Skip to main content
Log in

Cisplatin induces Sirt1 in association with histone deacetylation and increased Werner syndrome protein in the kidney

  • Original Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Sirt1, a mammalian homolog of silent information regulator 2 (Sir2), is the founding member of class III histone deacetylase (HDAC).

Methods

In this study, we examined whether Sirt1 is involved in the modification of acetylated histone H3, acetylated p53 and Werner syndrome protein (WRN), which is stabilized by Sirt1-mediated deacetylation, in cisplatin (CDDP)-induced acute renal failure (ARF) in rats.

Results

Administration of CDDP (5 mg/kg body weight) caused an increase in the Sirt1 protein level by 6 h; this increase peaked at day 5 and declined until day 14. Sirt1 was induced to a greater extent in rats with severe ARF. In contrast, HDAC3 and HDAC5 were not induced within 24 h after CDDP administration. The level of acetylated histone H3 in the kidney decreased early, i.e., at 6 h, and was minimal at day 5, after which the level gradually increased by day 14. CDDP marginally induced acetylated p53 within 24 h after administration. Increased WRN also became evident at 6 h, and continued to be upregulated until day 5, accompanied by an increase in proliferating cell nuclear antigen (PCNA). Transfection of Sirt1 to human embryonic kidney 293 cells mitigated the CDDP-induced cellular damage.

Conclusions

These findings collectively suggest that CDDP increases the level of Sirt1 protein in the kidneys in association with histone H3 deacetylation and increased WRN and PCNA production. The induced Sirt1 may work defensively to mitigate CDDP-induced tubular damage by inactivating core histone transcriptionally, and by repairing DNA damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Grunstein M. Histone acetylation in chromatin structure and transcription. Nature 1997; 389: 359–52.

    Article  Google Scholar 

  2. Turner BM. Histone acetylation and control of gene expression. J Cell Sci. 1991;99:13–20.

    CAS  PubMed  Google Scholar 

  3. Marumo T, Hishikawa K, Yoshikawa M, Fujita T. Epigenetic regulation of BMP7 in the regenerative response to ischemia. J Am Soc Nephrol. 2008;19:1311–20.

    Article  CAS  Google Scholar 

  4. Kanao K, Mikami S, Mizuno R, Shinojima T, Murai M, Oya M. Decreased acetylation of histone H3 in renal cell carcinoma: a potential target of histone deacetylase inhibitors. J Urol. 2008;180:1131–6.

    Article  CAS  Google Scholar 

  5. Wang D, Lippard SJ. Cisplatin-induced post-translational modification of histone H3 and H4. J Biol Chem. 2004;279:20622–5.

    Article  CAS  Google Scholar 

  6. Koul S, McKierman JM, Narayan G, Houldsworth J, Bacik J, Dobrzynski DL, et al. Role of promoter hypermethylation in cisplatin treatment response of male germ cell tumors. Mol Cancer. 2004;3:16.

    Article  Google Scholar 

  7. Lin T, Liu PY, Marshall GM. The critical role of the class III histone deacetylase SIRT1 in cancer. Cancer Res. 2009;69:1702–5.

    Article  Google Scholar 

  8. Luo J, Nikioaev AY, Imai S, Chen D, Su F, Shiloh A, et al. Negative control of p53 by Sir2α promotes cell survival under stress. Cell. 2001;107:137–48.

    Article  CAS  Google Scholar 

  9. Vaziri H, Dessain SK, Eaton EN, Imai SI, Frye RA, Pandita TK, et al. hSIR2SIRT1 functions as NAD-dependent p53 deacetylase. Cell. 2001;107:149–59.

    Article  CAS  Google Scholar 

  10. Kahyo T, Mostoslavsky R, Goto M, Setou M. Sirtuin-mediated deacetylation pathway stabilizes Werner syndrome protein. FEBS Lett. 2008;582:2479–83.

    Article  CAS  Google Scholar 

  11. Li K, Casta A, Wang R, Lozada E, Fan W, Kane S, et al. Regulation of WRN protein cellular localization and enzymatic activities by SIRT1-mediated deacetylation. J Biol Chem. 2008;283:7590–8.

    Article  CAS  Google Scholar 

  12. Tikoo K, Bhatt DK, Gaikwad AB, Sharma V, Kabra DG. Differential effects of tannic acid on cisplatin induced nephrotoxicity in rats. FEBS Lett. 2007;581:2027–35.

    Article  CAS  Google Scholar 

  13. Ozaki K, Kishikawa F, Tanaka M, Sakamoto T, Tanimura S, Kohno M. Histone deacetylase inhibitors enhance the chemosensitivity of tumor cells with cross-resistance to a wide range of DNA-damaging drugs. Cancer Sci. 2008;99:376–84.

    Article  CAS  Google Scholar 

  14. Arany I, Herbert J, Herbert Z, Safirstein RL. Restoration of CREB function ameliorates cisplatin cytotoxicity in renal tubular cells. Am J Physiol Renal Physiol. 2008;294:F577–81.

    Article  CAS  Google Scholar 

  15. Dong G, Wang L, Wang CY, Yang T, Kumar MV, Dong Z. Induction of apoptosis in renal tubular cells by histone deacetylase inhibitors, a family of anticancer agents. J Pharmacol Exp Ther. 2008;325:978–84.

    Article  CAS  Google Scholar 

  16. Zager RA, Johnson ACM. Renal ischemia-reperfusion injury upregulates histone modifying enzyme systems and alters histone expression at proinflammatory/profibrotic genes. Am J Physiol Renal Physiol. 2009;296:F1032–41.

    Article  CAS  Google Scholar 

  17. Matsushita N, Takami Y, Kimura M, Tachiiri S, Ishiai M, Nakayama T, et al. Role of NAD-dependent deacetylases SIRT1 and SIRT2 in radiation and cisplatin-induced cell death in vertebrate cells. Genes Cells. 2005;10:321–32.

    Article  CAS  Google Scholar 

  18. Kojima K, Ohhashi R, Fujita Y, Hamada N, Akao Y, Nozawa Y, et al. A role for SIRT1 in cell growth and chemoresistance in prostate cancer PC3 and DU145 cells. Biochem Biophys Res Com. 2008;373:423–8.

    Article  CAS  Google Scholar 

  19. Liang XJ, Finkel T, Shen DW, Yin JJ, Aszalos A, Gottesman MM. SIRT1 contributes in part to cisplatin resistance in cancer cells by altering mitochondrial metabolism. Mol Cancer Res. 2008;6:1499–506.

    Article  CAS  Google Scholar 

  20. Hasegawa K, Wakino S, Yoshioka K, Tatematsu S, Hara Y, Minakuchi H, et al. Sirt1 protects against oxidative stress-induced renal tubular cell apoptosis by the bidirectional regulation of catalase expression. Biochem Biophys Res Com. 2008;372:51–6.

    Article  CAS  Google Scholar 

  21. Amaral CLD, Francescato HDC, Coimbra TM, Costa RS, Darin JD, Antunes LM, et al. Resveratrol attenuates cisplatin-induced nephrotoxicity in rats. Arch Toxicol. 2008;82:363–70.

    Article  Google Scholar 

  22. Alcendor RR, Gao S, Zhai P, Zablocki D, Holle E, Yu X, et al. Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res. 2007;100:1512–21.

    Article  CAS  Google Scholar 

  23. Hasegawa K, Wakino S, Yoshioka K, Tatematsu S, Hara Y, Minakuchi H, et al. Kidney-specific overexpression of Sirt1 protects against acute kidney injury by retaining peroxisome function. J Biol Chem. 2010;285:13045–56.

    Article  CAS  Google Scholar 

  24. Dong G, Luo J, Kumar V, Dong Z. Inhibitors of histone deacetylases suppress cisplatin-induced p53 activation and apoptosis in renal tubular cells. Am J Physiol Renal Physiol. 2010;298:F293–300.

    Article  CAS  Google Scholar 

  25. Kume S, Haneda M, Kanasaki K, Sugimoto T, Araki S, Isono M, et al. Silent information regulator 2 (SIRT1) attenuates oxidative stress-induced mesangial cell apoptosis via p53 deacetylation. Free Radic Biol Med. 2006;40:2175–82.

    Article  CAS  Google Scholar 

  26. Kume S, Uzu T, Horiike K, Chin-Kanasaki M, Isshiki K, Araki S, et al. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J Clin Invest. 2010;120:1043–55.

    Article  CAS  Google Scholar 

  27. Inoue K, Kuwana H, Shimamura Y, Ogata K, Taniguchi Y, Kagawa T, et al. Cisplatin-induced macroautophagy occurs prior to apoptosis in proximal tubules in vivo. Clin Exp Nephrol. 2010;14:112–22.

    Article  CAS  Google Scholar 

  28. Cheng WH, Muftuoglu M, Bohr VA. Werner syndrome protein: functions in the response to DNA damage and replication stress in S-phase. Exp Gerontol. 2007;42:871–8.

    Article  CAS  Google Scholar 

  29. Rodriguez-Lopez AM, Jackson DA, Nehlin JO, Iborra F, Warren AV, Cox LS, et al. Characterization of the interaction between WRN the helicase/exonuclease defective in progeroid Werner’s syndrome, and an essential replication factor, PCNA. Mech Ageing Dev. 2003;124:167–74.

    Article  CAS  Google Scholar 

  30. Gregoire S, Xiao L, Nie J, Zhang X, Xu M, Li J, et al. Histone deacetylase 3 interacts with and deacetylates myocyte enhancer factor 2. Mol Cell Biol. 2007;27:1280–95.

    Article  CAS  Google Scholar 

  31. Shao Y, Lu J, Cheng C, Cui L, Zhang G, Huang B. Reversible histone acetylation involved in transcriptional regulation of WT1 gene. Acta Biochi Biophys Sinica. 2007;39:931–8.

    Article  CAS  Google Scholar 

  32. Marumo T, Hishikawa K, Yoshikawa M, Hirahashi J, Kawachi S, Fujita T. Histone deacetylase modulates the proinflammatory and -fibrotic changes in tubulointerstitial injury. Am J Physiol Renal Physiol. 2010;298:F133–41.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant-in-Aid for Scientific Research (H.Y. 19790579) from the Ministry of Education, Culture, Sports, Science and Technology of Japan. We thank Nippon Kayaku Co. Ltd. (Tokyo, Japan) for kindly providing the CDDP for this study.

Conflict of interest

There is no declared conflict of interest in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukitoshi Sakao.

About this article

Cite this article

Sakao, Y., Kato, A., Tsuji, T. et al. Cisplatin induces Sirt1 in association with histone deacetylation and increased Werner syndrome protein in the kidney. Clin Exp Nephrol 15, 363–372 (2011). https://doi.org/10.1007/s10157-011-0421-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-011-0421-5

Keywords

Navigation