
of COG3. We cannot find other significant information in 
eQTL analysis about the other genes.

There are some limitations to our study. First, in this 
study, replication is lacking. Replication studies in other 
Japanese cohorts and/or other populations are required. 
Second, many of the individuals analyzed in our study were 
affected by the Great East Japan Earthquake of 2011. We 
should consider mental disturbance and stress caused by this 
big disaster as a confounding factor. To conclude, we inves-
tigated the UAE associated SNPs in the Japanese population 
after adjusting for age, gender, hypertension, and impaired 
glucose tolerance. The 18 identified SNPs were uncovered 
to show a statistically significant effect on the UAE. There 

are limited studies evaluating the association with other can-
didate genes that we detected. The functional and biological 
roles exerted by each of the SNPs/genes are required to be 
elucidated in further studies.
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