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Abstract
d-Amino acids are the recently detected enantiomers of l-amino acids. Accumulating evidence points their potential in solv-
ing the long-standing critical problems associated with the management of both chronic and acute kidney diseases. This 
includes estimating kidney function, early diagnosis and prognosis of chronic kidney disease, and disease monitoring. Among 
the d-amino acids, d-serine levels in the blood are strongly correlated with the glomerular filtration rate and are useful for 
estimating the function of the kidney. Urinary d-serine also reflects other conditions. The kidney proximal tubule reabsorbs 
serine with chiral-selectivity, with d-serine being reabsorbed much less efficiently than l-serine, and urinary excretion of 
d-serine is sensitive to the presence of kidney diseases. Therefore, assessing the intra-body dynamics of d-serine by measuring 
its level in blood and urinary excretion can be used to detect kidney diseases and assess pathophysiology. This new concept, 
the intra-body dynamics of d-serine, can be useful in the comprehensive management of kidney disease.

Keywords d-Amino acids · Kidney disease · Early screening · Biomarker · Prognosis · d-Serine · Glomerular filtration rate

Introduction

Each l-amino acid has a mirror-image enantiomer (chiral 
body), the d-amino acid (Fig. 1a). Although its presence 
has long been overlooked [1, 2], recent advancement of 
technology is now revealing the presence of d-amino acids 
in nature. Remarkably, d-amino acids are emerging as bio-
markers of kidney disease (Fig. 1b). Current biomarkers for 
kidney disease are generally accepted as insufficient [3], and 
d-amino acids may solve the long-lasting clinical problems 
of kidney diseases.

Historically, the motivation to study d-amino acids in the 
human body arose from the research of the kidneys. After 
more than 80 years of interval, the research on the role of 
d-amino acid in the kidneys has just re-started [4–6].

This review outlines the close relationship between 
d-amino acids and the kidneys, as well as recent advance-
ments in this field.

d‑Amino acids and the kidneys

Amino acids are the smallest components of proteins. When 
synthesized chemically, equal amounts of l- and d-amino 
acid are produced. However, d-amino acids were not previ-
ously detected in nature, and thus, it has long been believed 
that only l-amino acids existed. Recently, d-amino acids 
have been found in nature and even in the human body. 
Moreover, d-amino acids were shown to have physiological 
activities despite their trace levels [7, 8], and thus, studies 
of d-amino acids are currently underway.

It was the kidney that the presence of d-amino acids was 
first indicated in mammals. In 1935, Dr. Hans Krebs, who 
discovered the Krebs’ cycle (also known as citrate cycle 
or tricarboxylic acid cycle), found that the kidneys contain 
an enzyme that degrades d-amino acids [1]. On purifying 
this enzyme, later termed as d-amino acids oxidase (DAO), 
Dr. Krebs predicted the presence of d-amino acid in the 
kidneys. Unfortunately, it was already believed that the 
human body contains only l-form amino acids. Therefore, 
DAO was considered as functionless. Some nephrologists 
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disagreed with this misconcept and attempted to demon-
strate the presence of d-amino acids in body (personal 
communication); however, d-amino acids had not been 
detected in humans. Some earlier studies reported the pres-
ence of d-amino acids in patients with kidney diseases [2, 
9–11], but methods for precisely detecting trace amounts 
of d-amino acids in human precisely were not available.

Measurements of d‑amino acids

A main limitation of the studies of d-amino acids is their 
measurement. Only trace amounts of d-amino acids are 
present as compared to the abundant amounts of l-amino 
acids in nature and in the human body. In addition to 
l-amino acids, a wide variety of intrinsic compounds 
is present in human samples, which can easily interfere 
with analyses due to, again, trace nature of d-amino acids. 
These features of d-amino acids often prevent their precise 
measurements.

Precise measurements are key in biomarker identification. 
Biomarker mining using precision measurement reduces 
false-positive and false-negative results, greatly reducing the 
efforts of researchers. Biomarker analysis can affect patient 
outcome, i.e., uncertainty or wider deviations in the meas-
urement lead to ambiguous diagnosis, making treatment 
difficult and causing anxiety in patients. Even if potential 
targets are identified, the development of precision methods 
for detecting specific targets is eventually necessary.

Recently, precise measurement of d-amino acids has 
become possible using two-dimensional high-performance 
liquid chromatography (2D-HPLC) [12, 13]. The 2D-HPLC 
system is comprised of two tandemly aligned HPLC steps; 
the first dimension separates each amino acid using a 
reversed-phase column, and the second dimension sepa-
rates each enantiomer using a chiral column. 2D-HPLC can 
precisely detect all amino acids with enantiomer selectivity 
over a range from 1 fmol to 100 pmol.

Clinical problems involving d‑amino acids

Based on the close relationship between d-amino acids and 
the kidney, the key problems in kidney disease research are 
being investigated based on d-amino acids.

Prediction of prognosis of chronic kidney disease 
(CKD)

CKD, often defined by a chronic reduction in kidney 
function, glomerular filtration rate (GFR) [14], is a global 
concern with more than 10 million patients in Japan and 
850 million worldwide [15, 16]. The management of 
CKD is critical for suppressing the onset of cardiovascu-
lar diseases and progression to end-stage kidney disease 
(ESKD); however, satisfactory methods are lacking for 
early detection and prediction of prognosis.

The first CKD problem tackled by d-amino acids is the 
prediction of the prognosis (Fig. 2a) [4]. In a longitudi-
nal cohort of 108 patients with CKD, 2D-HPLC-based 
metabolomics analysis was performed to determine its pre-
dictive values for CKD prognosis. Sixteen of 21 measured 
d-amino acids were detected in the blood of patients with 
CKD. Among them, d-serine, d-alanine, d-proline, and 
d-asparagine showed the highest detection rates.

Survival analysis revealed a relationship between 
d-amino acids and the prognosis of CKD; patients with 
higher blood levels of d-amino acids are likely to have pro-
gressive CKD and start dialysis early. Among the d-amino 
acids, d-serine and d-asparagine were strongly associated 
with a worse prognosis. The risk of progression to ESKD 
was two-to-fourfold higher in patients with higher levels 
of these d-amino acids.

Blood d-amino acids show potential for predicting the 
prognosis of patients with CKD. Measuring d-amino acids 
may help to distinguish patients with CKD at high risk 
and prioritize those in need of more intensive care. This 
study provides new research opportunities in the fields of 
nephrology and use of d-amino acids as CKD biomarkers.

Estimation of GFR and early screening of CKD

After successfully predicting CKD prognosis using 
d-amino acids, next problem of CKD, early screening, 
was investigated (Fig. 2b) [5]. Precise evaluation of kidney 
function based on GFR is key for early screening, but has 
not been achieved. Inulin clearance, the gold standard of 
GFR, is less frequently measured in clinics due to the com-
plexity of the measurement. The estimated GFR (eGFR) 
based on the measurements of creatinine and cystatin C is 

Monitoring
D-amino acids

Early detection

Kidney function

Disease activity

Prognosis

ba

H
COOH

R

H3N

L-Amino acid

H
HOOC

R

NH3

D-Amino acid

Fig. 1  d-Amino acids and kidney disease. a Each amino acid, except 
glycine, has a chiral center and consists of two enantiomers, l- and 
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more convenient and widely used, but shows limited accu-
racy [17] [18]. Previously, a close correlation between the 
blood level of d-serine and eGFR has been reported [4].

A study examined the potential of using d-serine as 
a kidney GFR marker [5]. This study was performed to 
measure inulin clearance and blood d-serine simultane-
ously in CKD patients and non-CKD subjects [5]. The 
results of this study showed that the blood levels of d-ser-
ine were well correlated with inulin clearance. This cor-
relation was equivalent to those of the conventional kidney 
disease markers, creatinine, and cystatin C. d-Serine was 
identified as a useful marker for estimating the GFR and, 
thus, for the early diagnosis of CKD.

Intra‑body dynamics of d‑serine: another early 
screening method for CKD

Mechanism of d-serine management by the kidneys and 
the dynamics of d-serine in the body need to be understood 
(Fig. 2c) [5]. To understand this, fractional excretion (FE) 
of d-serine was examined [5]. The FE is the ratio of urinary 
excretion over glomerular filtration of a certain substrate. In 
case of l-amino acids, for example, the FE is about 1%, sug-
gesting that 99% of l-amino acids filtrated in the glomerular 
are reabsorbed [19]. Most l-amino acids are reabsorbed, as 
they are important nutrients and need to be recovered from 
urinary excretion.

Fig. 2  Monitoring intra-body 
dynamics of d-serine for assess-
ment of the kidney diseases 
activity. a Higher blood levels 
of d-serine are associated with 
worse prognosis of patients 
with CKD. Note that this trend 
is chiral-selective and is not 
observed in l-serine. b Blood 
levels of d-serine are well 
correlated with inulin clear-
ance, the golden standard for 
glomerular filtration rate, a 
key feature in predicting GFR. 
This correlation is compat-
ible with that of creatinine. LN 
log-natural transformed. c In the 
recovery phase of a patient with 
acutely worsened kidney, blood 
levels of d-serine dynamically 
responded to treatment. This 
trend paralleled the changes in 
blood creatinine. d Plotting of 
intra-body dynamics of d-serine 
indexed by plasma levels and 
fractional excretions (FE). The 
profile of non-CKD condi-
tions has been represented to 
be restricted within a certain 
range (dotted eclipse, 95% CI), 
whereas that of CKD condi-
tion has been represented to be 
broad and mostly outside the 
eclipse. The profile shifts from 
1 to 6 in the recovery course 
of acutely worsened kidney. 
Figures are adopted from refer-
ences [3–5] with modifications
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Surprisingly, the mode of urinary excretion of d-serine 
greatly differs from that of its enantiomer. The FE of d-ser-
ine was 62% in median in non-CKD subjects, which was 
much higher than that of l-serine (1.3%). The kidney clearly 
handles amino acids with chirality.

Interestingly, the FE of d-serine shows a similar in median 
but a wider range in patients with CKD as compared with 
that of non-CKD. The FE of d-serine is restricted within a 
certain range in non-CKD subjects. Principal component 
analysis revealed that the FE of d-serine conveyed unique 
information unrelated with the d-serine level in blood. Spe-
cifically, blood d-serine clustered in the group formed by the 
conventional kidney GFR markers creatinine and cystatin C, 
further reflecting its character as a kidney marker. The FE of 
l-amino acids formed another cluster, reflecting the similar 
mode of urinary l-amino acid dynamics regulated by the 
kidney. However, the FE of d-serine showed characteristics 
distinct from both kidney GFR markers and l-amino acid 
dynamics.

The FE of d-serine turned out to show high sensitivity in 
the presence of CKD, suggesting that the FE is useful for 
screening of kidney diseases. This was confirmed by ana-
lyzing the intra-body dynamics of d-serine, indexed by the 
blood and FE of d-serine (Fig. 2c). Intra-body dynamics of 
d-serine showed similar profiles in non-CKD subjects but 
different and diverse profiles in patients with CKD. Some 
patients with CKD showed a plasma-normal but FE-high 
profile of d-serine. The kidney function of these patients 
was found to be within the normal range, as reflected by the 
normal range of the d-serine plasma level. In these patients, 
eGFR alone cannot detect CKD. However, the abnormal FE 
of d-serine facilitated detection of CKD in these otherwise 
apparently healthy subjects. Therefore, the FE of d-serine 
provides additional information for detecting CKD even in 
cases when eGFR range appears to be normal. Detecting 
CKD before eGFR is decreased is an important problem 
in clinical detection of CKD, which may be overcome by 
measuring the FE of d-serine.

Another important aspect which may be provided by 
intra-body dynamics of d-serine is the sensitivity of CKD 
diagnosis. We now know that CKD is prevailing throughout 
the world [15, 16]. Estimation of GFR has opened the field 
of early screen [14]; however, the diagnostic accuracy has 
been left unsolved. In the medical diagnosis, specificity of a 
biomarker is used for early screen, whereas its sensitivity is 
used for accurate diagnosis. To gain sensitivity in CKD diag-
nosis is the next step to overcome. The sensitivity of intra-
body dynamics for the diagnosis of CKD was reported to be 
high (72.7%) [5]. High sensitivity of intra-body dynamics of 
d-serine may support the correct diagnosis of CKD.

In summary, d-serine is useful for the early detection of 
CKD from two perspectives. GFR can be estimated by deter-
mining blood levels of d-serine. Additionally, assessment of 

the intra-body dynamics of d-serine, by combining evalu-
ation of the blood levels and FE of d-serine, is useful for 
detecting CKD before GFR declines.

Assessment of disease activity

The intra-body dynamics of d-serine also reflect the activ-
ity of kidney disease [6]. In a patient with acutely worsened 
kidney function due to systemic lupus erythematosus, the 
blood levels of d-serine were extremely high before treat-
ment (17.06 μM), because kidney filtration function was 
completely impaired. Upon treatment, the blood levels of 
d-serine dynamically responded and became normalized, 
which paralleled the levels of blood creatinine (Fig. 2d). 
Currently, blood creatinine is used to assess the disease 
activity of acute kidney injury [20], but its measurement 
is often limited by the time lag of the response [21]. Thus, 
blood d-serine may be useful for the assessment of disease 
activity.

The FE of d-serine, another factor in the intra-body 
dynamics of d-serine, also provided key information 
(Fig. 2c). Before treatment of the patient, the FE of d-serine 
could not be detected because of its extremely low level in 
contrast with 60% in the median value found in the non-
CKD subjects. As kidney function was recovered, the FE 
of d-serine transiently over-surged the normal level, fol-
lowed by normalization. This response suggests that the 
kidney adaptively increased urinary excretion of d-serine to 
normalize the level in blood. Therefore, the FE of d-serine 
responded to disease activity during the clinical course. 
Accordingly, monitoring the intra-body dynamics of d-ser-
ine is useful for assessing disease activity and may improve 
prognosis and determination of treatment efficacy.

Key determinant of intra‑body dynamics

Monitoring the intra-body dynamics of d-serine provides 
comprehensive information for managing kidney diseases 
(Fig.  1b). Then, what are the determinants of d-serine 
dynamics (Fig. 3)?

The major determinant is blood flow to the kidneys. Once 
GFR is reduced, the kidneys cannot filter d-serine and it is, 
therefore, not excreted via urine. As a result, blood level of 
d-serine increases. This likely explains why blood levels of 
d-serine are correlated with GFR [5].

Another determinant of d-serine dynamics is tubular 
reabsorption. As aforementioned, a large fraction of d-ser-
ine is excreted into urine; the FE is 60% for d-serine vs 
1% for l-serine [5]. Reabsorption of d-serine occurs in the 
proximal part of the tubules, and therefore, the presence of 
transporters for d-serine in this part was suggested [22, 23]. 
These transporters, potentially either d-amino acid selective 
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or non-selective, are assumed to be less efficient based on 
higher excretion and lower uptake of d-serine [5]. Recovery 
of FE of d-serine after AKI strongly suggests that tubular 
injury affects the reabsorption process of d-serine [6].

Interestingly, reabsorption of d-serine changes dynami-
cally and is sensitive to the presence of underlying dis-
eases. In the early stage of CKD when kidney function and 
blood levels of d-serine are normal, the kidneys adaptively 
respond by increasing the excretion of d-serine to potentially 
maintain the level of d-serine in blood. In later stages with 
reduced blood flow to the kidneys and reduced GFR, the 
kidney tubules cannot manage d-serine levels because of 
decreased influx. Thus, the blood level of d-serine increases 
when the adaptive response of the kidneys is insufficient.

Origin of d‑serine

To fully utilize the role of d-serine as a biomarker, it is 
important to understand its source and general role in the 
body (Fig. 3). One key source of d-serine is serine racemase 
(SR) in the neurons of the forebrain [24, 25], which cata-
lyzes the stereochemical inversion of l-serine to d-serine 
[26]. Another enzymatic regulator is DAO [1]. DAO oxi-
dizes d-serine and generates 2-hydroxy-pyruvate along with 
hydrogen peroxide and ammonia [27, 28].

SR and DAO show different tissue distributions, which 
may regulate the dynamics of d-serine. SR is predominantly 
expressed in the neurons of the forebrain [24, 25]. In agree-
ment with the localization of the enzyme, d-serine is most 
abundant in cerebrum [13, 29]. In the brain, d-serine serves 
as a neurotransmitter of N-methyl-d-aspartate (NMDA)-type 

glutamate receptor (NMDAR) which maintains synaptic 
plasticity [30].

While SR is predominant in the forebrain, DAO is 
expressed more broadly [27, 28]. DAO is most abundant in 
the kidney. DAO is also present in liver except mouse liver. 
In the rodent brain, DAO activity is restricted to astrocytes in 
the hindbrain and spinal cord. DAO activity is also detected 
in the neutrophils, retina, and the small intestine in mouse. 
The complemental distribution of SR and DAO in the brain 
may determine the heterogenic distribution of d-serine [31].

Excessive oral intake of d-serine directly increases its lev-
els in blood [32]. Some foods contain d-serine synthesized 
during the fermentation processes [33]. Intestinal microbiota 
can affect the intra-body d-amino acid levels by similar pro-
cesses. Some d-amino acids such as d-alanine, d-asparagine, 
d-glutamate, and d-proline were detected in the feces of 
specific pathogen-free mice, but not in those of germ-free 
mice [34], suggesting that the microbiota in the intestine 
affects the d-amino acid profile. Intestinal microbiota may 
also affect intra-body d-serine levels [34], although d-serine-
producing microbiota are yet to be identified.

Physiological function of d‑serine in kidney

As mentioned, researchers have been interested in the pres-
ence of DAO in the kidney; the physiological significance 
of d-serine in kidney has not been determined. The blood 
d-serine level is regulated within a narrow range by the kid-
ney as seen in human studies [4–6], possibly to avoid unnec-
essary physiological responses to d-serine.

Previous studies showed the toxic effects of d-serine. 
Excessive amounts of d-serine administered in the body 
either intravenously or orally caused severe acute kidney 
injury in rodents [35, 36]. d-Serine administration caused 
extensive necrosis of the proximal tubules within a few 
hours. The mechanisms of these effects are unclear. Deg-
radation of d-serine by DAO may play a key role in kidney 
toxicity [37], typically through the production of hydro-
gen peroxide and reactive oxygen species [38]. In contrast, 
administration of d-alanine, which can also produce hydro-
gen peroxide upon oxidation by DAO, does not induce kid-
ney injury in rodents, obscuring the causal relationship of 
DAO with kidney injury [37, 39]. Using kidney tubular cell 
lines (HK-2) and primary cultures of kidney tubular cells, 
one study suggested the toxic mechanism of higher doses 
of d-serine as the induction of cell cycle arrest, pro-inflam-
matory response, and apoptosis via effector molecules of 
ER stress [40]. Higher doses of d-serine have been used in 
some clinical studies in schizophrenia and cerebellar ataxia 
[41, 42], as a potential activator of NMDAR. In these stud-
ies, potential side-effects such as proteinuria and abnormal 

Oral intake
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Serine racemase
D-Ser ← L-Ser

Urinary
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Brain

Blood

Reabsorption

Fig. 3  Regulation of intra-body dynamics of d-amino acids by the 
kidneys. d-Amino acids, either orally consumed or produced by ser-
ine racemase in case of d-serine, are delivered to the kidneys. Fil-
trated d-amino acids by the kidneys are either excreted via urine or 
reabsorbed to re-enter blood circulation. Images are modified from 
Servier Medical Art, licensed under a Creative Commons Attribution 
3.0 Generic License. https ://smart .servi er.com/

https://smart.servier.com/
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kidney values were sporadically reported, although the 
causal relationship remains unclear [43, 44].

Another study suggested the potential protective effects 
of d-serine [45]. Although protective effects have not been 
demonstrated using the conventional kidney marker, cre-
atinine, d-serine was reported to suppress kidney tubular 
damage according to the histological assessment of a rodent 
acute kidney injury model (ischemia/reperfusion model). 
The mechanisms by which d-serine exerts toxicity or pro-
tective effects are largely unsolved.

Concluding remarks

The close relationship between d-amino acids and the kid-
neys is now emerging. Currently, d-serine is most deeply 
studied d-amino acids due to its strong potentials and rela-
tive abundance. Therefore, evidence regarding d-serine in 
kidney diseases is accumulating. On the other hand, such 
d-amino acids as d-asparagine, d-alanine, and d-proline also 
have prognostic impacts on the prognosis of CKD. Studies of 
d-amino acids in kidney diseases have just begun, and we are 
foreseeing that more clinical evidence of d-amino acids will 
accumulate with the further advancement of the technology.

d-Serine is now regarded as a potential biomarker in a 
wide range of kidney diseases. d-Serine reflects the activity 
of kidney diseases, and can be used for the detection of dis-
eases or the prediction of prognosis, and estimation of GFR. 
Monitoring the intra-body dynamics of d-serine provides 
a new parameter for kidney diseases in clinics. Some key 
questions remain unsolved. For example, can combination of 
d-serine and current kidney markers, creatinine and cystatin 
C, improve the precise estimation of GFR? Is monitoring 
of intra-body dynamics of d-serine useful to improve the 
diagnosis of CKD? What kind of information do intra-body 
dynamics of d-serine reflect in association with other param-
eters of kidney diseases such as proteinuria? Is additional 
monitoring of other d-amino acids also useful in kidney and 
other diseases? These are important questions that will be 
answered in the future study.

Before the clinical application, it is necessary to develop a 
high-throughput system for measuring d-serine levels in the 
body. This system requires precision measurements, as the 
results will affect treatment decisions. With the development 
of research, d-serine is now solving two major problems that 
CKD processes, early screening and prediction of prognosis, 
and may lead to solve the last question, the therapy of CKD.
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