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Abstract
Dysfunction of slit diaphragm, a cell–cell junction of glomerular podocytes, is involved in the development of proteinuria in 
several glomerular diseases. Slit diaphragm should be a target of a novel therapy for proteinuria. Nephrin, NEPH1, P-cad-
herin, FAT, and ephrin-B1 were reported to be extracellular components forming a molecular sieve of the slit diaphragm. 
Several cytoplasmic proteins such as ZO-1, podocin, CD2AP, MAGI proteins and Par-complex molecules were identified 
as scaffold proteins linking the slit diaphragm to the cytoskeleton. In this article, new insights into these molecules and the 
pathogenic roles of the dysfunction of these molecules were introduced. The slit diaphragm functions not only as a barrier 
but also as a signaling platform transfer the signal to the inside of the cell. For maintaining the slit diaphragm function prop-
erly, the phosphorylation level of nephrin is strictly regulated. The recent studies on the signaling pathway from nephrin, 
NEPH1, and ephrin-B1 were reviewed. Although the mechanism regulating the function of the slit diaphragm had remained 
unclear, recent studies revealed TRPC6 and angiotensin II-regulating mechanisms play a critical role in regulating the bar-
rier function of the slit diaphragm. In this review, recent investigations on the regulation of the slit diaphragm function were 
reviewed, and a strategy for the establishment of a novel therapy for proteinuria was proposed.
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Introduction

Proteinuria is one of the most important symptoms of kidney 
diseases and is reported to be one of the most important 
risk factors of stroke and cardiovascular diseases [1]. How-
ever, the etiology, pathogenesis, and clinical significance 
of proteinuria were not fully understood yet. The develop-
ment of more effective selective therapy for proteinuria is 
awaited. Glomerular proteinuria is associated with patho-
logical damage of the glomerular filtration barrier, which 
is composed of three layers: glomerular endothelial cells, 
glomerular basement membrane (GBM), and glomerular 
visceral epithelial cells (podocytes). The studies in the past 
two decades revealed that the third layer, podocyte functions 
as the final barrier [2, 3]. It is now widely accepted that slit 

diaphragm, a cell–cell junction of podocytes, plays a critical 
role in preventing the leak of plasma proteins into primary 
urine and that dysfunction of the slit diaphragm is involved 
in the development of proteinuria in several glomerular dis-
eases. The functional molecules of the slit diaphragm could 
be novel therapeutic targets for proteinuria.

The authors have previously reviewed the role of the slit 
diaphragm [4, 5]. In this review, first, we will overview a 
unique, specialized property of the slit diaphragm, review 
new insight into the structural and functional properties of 
the slit diaphragm, and discuss the future line of the investi-
gations for establishing a novel therapy for proteinuria.

Overview: slit diaphragm, a specialized cell–
cell junction of podocyte, shares common 
characteristics with synapse

Foot processes of podocytes cover the outer side of GBM. 
The neighboring foot processes were derived from different 
cell bodies, and they were connected by a continuous mem-
brane-like structure, which is called “slit diaphragm”. The 

 * Hiroshi Kawachi 
 kawachi@med.niigata-u.ac.jp

1 Department of Cell Biology, Kidney Research Center, 
Niigata University Graduate School of Medical 
and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, 
Niigata 951-8510, Japan

http://orcid.org/0000-0003-0823-1981
http://crossmark.crossref.org/dialog/?doi=10.1007/s10157-020-01854-3&domain=pdf


194 Clinical and Experimental Nephrology (2020) 24:193–204

1 3

early study with electron microscopy showed that the slit 
diaphragm exhibited a zipper-like substructure with alter-
nating, periodic cross-bridges extending from the opposite 
podocyte plasma membranes [6]. Arakawa demonstrated 
that neighboring foot processes were interdigitated with the 
scanning electron microscopic analysis [7]. Developmental 
analyses showed the slit diaphragms appear during the capil-
lary loop stage and gradually replace tight junctions [8, 9]. 
The slit diaphragm is reported to be a specialized adherens 
junction, because it contains typical adherens junction pro-
teins such as P-cadherin, β-catenin [10], and FAT [11], while 
Farquhar’s group reported that slit diaphragm is a highly 
specialized variant of a tight junction, because the slit dia-
phragm contains several tight junction proteins including 
ZO-1, JAM-A, occludin, and cingulin [12].

Podocyte shares common characteristics with neuron: 
both of them are final differentiated cells, which have no 
ability of proliferation, and they possess unique processes 
and share common functional molecules such as synap-
topodin [13], densin [14], drebrin [15], and dendrin [16]. 
These molecules are restrictively expressed in podocyte foot 
processes and neuronal dendric spines. Slit diaphragm con-
nects foot processes of podocytes. Synapse is a structure 
between axon terminal and dendrite of neurons. Both are 
highly specialized cell–cell junctions connecting unique 
processes. Rastaldi et al. reported that Rab3, a synaptic 
vesicle surface protein, is expressed at the slit diaphragm 
and that the vesicles locate at the edge of the foot process 
[17]. Synaptic vesicle-associated protein 2B (SV2B) is also 
expressed at slit diaphragm [18]. A recent study showed that 
the deletion of SV2B results in the mislocalization of the 
slit diaphragm components including nephrin and CD2AP 
and that several synaptic vesicle-associated molecules 
including SNARE molecules were expressed in podocyte 
[19]. Soda et al. reported that dynamin, synaptojanin, and 
endophilin, which are functional partners in synaptic vesicle 
recycling, are essential for the formation and maintenance of 
the podocyte foot process structure [20]. It is reported that 
neurexin-1, a presynaptic adhesion molecule, is expressed 
in podocyte [21], and neurexin-1 interacts with CD2AP and 
SV2B. It is plausible that dysfunction of these neuron-asso-
ciated molecules in podocyte is involved in the development 
of slit diaphragm dysfunction and that the pharmacological 
reagent targeting these molecules could be candidates for a 
novel therapy protecting podocyte.

Extracellular components forming 
a molecular sieve of the slit diaphragm

The first molecule identified as an extracellular component 
of the slit diaphragm is nephrin [22]. Nephrin is accepted 
to be the main body of the extracellular portion of the slit 

diaphragm. Nephrin has a long extracellular domain contain-
ing eight Ig-like modules and a single fibronectin type III 
module. Ruotsalainen et al. proposed that nephrin molecules 
extending from two adjacent foot processes are likely to 
interact with each other in the slit through homophilic inter-
actions [23], as has been shown for other Ig cell adhesion 
molecules such as N-CAM [24], C-CAM [25], and L1 [26]. 
Nephrin was identified as a product of the mutated gene in 
patients with Finnish-type nephrotic syndrome [22], and it 
was demonstrated that the antibody against nephrin is capa-
ble of inducing massive proteinuria [27–29]. Based on these 
findings, nephrin is accepted to be a key molecule forming 
a molecular sieve of the slit diaphragm. Downregulation of 
nephrin is observed in experimental nephrotic models [28, 
30–32] and in clinical cases of several types of glomerular 
disease such as minimal change disease [33], membranous 
nephropathy, membranoproliferative glomerulonephritis, 
IgA nephropathy, lupus nephritis [34], diabetic kidney dis-
ease [35, 36], and preeclampsia [37]. These studies indicated 
that nephrin dysfunction is one of the common pathogenic 
mechanism of proteinuria in human glomerular diseases.

Another critical molecule of the extracellular components 
is NEPH1. NEPH1 was identified as a nephrin-related pro-
tein by the gene trapping screen [38]. NEPH1, a transmem-
brane protein, contains five extracellular immunoglobulin-
like domains [38]. NEPH1 interacted with nephrin in a cis 
form [39]. Glomeruli of NEPH1 knock-out mice showed the 
effacement of podocyte foot processes and proteinuria, and 
all mice died at 3–8 weeks of age [38], which indicates that 
NEPH1 is also essential for maintaining the barrier function 
of the slit diaphragm. A recent study using high-resolution 
ultrastructural imaging showed that slit diaphragm is mul-
tilayered and that the NEPH1 molecule spanning is in the 
lower part of the junction, closer to GBM with a width of 
23 nm, while nephrin contributes to the apical region of the 
slit diaphragm with a width of 45 nm [40]. The study also 
reported that nephrin is not required to build a functional 
filtration barrier in birds, and discussed that NEPH1 plays a 
critical role in birds.

Some of other transmembrane proteins were reported to 
be accumulated at the slit diaphragm. Reiser et al. reported 
that P-cadherin, a member of cadherin superfamily, was 
localized at the slit diaphragm [10]. Cadherin forms homo-
philic  Ca2+-dependent cell–cell adhesion. FAT, a large 
transmembrane protein of 34 tandem cadherin-like repeats, 
was localized at the slit diaphragm and was costained with 
nephrin [11]. FAT KO mice showed severe proteinuria, 
which indicates that FAT is also essential for maintaining 
the filtration barrier of the slit diaphragm [41]. It was also 
reported that neurexin [21] and ephrin-B1 [42] are accu-
mulated at the slit diaphragm. Neurexin is a presynaptic 
adhesion molecule and is known to have multiple splicing 
variants. It was shown that a unique variant of neurexin is 
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expressed in the podocyte. Immunoprecipitation assay with 
rat glomerular lysate showed that neurexin interacted with 
CD2AP, a cytoplasmic molecule binding to nephrin [21]. 
Ephrin-B1 is a protein of Eph-ephrin family, which has 
many biological functions in several types of tissues [43]. 
Ephrin-B1 interacts with nephrin via their extracellular por-
tions. The podocyte selective ephrin-B1 KO mice displayed 
mild but significant proteinuria [44], indicating that ephrin-
B1 participates in maintaining the barrier function of the 
slit diaphragm. However, the molecular components form-
ing a sieve structure of the extracellular domain of the slit 
diaphragm are not well clarified yet.

Multiple scaffold proteins participate 
in the link of slit diaphragm 
to the cytoskeleton

Multiple cytoplasmic proteins linking the membrane pro-
teins at the slit diaphragm to the cytoskeleton were iden-
tified. Schematic interaction of the scaffold proteins and 
transmembrane proteins at the slit diaphragm was shown in 
Fig. 1. ZO-1 (zonula occludens-1) was reported to be local-
ized at the cytoplasm just below the cell surface at the inser-
tion point of slit diaphragm [45]. ZO-1 is the first molecule 
identified as a component of the slit diaphragm. ZO-1 was 
originally identified as a component of tight junction and 
belongs to a family of the membrane–associated guanylate 
kinase (MAGUK) molecules with PDZ domains [46]. ZO-1 
directly interacts with NEPH1 by binding of the first PDZ 
domain of ZO-1 to the C-terminus PDZ binding motif of 
NEPH1 [47]. The interaction between NEPH1 and ZO-1 

was lost in response to the ischemic injury leading to podo-
cyte foot process effacement and proteinuria [48]. The recent 
study intending novel drug development showed that isodes-
mosine, a naturally occurring compound, can protect podo-
cyte from injury by stabilizing the ZO-1-NEPH1 complex 
[49]. These reports suggested that the interaction of ZO-1 
and NEPH1 is essential for maintaining the slit diaphragm 
structure, and the interaction could be a target for a drug.

Podocin is identified as a product of a gene mutated in 
familial steroid-resistant nephrotic syndrome [50]. Since 
podocin has a single transmembrane region and both N- and 
C-terminus of podocin are localized at cytoplasm, podocin 
is considered to have a hairpin-like structure [51]. Podocin 
interacts with nephrin, NEPH1 and CD2AP [52–54]. The 
expression and the localization of podocin are altered in 
several types of acquired glomerular diseases such as FSGS 
[55], lupus nephritis [56] and IgA nephropathy [57], and 
in experimental nephrotic models [58]. Podocin is a mam-
malian homolog of the C. elegans stomatin family protein 
Mec-2. Mec-2 is recruited to the putative mechanosen-
sory complex in C. elegans touch sensory neurons [59]. 
Podocin interacts with TRPC6, one of the key regulators 
of slit diaphragm function. Knockdown of podocin mark-
edly increased stretch-evoked activation of TRPC6. It is also 
reported that podocin deficiency results in  Ca2+ overload in 
foot processes [60]. Podocin regulates the barrier function 
of the slit diaphragm by acting as a switch to determine the 
preferred mode of TRPC6 activation.

CD2AP, an 80 kDa protein, has been shown to inter-
act with nephrin [61]. CD2AP was identified as an SH3-
containing protein that binds to the cytoplasmic domain of 
CD2, a membrane protein on T cell and natural killer cell. 
CD2AP anchors nephrin to the cytoskeleton, since CD2AP 
has an actin-binding site at the N-terminus. Mice lacking 
CD2AP exhibit morphological alterations such as loss of 
foot process, severe proteinuria [62]. Kim et al. reported 
that two human patients with focal segmental sclerosis had 
a mutation predicted to ablate the expression of one CD2AP 
allele [63]. It has been shown that lack of CD2AP leads to 
the increased expression of TGF-β and promotes the TGF-
β-induced apoptosis [64]. The study indicated that CD2AP 
regulates the survival of podocyte by regulating the expres-
sion of TGF-β. It is also reported that dendrin binds CD2AP 
and nephrin at the slit diaphragm [16]. The report showed 
that dendrin relocates to the nucleus of injured podocytes 
and that nuclear dendrin modulates TGF-β-induced apop-
tosis. Following the report, Yaddanapudi et al. reported that 
loss or downregulation of CD2AP allowed for an increase 
in TGF-β signaling and the translocation of dendrin from 
the slit diaphragm into the nucleus. Dendrin is a transcrip-
tion factor specifically promoting the expression of cyto-
solic CatL. Cytosolic CatL, in turn, drove the reorganiza-
tion of the actin cytoskeleton. Then, it was concluded that 

Fig. 1  Schematic diagram of the slit diaphragm. Nephrin, NEPH1, 
ephrin-B1, FAT, and neurexin form the extracellular region of the slit 
diaphragm. The extracellular components of the slit diaphragm inter-
act with the scaffold proteins, podocin, CD2AP, ZO-1, Nck, MAGI, 
and Par-complex molecules (Par-3, Par-6, aPKC)
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CD2AP functions as the gatekeeper of the podocyte TGF-β 
response through its regulation of cytosolic CatL expression 
[65]. Very recently, Tossidou et al. reported that CD2AP is 
a phosphorylation target of receptor tyrosine kinases stimu-
lated by VEGF-A [66]. They demonstrated that phospho-
rylation of tyrosine at position Y10 of the SH3-1 domain of 
CD2AP could change the affinity of CD2AP to nephrin and 
is indispensable for CD2AP function.

MAGI proteins (MAGI-1, MAGI-2, MAGI-3) belong to 
the MAGUK family function as molecular scaffolds, coordi-
nating signaling complexes by linking cell surface receptors 
to the cytoskeleton. MAGI-1 interacts with junctional adhe-
sion molecule 4 (JAM4), and both MAGI-1 and JAM-4 are 
expressed in podocytes [67]. Immunoelectron microscopy 
shows that the localization of MAGI-1 is restricted to the 
slit diaphragm, whereas JAM4 is distributed at the slit dia-
phragm and on apical membranes. The in vitro interaction 
assay showed that MAGI-1 binds nephrin via the middle 
PDZ domains of MAGI-1 and the carboxyl terminus nephrin 
[68, 69]. It is understood that MAGI-1 forms a tripartite 
complex with nephrin and JAM4 at the slit diaphragm [68]. 
The studies with nephrotic models showed that MAGI-1 and 
JAM 4 are downregulated in the proteinuric states [68, 70]. 
MAGI-2 is also expressed in podocyte and directly binds 
the carboxyl terminus of nephrin. Shirata et al. reported that 
podocyte-specific conditional MAGI-2-knockout (MAGI-
2-CKO) mice exhibited slit diaphragm disruption, morpho-
logic abnormalities of foot processes, and podocyte apop-
tosis leading to podocyte loss [71]. MAGI-2 interacts with 
dendrin and plays a role in retaining it at the slit diaphragm. 
In MAGI-2 CKO mice, dendrin is translocated from the slit 
diaphragm to the nucleus, and podocyte apoptosis is pro-
moted. Thereby the lack of MAGI-2 in podocyte results in 
FSGS.

The partitioning-defective (Par)-complex (Par-3/Par-6/
aPKC) is understood to be a central player in regulating cell 
polarity in several cell types. Hartleben et al. reported that 
Par-3 and aPKC are expressed at podocyte slit diaphragm 
and NEPH1-nephrin complex binds to the Par-complex [72]. 
Recently, Takamura et al. demonstrated that Par-3 binds to 
nephrin, and Par-6 binds to ephrin-B1, another transmem-
brane protein at slit diaphragm [73]. The mice administered 
with a dominant-negative aPKC construct showed signifi-
cant proteinuria, and the loss of foot process architecture 
was detected in the isolated glomeruli treated with an inhibi-
tor of aPKC. These observations clearly showed that the 
NEPH1–Nephrin–Par complex is essential for the main-
tenance of the barrier function of the slit diaphragm. The 
selective depletion of aPKCλ/ι in mouse podocyte results in 
slit diaphragm displacement, foot process effacement, pro-
teinuria, and renal failure [74, 75]. It is known that aPKC has 
two isoforms: aPKCλ/ι and aPKCζ. The double aPKCλ/ι and 
aPKCζ knockout in podocyte results in severe proteinuria 

and perinatal death [76]. The developmental study with neo-
natal mice by Huber et al. showed that Par polarity complex 
translocated from apical to basal during glomerulogenesis 
and that the translocation proceeds slit diaphragm formation 
[76, 77]. These findings suggested that aPKC signaling is a 
fundamental mechanism for the development and mainte-
nance of podocyte slit diaphragm.

Synaptopodin plays a critical role in maintaining podo-
cyte function and is reported to be a target of cyclosporine, 
an immunosuppresive agent which is used for patients with 
nephrotic syndrome [78]. Synaptopodin was originally 
identified as an actin-associated protein of podocytes [13]. 
Synaptopodin interacts with α-actinin-4 and regulates its 
actin-bundling activity at foot processes [79]. Synaptopo-
din interacts with CD2AP at the slit diaphragm [80, 81]. Yu 
et al. reported that synaptopodin affects the localization and 
function of TRPC6 [82]. Synaptopodin participates in the 
regulation of the slit diaphragm function through regulating 
the TRPC6 function.

Slit diaphragm functions as a signaling 
platform

The slit diaphragm functions not only as a barrier but also 
as a signaling platform transfer the signal to the inside of 
the cell. Nephrin, a key transmembrane protein of the extra-
cellular domain of the slit diaphragm, has several tyrosine 
residues. The tyrosine residues of nephrin can be phos-
phorylated by Src family kinases, including Src, Fyn, Lyn, 
and Yes [83–85]. The tyrosine residues inducing signaling 
pathways were divided into two groups. The first group is 
Y1114 (YEES), Y1138/9 (YYRS) (human numbering sys-
tem). Phosphorylation of the first group tyrosines induces 
the binding to p85/PI3K [86, 87]. The second group tyros-
ine is YDxV motif, which includes Y1176 (YDEV), Y1193 
(YDEV), and Y1217 (YDQV). Phosphorylation of tyros-
ines of the second group promotes the recruitment of NCK, 
an SH2/SH3 containing adaptor protein [88, 89]. It is also 
reported that nephrin phosphorylated at the tyrosine residue 
of this group linked to another SH2/SH3 containing protein 
PLB-γ1 [90, 91].

There is still a lack of consensus on whether phosphoryla-
tion of tyrosines of nephrin is associated with promotion or 
protection of podocyte injury, and it is understood that there 
are site-specific differences in phosphorylation in baseline, 
injury, and recovery. Tyrosine phosphorylation of nephrin 
induces two forms of the structure of actin in culture. One 
form is lamellipodia, in which two-dimensional actin mesh 
is observed. Lamellipodia is sometimes associated with foot 
process effacement of podocyte seen in the pathogenic state 
in vivo and is mediated by the phosphorylation of tyrosines 
of the first group [85, 86]. Another form is growth of actin 
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polymer (production of actin tail at nephrin), which is con-
sidered to be associated with the stabilization of the foot 
process and the maintenance of the slit diaphragm structure. 
The production of the actin tail is basically mediated by 
the phosphorylation of the second group tyrosines [89]. The 
reduced phosphorylation level of the second group tyrosines 
was detected in human glomerular diseases such as minimal 
change disease [92], membranous nephropathy [93]. The 
recent study shows that the knock-in mice of which three 
tyrosine residues of Y1191, Y1208, and Y1232 of mouse 
numbering system, which corresponds to the second group 
tyrosine residues in human, were converted to phenylalanine, 
developed progressive proteinuria accompanied by structural 
changes [94]. The results indicated that phosphorylation of 
these tyrosines is required for stabilization of podocyte mor-
phology. Phosphorylation of tyrosines of nephrin is nega-
tively regulated by several tyrosine phosphatases. Altera-
tions in levels of tyrosine phosphatases are also detected in 
several pathogenic states. Protein tyrosine phosphatase 1B, 
which can directly dephosphorylate tyrosines of the second 
group, is upregulated in rat puromycin aminonucleoside 
nephropathy [95]. SH2 domain-containing phosphatase 1, 
which de-phosphorylates tyrosines of the second group, is 
increased in models of diabetic nephropathy [96]. C1-Ten, 
which is recently identified as nephrin tyrosine phosphatase 
targeting tyrosines of the first group (Y1114 and Y1138) is 
also upregulated in diabetic nephropathy [97]. These recent 
findings showed that a reduction of nephrin phosphorylation 
level is involved in the development of podocyte injury in 
diabetic nephropathy. It is also reported that the phospho-
rylation status of nephrin regulated its own endocytosis. The 
studies on the endocytosis mechanism of nephrin will be 
described in the next section. A recent study demonstrated 
that nephrin signaling results in integrin β1 activation. The 
finding implied that nephrin-mediated signal regulates podo-
cyte attachment to glomerular basement membrane [98].

NEPH1 also can transduce outside-in signals. Four tyros-
ine residues (Y637, Y638, Y716, Y719) of NEPH1 were 
identified that became phosphorylated. NEPH1 phospho-
rylation results in the recruitment of Grb2. Fyn is necessary 
for NEPH1-Grb2 interaction. The interaction results in actin 
polymerization [99]. Phosphorylated NEPH1 and nephrin 
coordinate distinct signaling pathway through binding to 
different SH2 domain proteins Grb2 and NCK. NEPH1 is 
phosphorylated in several injured podocyte models [48, 
100, 101]. Since inhibiting NEPH1 phosphorylation protects 
podocyte from injury, it is assumed that inhibiting NEPH1 
signaling is therapeutically significant in preventing podo-
cyte damage [48].

Ephrin-B1 at slit diaphragm also functions as a signaling 
molecule. The nephrin-binding ephrin-B1 at slit diaphragm 
transfers the signals nephrin detected to the inside of the cell 
via different ways from nephrin-mediated signaling [44]. If 

ephrin-B1 is phosphorylated, nephrin and Par-6 were disso-
ciated from ephrin-B1 [44, 73]. Phosphorylation of ephrin-
B1 promoted mobility of podocyte through activation of 
JNK. It is estimated that the promoted mobility participates 
in podocyte injury. Regulation of phospho-status of ephrin-
B1 could be a therapeutic target. Roles of phosphorylation 
of tyrosine residues of nephrin, NEPH1, and ephrin-B1 are 
summarized in Fig. 2.

Mechanisms regulating the slit diaphragm 
function

The dynamics of podocyte morphology and the function 
of the slit diaphragm are regulated by calcium signaling. 
TRPC5 and TRPC6 channels have been identified in podo-
cyte, and they play a central role in regulating calcium influx 
and affect the reorganization of the actin cytoskeleton of 
podocyte [102]. TRPC6 couples with RhoA, while TRPC5 
couples with Rac. Although TRPC5-mediated signals 
have been considered to cause podocyte injury leading to 
cytoskeletal collapse [103], the function of TRPC5 in podo-
cytes is not clearly understood. Winn et al. reported that a 
mutation of TRPC6, proline to glutamine at position 112 
(P112Q), was detected in patients of familiar FSGS [104]. 
Reiser et al. reported that other TRPC6 mutations R895C 
and E897K were detected in the patients [105]. They showed 
that these mutations lead to increased calcium influx. It is 
understood that the gain-of-function alteration causes podo-
cyte injury leading to FSGS. On the contrary, recently a 
loss of function type of TRPC6 mutation was found to be 
associated with human FSGS [106]. The report suggests that 
unbalanced calcium entry dysregulated by TRPC6 causes 
podocyte damage. TRPC6 affects not only FSGS but also 
other diseases with podocyte injury. It is observed that the 
expression of TRPC6 was increased in diabetic nephropathy 
[107–109]. TRPC6 interacts with podocin, which suggests 
that the regulation of calcium signaling mediated by TRPC6 
is highly associated with the maintenance of slit diaphragm 
function.

Inhibiting angiotensin II (AngII) action has been known 
to be beneficial in many types of kidney diseases. Several 
studies have suggested that ACEI and AngII type 1 receptor 
blockade (ARB) have a protective role for slit diaphragm 
by promoting the expression of nephrin, podocin, and 
NEPH1 [110–113]. Although the pharmacological mecha-
nism of these drugs is not fully explained yet, it is reported 
that AngII action affects the slit diaphragm by regulating 
the TRPC6 function. The study analyzing the mechanism 
of AngII-induced apoptosis showed that the protein level 
of TRPC6 was increased markedly in response to Ang II 
and that the intracellular  Ca2+ concentration was elevated 
[114]. The study also showed that if TRPC6 was knocked 
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down with siRNA, Ang II-induced podocyte apoptosis and 
the transient  Ca2+ influx were inhibited. The role of TRPC6 
in AngII-induced podocyte injury was also demonstrated 
by in vivo study [115]. The study revealed that TRPC6-
deficient mice had significantly less albuminuria. These 
observations showed that AngII action causes podocyte 
injury by enhancing the TRPC6 function. Nijenhuis et al. 
proposed an attractive hypothesis explaining the mechanism 
of AngII-induced podocyte injury [116]. AngII type 1 recep-
tor stimulation by AngII results in  Ca2+ influx mediated by 
TRPC6.  Ca2+-dependent calcineurin activation leads to acti-
vation and nuclear translocation of NFAT, which enhances 
transcription of NFAT-responsive genes such as TRPC6. A 
consequent increase in TRPC6 expression at the cell mem-
brane could result in a positive feedback regulatory circuit. 
The positive feedback mechanism can result in persistent 
calcineurin activation and promotes the podocyte injury. It is 
also proposed that calcineurin inhibitor such as cyclosporine 
ameliorates podocyte injury by blocking the positive circuit. 
The breaking down of the positive circuit can be a plausible 
strategy of a novel therapy for protecting podocyte.

Since AT1R is a member of Gq-coupled receptors, the 
beneficial effect of agents inhibiting the activation of AT1R 
may be mediated at least in part by inhibition of Gq signal-
ing. Wang et al. reported that constitutive active Gq-alpha 
subunit promoted podocyte injury by stimulating calcineurin 
activity, resulting in calcineurin-dependent upregulation of 
TRPC6 [117]. It is also reported that other G protein-coupled 
receptors (GPCRs) contribute to kidney injury by activating 
TRPC6. Roshanravan et al. demonstrated that ATP evoked 
activation of TRPC6 through G protein-coupled pathway 

from P2Y receptors [118]. A recent study by Wang et al. 
demonstrated that activation of group I mGluRs induced 
TRPC6-dependent  Ca2+ influx [119]. An alternative treat-
ment strategy might be to target the signaling pathway from 
GPCRs. Especially, agents inhibiting Gq activation and ther-
apy targeting downstream signaling cascade linked to Gq 
activation might be useful novel therapy for podocyte injury.

Recently, Verheijden et al. [120] demonstrated that the 
stimulation of TRPC6-dependent calcium influx increased 
calpain-1 and calcineurin activity and reduced the expres-
sion of a calpain target Talin-1. The study also showed that 
in kidneys of patients with FSGS, calpain, and calcineurin 
activity, as well as TRPC6 expression were increased, and 
the expression of Talin-1 was clearly reduced. Talin-1 links 
the actin cytoskeleton to integrins, and is critical for podo-
cyte cytoskeletal stability. Very recently, it was reported that 
for activation of calpain, the physical interaction between 
TRPC6 and calpain is important and TRPC6 channel activ-
ity is independent [121]. It is conceivable that calpain-1 inhi-
bition could be future therapeutic options to treat patients 
with FSGS.

A slit diaphragm is understood to be a highly dynamic 
unit. Regular replacement of the slit diaphragm components 
is necessary for maintaining the integrity of slit diaphragm. 
However, little is known about the mechanism regulating 
endocytosis and recycling back to the plasma membrane of 
the transmembrane proteins of the slit diaphragm. In podo-
cytes two endocytic pathways, clathrin-dependent and clath-
rin-independent endocytosis, have been identified. Quack 
et al. reported that β-arrestin mediated clathrin-dependent 
endocytosis of nephrin [122]. The study demonstrated 

Fig. 2  Roles of tyrosine phos-
phorylation of nephrin, NEPH1, 
and ephrin-B1. Phosphorylation 
(P) of tyrosine residues (Y) of 
nephrin and NEPH1 regulates 
actin polymerization and 
reorganization. Ephrin-B1 
phosphorylation regulates JNK 
signaling
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that β -arrestin interacts with nephrin dephosphorylated at 
Y1193. Phosphorylation of nephrin Y1193 by Fyn enhances 
the interaction of nephrin with podocin, and prevents the 
interaction with β -arrestin, and attenuates the β -arrestin-
mediated nephrin endocytosis. It is also reported that Fyn-
mediated phosphorylation of nephrin promoted nephrin 
endocytosis via the clathrin-independent pathway [84, 123]. 
It is plausible that the phosphorylated state shifts nephrin 
to the different endocytic pathways. Recent report showed 
that ShcA, a SH2-containing protein, binds to the nephrin 
phosphorylated at Y1193 and promotes nephrin endocytosis 
[124]. These observations showed that the phosphorylation 
status of nephrin Y1193 determines the slit diaphragm integ-
rity. It is proposed that the regulation of the phosphoryla-
tion status of nephrin Y1193 could be a strategy for a novel 
therapy for proteinuria. The study by Soda et al. showed that 
dynamin participates in the mechanism of nephrin endocy-
tosis [20]. It is reported that activation of Notch signaling 
induces nephrin internalization via a β -arrestin/dynamin-
dependent route [125]. Activation of Notch signaling was 
detected in podocyte injury with proteinuria of several types 
of human glomerular disease [126, 127]. Notch activation 
is considered to function as a molecular switch that trig-
gers irreversible podocyte injury and promotes disease 
progression in proteinuric glomerulopathy. The therapeu-
tic approach targeting Notch may promote the repair of the 
glomerular filtration barrier and prevent terminal podocyte 
injury.

Future lines of study: a strategy 
for the establishment of a novel therapy 
for proteinuria

In this review, we overview the podocyte functional mol-
ecules that play a critical role in the maintenance of the bar-
rier function of the slit diaphragm. The molecular structure 
of the slit diaphragm and the mechanism regulating the func-
tion of the slit diaphragm are much more complicated than 
we thought in the 1990s. Although a lot of studies were piled 
up, the nature of the slit diaphragm is not fully clarified yet, 
and the therapy targeting the slit diaphragm molecules is 
not established yet.

The transmembrane proteins forming a molecular sieve 
of the slit diaphragm such as nephrin, NEPH1, and ephrin-
B1 must be prior targets for a novel therapy for proteinuria. 
Of course, nephrin should be the most important target; 
however, some recent reports suggested that the stabiliza-
tion of NEPH1 is an essential strategy to protect podocyte 
from serious damages [49]. The authors have been analyz-
ing the expression of the slit diaphragm molecules in sev-
eral nephrotic models and observed that nephrotic model in 
which NEPH1 is downregulated from the early phase shows 

persistent proteinuria and progress to irreversible podocyte 
injury [32]. However, our knowledge on the mechanism 
of turnover of NEPH1 is very limited. The transcriptional 
mechanism and the endocytosis mechanism of NEPH1 
should be clarified.

The modifications of signaling pathways from the slit dia-
phragm should be one of the important strategies for novel 
therapy for the podocyte injuries. Although the pathologi-
cal significance of the signaling pathway from nephrin is 
not precisely understood, several studies showed that the 
phosphorylation level of each tyrosine residues of nephrin 
is strictly regulated. It was reported that the phosphorylation 
level of nephrin is regulated by the activity of the phos-
phatase such as protein tyrosine phosphatase 1B and C1-Ten 
[95–97]. These phosphatases may be targets for novel ther-
apy. The study with podocyte-specific conditional knock out 
mice showed that ephrin-B1 plays a central role in regulating 
the JNK signaling pathway of podocyte [44]. JNK is a stress-
activated kinase and is considered to regulate cell motility 
of podocyte. It is conceivable that the regulation of the JNK 
pathway mediated by ephrin-B1 is a rational strategy for 
protecting podocyte from irreversible injury.

Slit diaphragm is considered to be a variant of tight junc-
tion [8, 9, 12, 45], and the transition of slit diaphragm to 
tight junction appears in several nephrotic conditions [128, 
129]. The Par complex is essential for the establishment of 
cell polarity and the formation of the tight junction. It is 
reported that the tight link between the Par complex to the 
slit diaphragm components is critical for maintaining the 
structure of the slit diaphragm [72, 73]. Reinforcement of 
the linking between the transmembrane proteins and the Par 
complex molecules is also a rational strategy.

In this article, we reviewed that the slit diaphragm has 
common characteristics with synapse. Several synapse-
associated molecules are highly expressed in podocytes, and 
they play a critical role in maintaining the slit diaphragm 
function. Synaptic vesicle-associated proteins are involved 
in the maintenance of the slit diaphragm [17–20]. Dendrin, 
which is originally identified in dendrite of rat neuron, plays 
a critical role in stabilizing the scaffold proteins of the slit 
diaphragm [16]. These neuron-associated molecules could 
be targets for therapy for protecting podocyte. It is expected 
that some of the drugs and chemical agents developed for 
neuronal diseases have an effect on podocyte. We estab-
lished the in vitro system to analyze the expression of these 
neuronal molecules with cultured podocytes. However, to 
select the effective agent more sensitive screening system 
should be established. Recently, the culture condition to 
induce the cultured podocytes with long arborized processes 
was reported [130]. The method may help for establishing a 
better screening system.

Reducing the level of proteinuria is critical for preventing 
the progression to end-stage kidney. Although proteinuria 
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is accepted to be one of the most important risk factors 
of stroke and cardiovascular diseases, the causal relation-
ship between proteinuria and these diseases remains to be 
unclear. We suppose that proteinuria may work as “canary in 
a coal mine” to predict other disease, because the glomerular 
capillary wall preventing proteinuria seems to be a very deli-
cate and fragile unit. Therapeutic intervention of proteinuria 
from the early phase will help to prevent stroke, cardiovascu-
lar disease, and some other diseases which have a common 
pathogenic mechanism with proteinuria. A novel effective 
therapy for proteinuria targeting slit diaphragm should be 
established as soon as possible.
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