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Abstract Methicillin-resistant Staphylococcus aureus

(MRSA) is able to persist not only in hospitals (with a high

level of antimicrobial agent use) but also in the community

(with a low level of antimicrobial agent use). The former is

called hospital-acquired MRSA (HA-MRSA) and the latter

community-acquired MRSA (CA-MRSA). It is believed

MRSA clones are generated from S. aureus through

insertion of the staphylococcal cassette chromosome mec

(SCCmec), and outbreaks occur as they spread. Several

worldwide and regional clones have been identified, and

their epidemiological, clinical, and genetic characteristics

have been described. CA-MRSA is likely able to survive in

the community because of suitable SCCmec types (type IV

or V), a clone-specific colonization/infection nature, toxin

profiles (including Pantone-Valentine leucocidin, PVL),

and narrow drug resistance patterns. CA-MRSA infections

are generally seen in healthy children or young athletes,

with unexpected cases of diseases, and also in elderly

inpatients, occasionally surprising clinicians used to HA-

MRSA infections. CA-MRSA spreads within families and

close-contact groups or even through public transport,

demonstrating transmission cores. Re-infection (including

multifocal infection) frequently occurs, if the cores are not

sought out and properly eradicated. Recently, attention has

been given to CA-MRSA (USA300), which originated in

the US, and is growing as HA-MRSA and also as a

worldwide clone. CA-MRSA infection in influenza season

has increasingly been noted as well. MRSA is also found in

farm and companion animals, and has occasionally trans-

ferred to humans. As such, the epidemiological, clinical,

and genetic behavior of CA-MRSA, a growing threat, is

focused on in this study.
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Introduction

Staphylococcus aureus colonizes the nasal mucosa of

approximately 30% of individuals. It is associated with a

wide range of infections including skin and soft tissue

infections (SSTIs, such as bullous impetigo, abscesses,

furunculosis, and staphylococcal scalded skin syndrome),

systemic or fatal infections [such as blood stream infection

(BSI), endocarditis, and pneumonia], and toxin-associated

diseases (such as toxic shock syndrome and food poison-

ing) [1–4]. Historically, several classes of drug-resistant

S. aureus have emerged [5–7]. They include penicillin

G-resistant S. aureus, which produced penicillinase

(PCase, penicillin-hydrolyzing enzyme) in the mid 1940s,

and multidrug-resistant S. aureus (which was resistant to

penicillin G, chloramphenicol, tetracycline, and erythro-

mycin) in the late 1950s. Methicillin-resistant S. aureus

(MRSA), isolated in 1961, continues to be a life-threaten-

ing multidrug-resistant bacterium, changing its resistance

patterns by acquiring resistance to each new antimicrobial

agent. Such MRSA has been a major cause of nosocomial

infections, and thus is alternatively called hospital-acquired

MRSA (HA-MRSA). In addition, since the period from

1997 to 1999, another class of MRSA has become a major

concern worldwide as an emerging pathogen in the

T. Yamamoto (&) � A. Nishiyama � T. Takano � S. Yabe �
W. Higuchi � O. Razvina � D. Shi

Division of Bacteriology, Department of Infectious Disease

Control and International Medicine, Niigata University Graduate

School of Medical and Dental Sciences, Niigata, Japan

e-mail: tatsuoy@med.niigata-u.ac.jp

123

J Infect Chemother (2010) 16:225–254

DOI 10.1007/s10156-010-0045-9



community [8–11]. This new class of MRSA is called

community-acquired MRSA (CA-MRSA).

Ideally, MRSA in the community should impose no

biological cost, i.e., it carries a certain type of staphylo-

coccal cassette chromosome mec (SCCmec) and exhibits

resistance to only limited numbers of antimicrobial agents.

In turn, it can be selected by low levels of antimicrobial

agent use in the community [12–14]. By contrast, MRSA in

hospitals carries some other SCCmec types or exhibits

multiple drug resistance, i.e., it imposes a high biological

cost. Therefore, it has to be selected by high levels of

antimicrobial agent use in hospitals to overcome the bio-

logical cost (in turn, transfer to the community is restricted)

[12, 15, 16]. Moreover, CA-MRSA must have high colo-

nization and infection abilities to distribute among healthy

individuals in the community.

Current MRSA typing

MRSA is typed based on genetic characteristics such as

multilocus sequence type (ST) [17], protein A gene (spa)

type [18–20], agr type [21, 22], coagulase type [23, 24],

and SCCmec type [25–28]. Generally, ST typing [and

analysis of the clonal complex (CC) to which each ST type

belongs] is a standard for genotyping (Fig. 1). Typing is

based on the seven housekeeping gene sequences, with the

allelic profile (allele no. representing the ST type) and CC

obtained from the MLST website (http://www.mlst.net/)

and eBURST software (http://eburst.mlst.net/), respec-

tively. In contrast, spa typing targets a single gene (spa),

and the spa type is given through a public spa type data-

base (http://tools.egenomics.com/) and the Ridom Spa

Server (http://spaserver.ridom.de/), but with different

assignment (e.g., spa1 for the former and spat008 for the

latter). Each ST type clone contains some spa variants. The

agr type is determined by PCR; two methods are reported,

demonstrating types I–IV. There are subtypes in agrI.

Coagulase typing is conducted using an antiserum kit

(Denka Seiken, Tokyo, Japan), determining types I–VIII.

Attempts have been made for coagulase gene (coa) typing

by PCR, but with incomplete results. Coagulase types well

correlate with ST types. SCCmec typing is performed by

multiplex PCR targeting the mec and ccr (recombinase

gene) complexes or targeting even the junk regions,

determining types I–VIII. There are subtypes in SCCmecII,

III, and IV. Generally speaking, SCCmec I, II, and III are of

HA-MRSA, while SCCmecIV and V are of CA-MRSA [9,

12, 15, 16, 29–32].

For molecular epidemiology of MRSA epidemics due to

certain clones, SmaI-digestion of MRSA DNA is used in

pulsed-field gel electrophoresis (PFGE), aiming at PFGE

typing (i.e., identification of epidemic strains and analysis of

their divergence) [33, 34]. Indeed, in the US, MRSA clones

have been classified according to SmaI PFGE types, such as

USA100 (for ST5 HA-MRSA), USA300 (ST8 CA-MRSA),

USA400 (ST1 CA-MRSA), and USA1000 (ST59 CA-

MRSA) [33, 34]. Moreover, when an epidemic MRSA clone

possesses a unique virulence gene or a combination of unique

genes and unique DNA sequences, it can serve as a target for

rapid and less-laborious screening of epidemic clones in

PCR, multiplex PCR [35–38], or real-time PCR assay.

HA-MRSA

HA-MRSA is typically defined as MRSA isolated from

inpatients that had been MRSA-negative at the beginning

of hospitalization or MRSA isolated from inpatients 48 h

or more after hospitalization [9, 39–41]. There are several

types in HA-MRSA [29, 30, 42]. It is believed that MRSA

is generated from S. aureus (methicillin-susceptible S.

aureus, MSSA) by acquisition of SCCmec and that this has

occurred only a limited number of times. Yet such limited

numbers of MRSA clones, emerged, have disseminated

worldwide, resulting in the current epidemics in hospital

settings [42, 43]. Invasive MRSA epidemics were espe-

cially noted in the US and Japan in the late 1970s to early

1990s [5–7], when some second-generation cephems (such

as cefoxitin and latamoxef) were widely used. These pan-

demics were followed by MRSA episodes in Europe. Some

are still continuing.

Well-known MRSA clones [11, 42, 44–48] include the

archaic clone (ST250/SCCmecI; reported in the UK from

the 1960s), Iberian clone (ST247/SCCmecIA; reported in

Spain from 1989), New York/Japan clone (ST5/SCCmecII;

reported in the US from 1998), EMRSA-16 clone (ST36/

SCCmecII; reported in the UK from 1993), Brazilian clone
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Fig. 1 eBURST analysis of S. aureus. Data from the MLST website

(http://www.mlst.net/) and eBURST software (http://eburst.mlst.net/),

23 December 2009. Major CC and ST types are indicated
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(ST239/SCCmecIIIA; reported in Brazil from 1992),

Hungarian clone (ST239/SCCmecIII; reported in Hungary

from 1993), EMRSA-15 clone (ST22/SCCmecIV; reported

in the UK from 1993), pediatric clone (ST5/SCCmecIV or

IVa; reported in Portugal from 1992), and Berlin clone

(ST45/SCCmecIVa; reported in Germany from 1998)

(Fig. 2) [11, 42, 44–57]. The Russian clone (ST239/

SCCmecIIIR) can also be noted [57]. They are all Pantone-

Valentine leucocidin (PVL)-negative. Among them, six

clones (Iberian, Brazilian, Hungarian, EMRSA-15, New

York/Japan, and pediatric) have disseminated more inter-

nationally, and are referred to as pandemic clones [42].

Due to the replacement nature of MRSA clones, distri-

bution patterns in each country or area may change. In

Hungary, southern Germany (ST228-I) and New York/

Japan (ST5) clones have appeared recently, instead of the

Hungarian clone (ST239) [47]. In Hong Kong, three major

clones, the Hungarian clone (ST239), New York/Japan

clone (ST5), and ST45 clone, have appeared recently [58].

The TW clone, a variant of ST239 MRSA, was recently

noted as the cause of an outbreak in an intensive care unit

(ICU) in London [59, 60]. The association with bacteremia

of TW was four times higher than that of other common

MRSA clones (such as EMRSA-15 or EMRSA-16).

Therefore, it was described as highly transmissible MRSA

[59, 60]. ST239 HA-MRSA is a growing MRSA group,

which includes at least nine members (EMRSA-1, EM-

RSA-4, EMRSA-7, EMRSA-11, and the Brazilian, Portu-

guese, Hungarian, Viennese, and Russian clones), and is

widely spreading in Asia, South America, and Eastern

Europe [44, 61–66].

MRSA incidence among S. aureus varies country by

country, with a low frequency (around 1%) in some

countries in Europe (e.g., the Netherlands and Sweden) and

a high frequency ([60%) in the US and Japan (Fig. 2) [51,

55, 67]. In the US, invasive MRSA infections have become

a serious problem, with an estimated patient number of

94,360 and 18,650 deaths in 2005. MRSA infections gen-

erally occur most frequently among inpatients who

undergo invasive medical procedures, who have weakened

immune systems (or are immunocompromised hosts) or

whose age is 50 or 65 years and older [67–70].

Criteria and risk factors for CA-MRSA

Epidemiologically, CA-MRSA is defined as MRSA isolated

from outpatients with no history of hospitalization within the

past 1 year, and who presented no other established risk

factors for MRSA infection, such as surgery, residence in a

Fig. 2 Worldwide distribution of major HA-MRSA clones. Data

from Ref. [11, 42, 44–57]. The colored areas indicate the areas of

each spreading clone. Yellow represents the region where the archaic

clone was isolated. Orange represents the region where the Iberian

clone was isolated. Pink represents the region where the New York/

Japan clone was isolated. Lime green represents the region where the

EMRSA-16 clone was isolated. Blue represents the region where the

ST239 clone, including the Hungarian clone, Brazilian clone, and

Russian clone, was isolated. Purple represents the region where the

Berlin clone was isolated. Green represents the region where

EMRSA-15 was isolated. Gray represents the region where the

pediatric clone was isolated. Graphs indicate the rate of MRSA in all

S. aureus isolates from the hospitals in each country
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long-term care facility, dialysis, or indwelling percutaneous

medical devices or catheters [9, 39–41].

Since some MRSA clones have been well established as

CA-MRSA, and CA-MRSA has spread into hospital set-

tings, CA-MRSA may also be defined bacteriologically [9,

32–34, 71, 72]. This is probably the case when it is

genetically identified (based on, e.g., ST type, spa type, and

SCCmec type), when it is identified by PFGE typing, when

it produces PVL, when it possesses SCCmecIV, or when it

is resistant only to b-lactam antimicrobial agents (in some

regions or countries). Low MIC values for oxacillin (MICs,

around 32 lg/ml or less) or imipenem (MICs, around 1 lg/

ml or less) may also serve as a marker of CA-MRSA; HA-

MRSA exhibits higher MIC values for oxacillin (MICs,

C128 lg/ml) or imipenem (MICs, 32 lg/ml) in many cases

[73]. Such a bacteriological definition would be needed to

investigate CA-MRSA spread within hospital settings.

CA-MRSA infection occurs in healthy individuals,

especially children and adolescents, through skin-to-skin

contact. Reflecting this, risk factors for CA-MRSA infec-

tion includes (e.g.) university and school students, adoles-

cent athletes, military trainees, jail inmates, men who have

sex with men (MSM), members of an infected family,

hurricane evacuees, and people with tattoos [10, 33, 74–

76].

Clinical aspects of CA-MRSA infections

Clinical aspects of CA-MRSA infection are summarized in

Fig. 3 [4, 40, 75, 77–95]. CA-MRSA has emerged as a

cause of serious infections. The vast majority (70–80%) of

infections with CA-MRSA manifest as SSTI including

pyogenic skin infection [40]. The incidence of SSTI caused

by CA-MRSA has been increasing (e.g., 24 cases per

100,000 persons in 2000 to 164.2 cases per 100,000 per-

sons in 2005 in the US) [96]. Most people who have

developed CA-MRSA skin infection have been healthy

individuals (such as children, prisoners, and athletes)

without risk factors such as hospitalization [97].

Some CA-MRSA strains produce PVL, which lyses

white blood cells. PVL-positive CA-MRSA has been

especially isolated from ‘‘deep’’ skin infection and SSTI,

such as furuncle, carbuncle, and cellulitis [4]. These

patients complain of a severe pain due to unusually large

abscesses. On the other hand, impetigo, the most common

SSTI disease, which occurs in superficial skin, is related to

PVL-negative CA-MRSA. A study of nasal MRSA carriers

(53% positive for USA300) among American soldiers has

shown that 29% of nasal MRSA carriers developed SSTI

1 year later. Of the nasal MRSA carriers who developed

SSTI, 97% were positive for USA300, indicating that more

than 50% of nasal USA300 carriers developed SSTI [98].

This strongly suggests that nasal carriage of MRSA is a

risk factor for SSTI; however, the significance of nasal

carriage may be varied among the clones. Especially, nasal

USA300 carriers may be the high-risk group for SSTI.

CA-MRSA can also cause wound infections. Bacterial

chronic wounds (diabetic ulcer, venous stasis ulcer) have

increased over the past years, and the majority of these are

due to CA-MRSA [80]. CA-MRSA has also been detected

from surgical site infection, urinary tract infections (UTI)

[82], infections of the eye and orbit [83], meningitis [85],

and sinusitis.
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Severe necrotizing fasciitis cases caused by CA-MRSA

have been described as well. Necrotizing fasciitis is a

rapidly progressive infection of adjacent subcutaneous

tissue and superficial fascia. A 36-year-old Hispanic male

with human immunodeficiency virus (HIV) infection suf-

fered necrotizing fasciitis caused by CA-MRSA. In that

case, the strain had the USA300 genotype, which is the

most common CA-MRSA clone in the US and now

spreading worldwide [99]. In another report, five cases of

necrotizing fasciitis caused by USA300 were also descri-

bed [87].

Nasal carriage and SSTI caused by CA-MRSA are also

the risk factors for bloodstream infections (BSIs). USA300-

associated BSIs have been described [100, 101]. Nasal

carriage of S. aureus associates with higher incidence of

BSIs, compared to non-carriers. Previous studies have

reported that in approximately 80% of the patients who

were initially positive for nasal S. aureus at admission and

then developed BSIs, the PFGE genotypes of isolates from

blood cultures were identical to those of the isolates from

nasal swabs taken at admission, indicating endogenous

infection [79, 81].

Management of SSTI caused by CA-MRSA includes

incision and drainage of infected tissue and appropriate

antimicrobial therapy. Most people with CA-MRSA pri-

mary infections can be cured with appropriate treatment.

On the contrary, some patients with CA-MRSA primary

infection will unfortunately develop severe life-threatening

infections, so-called CA-MRSA-related secondary infec-

tion, probably through BSIs.

As has been reported, the mortality rates of community-

acquired and hospital-acquired BSIs were 10 and 15%,

respectively [78]. Malani et al. [102] have reported that

advanced age, chronic renal insufficiency, catheter-related

infection, Charlson weighted index of comorbidity score,

and presence of MRSA were associated with in-hospital

and 6-month mortality of S. aureus BSI. A case of BSI with

CA-MRSA in four drug users was described in the UK

[103].

Secondary infection with CA-MRSA includes pelvic

abscess [75], lung abscess [84], osteomyelitis [86], arthritis

[88], brain abscess [89], myositis [90], and endocarditis

[91]. The prevalence of S. aureus secondary infection is

very rare, but severe. Severe systemic infection due to CA-

MRSA represents as an initial cutaneous abscess pro-

gressing to bacteremia, osteomyelitis, and simultaneous

iliopsoas and piriformis abscesses [75]. Lung abscesses due

to CA-MRSA are also commonly associated with SSTI

[104]. Septic arthritis caused by USA300 isolates has been

described. The arthritis was associated with longer duration

of fever [104]. Although rare, CA-MRSA causes purpura

fulminans and Waterhouse-Friderichsen syndrome, which

are associated with a very high mortality [93].

CA-MRSA infections of the respiratory tract are less

common in comparison with HA-MRSA, but can be

severe. Typical symptoms of CA-MRSA-associated com-

munity-acquired pneumonia (MRSA-CAP) include high

temperature, arterial hypotension, hemoptysis, rapid

aggravation to the point of septic shock, and the need for

ventilatory support [105]. In the US, two pediatric fatal

cases (ages of 13 years and 12 months) due to necrotizing

pneumonia of CA-MRSA (USA400) were reported in 1997

and 1998, respectively [8]. Fatal MRSA-CAP caused by

PVL-positive ST30 CA-MRSA in a 1-year-old boy has

been reported in Japan [92]. Most importantly, co-infection

of influenza patients with CA-MRSA is associated with

severe pneumonia with high fatality. In the US during the

2003–2004 influenza season, USA300- and USA400-

caused pneumonia among patients with seasonal influenza

or influenza-like disease (mean age 21 years, range

3 months–62 years) showed approximately 30% fatality

[94]. In Consensus Guidelines, the American Thoracic

Society and Infectious Diseases Society of America

emphasized that CA-MRSA pneumonia, as well as SARS

and novel influenza, should be paid attention to as life-

threatening CAP [95]. In 2009, outbreak of the novel swine

origin influenza A (H1N1) occurred worldwide. Fatal co-

infection of a 42-year-old sailor with swine origin influenza

virus A (H1N1) and PVL-positive ST30 CA-MRSA has

already been reported in Hong Kong [106]. Therefore, for

all age groups, pneumonia due to co-infection with influ-

enza virus (including novel swine origin influenza virus A)

and CA-MRSA should be given serious attention.

Molecular characteristics and epidemiology of major

PVL-positive CA-MRSA

Well-known and well-characterized CA-MRSA clones

include CA-MRSA belonging to ST1 and ST8 (USA400

and USA300, respectively), which are mostly found in the

US [33, 34] and Canada [107, 108]. The USA300 clone

associates with SSTI, and also invasive infections such as

sepsis, pneumonia, and necrotizing fasciitis. It has the

ability to replace preexisting MRSA clones, and now is

the predominant CA-MRSA clone in the US [33, 34]. It is

also expected to become a major clone even in hospital

settings.

As for the evolution of USA300 (type strain USA300-

0114), based on MLST data, seven cell surface protein

genes, and virulence genes including (e.g.) enterotoxins,

PVL, and the arginine catabolic mobile element (ACME)

[34, 109], it has been proposed that HA-MRSA USA500

(ST8/SCCmecIV; negative for enterotoxins, PVL, and

ACME) initially emerged from ST8 MSSA through the

acquisition of SCCmecIV; subsequently, USA300 emerged

J Infect Chemother (2010) 16:225–254 229
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from USA500 through mutation in two cell surface protein

genes, and subsequent acquisition of staphylococcal path-

ogenicity island 5 (SaPI5, carrying sek and seq), PVL

prophage, and ACME.

Drug resistance of USA300 (USA300-0114) has been

diverging. Analysis of early 2000s USA300 strains revealed

that 90% of the strains carried a 3.1-kb cryptic plasmid and

30-kb plasmid carrying a macrolide transporter gene (msrA)

and blaZ gene, resulting in macrolide resistance, as well as

b-lactam resistance (‘‘core resistance’’) [33]. Some of those

strains further showed additional resistance to i) tetracy-

cline through acquisition of a 4.3-kb plasmid with a tetK

gene; ii) clindamycin through acquisition of a 2.6-kb plas-

mid with an ermC gene; or iii) levofloxacin [33] through

gyrA mutation. Genomic analysis of an early 2000s strain

(TCH1516) also revealed another b-lactamase plasmid

(accession no. CP000731; 27 kb in size) with an amino-

glycoside-resistant gene (aphA-3) and cadmium-resistant

gene (cadD), in addition to msrA and blaZ [110].

Since the mid 2000s, clindamycin resistance and mup-

irocin resistance have increasingly been noted [111, 112].

Particularly, mupirocin resistance has been highly associ-

ated with multiple drug-resistant strains that frequently

show resistance to fluoroquinolone, tetracycline, macro-

lide, lincosamide, and mupirocin. Genomic analysis of a

multiple drug-resistant strain of USA300 [USA300-0114

(strain FPR3757), accession no. NC_007793] revealed

carriage of a 37-kb plasmid with an ermC and mupirocin

resistant gene (mupA), as well as gyrA mutation and a

4.4-kb tetK plasmid, but not a b-lactamase plasmid [72].

More recently, vancomycin-intermediate strains of

USA300 (designated as VISA) have been noted [113, 114].

Although mutations associated with vancomycin-interme-

diate phenotypes have been proposed [115], the exact

responsible genes for the vancomycin-intermediate phe-

notypes of USA300 are still unknown.

In the US, there has been recent clonal expansion of a

subset of USA300 isolates, originating from the common

ancestor [116]. Those USA300 isolates are identified pri-

marily based on i) PFGE patterns, but also based on other

genetic markers such as ii) ST type (ST8), iii) spa types

[major type: spa1 (t008)], iv) PVL genes, v) ACME, vi)

SCCmecIVa, vii) the 40-bp direct repeat unit (dru) region,

which is located adjacent to IS431 within SCCmecIVa, and

viii) a signature AT repeat sequence within the hypotheti-

cal SACOL0058 gene, which is located 1.4-kb downstream

of the 30 end of SCCmecIVa [33, 34, 37, 72, 117]. A subset

of USA300 isolates with modest genetic changes, however,

may differ in their virulence potentials. Major types in the

US are USA300-0114 (spa1) and USA300-0247 (spa1),

and minor types include (e.g.) USA300-0114 (spa168). In

addition, USA300-0114 (spa168) exhibited low virulence

in a mouse sepsis/bacteremia model [116].

The USA300 clone has already spread across the

Atlantic and Pacific oceans [108, 111, 112, 116, 118–130].

It has been isolated in, e.g., Canada (North America), the

UK, Germany, Denmark, Switzerland, Austria, and Italy

(Europe), Colombia (South America), Australia (Oceania),

and Japan, Korea, and Taiwan (Asia), as well as the US.

Among USA300 clones, clones with spa1 (t008) have been

widely identified in North America and Europe (Table 1).

However, hospital-associated USA300 with spa363 (t024),

as well as a community-associated clone with spa1 (t008),

has been isolated in Denmark. Other variants with spa163

and spat063 have also been isolated in the US and Aus-

tralia, respectively. In Japan, USA300 clones with spa363

(t024) and spa985 (t711) have been isolated.

In the US, multidrug-resistant USA300 clones, which

were resistant to levofloxacin, tetracycline, erythromycin,

clindamycin, and mupirocin, have been isolated [72, 111,

112]. On the other hand, USA300 clones isolated in the

other countries have shown resistance to limited drugs

(Table 1).

ST80 CA-MRSA is mostly found in Europe [9], though

also in North Africa (Algeria) [131] and the Middle East

[132]. Fusidic acid resistance, mediated by fusA, fusB, or

fusC genes, is one of the genetic and phenotypic charac-

teristics [9, 133, 134]. Currently, high-level mupirocin-

resistant strains, whose MIC levels were [1,024 lg/ml,

emerged in Kuwait, suggesting the difficulty of eradication

of ST80 CA-MRSA [135]. This was mediated by different

sizes (21 and 26 kb) of plasmids with mupA (high-level

mupirocin resistance gene).

ST59 CA-MRSA is spreading in Taiwan [32] and has also

been isolated from Hong Kong [136], the US (USA1000)

[33] and Japan. ST59 CA-MRSA from Taiwan carries a

unique SCCmec structure (initially designated as SCCmec-

VII and currently reclassified as SCCmecV) that involves

two distinct ccrC genes [32, 137]. In contrast to the initial

common understanding that CA-MRSA is generally resis-

tant to only b-lactam agents, it was multiple drug-resistant to

tetracycline, kanamycin, streptomycin, erythromycin, clin-

damycin, and chloramphenicol. ST59 CA-MRSA carries a

PCase plasmid with a tetracycline resistance gene (tetK),

composite transposon-bearing streptomycin resistance gene

(aadE), kanamycin resistance gene [aph(30)-III], and eryth-

romycin/clindamycin resistance gene (ermB) [32]. In con-

trast to many other cases [in which the chloramphenicol

resistance gene (cat) is carried by a plasmid], the cat gene in

the Taiwanese clone is located in the chromosome. PVL-

negative ST59/SCCmecIVx strains with the same multiple

drug resistance pattern are present in Taiwanese hospital

settings [32]. Recently, a very similar PVL-positive ST59/

SCCmecVII strain was found in Japan [138].

PVL-positive ST30 CA-MRSA [9, 33, 89, 139–141] is a

global clone, which is spreading worldwide including
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Japan. Nosocomial outbreak-derived MRSA in Japan in the

1980s was largely PVL-positive ST30 MRSA with spa43

and SCCmecIVa, IVc, or IVx [142], while current PVL-

positive ST30 strains exhibit spa19 and SCCmecIVa or

IVc. Some PVL-positive ST30 strains acquired a plasmid

(pGKT1) conferring resistance to gentamicin, kanamycin,

and tetracycline [141].

In the 1950s and 1960s, PVL-positive and -negative

penicillin-resistant S. aureus (ST30/spa43) spread in hos-

pitals and the community worldwide (e.g., Australia,

Denmark, the UK, US, and Cuba) [143]. One of the pos-

sibilities is that PVL-positive ST30 CA-MRSA evolved

from this worldwide ST30 MSSA. PVL-positive ST30/

spa19/SCCmecIVc with the same PFGE pattern was iso-

lated from Far Eastern Russia, while PVL-positive ST30/

SCCmecV with the same PFGE pattern from Egypt

exhibited spa251. PVL-positive CA-MRSA clones also

include other ST types such as emerging ST22, spreading

to Europe and Japan, [144, 145] and ST93 [146].

CA-MRSA factors associated with colonization

and spread in the community

Some major CA-MRSA clones have unique colonization

and infection ability, which may play a role in community

transmission. The USA300 clone (ST8) possesses the

ACME-SCCmecIV linkage as a merit of colonization and

spread [72]. ACME-SCCmecIV linkage, which was first

found in USA300, is considered to play a key role in the

persistence of USA300 in the community. ACME (type I)

in USA300 appears to originate in S. epidermidis, a rep-

resentative skin-colonizing bacterium [12]. ACME con-

tains two operons associated with pathogenesis, arc

(encoding for the arginine deaminase pathway), and opp3

(encoding for the oligopeptide permease system) [12, 72].

Arginine deaminase is a virulence factor of Streptococcus

pyogenes, and plays a role in (e.g.) survival at low pH,

inhibition of human peripheral blood mononuclear cell

proliferation, or invasion [147, 148]. Oligopeptide perme-

ase is associated with (e.g.) MRSA growth and infection

[149]. ACME is also found in certain strains of ST5

(USA100) and ST59 (USA1000), but such ACME lacks

one possible virulence component (the opp3 operon) found

in USA300 [12].

The presence of SCCmecIV is an advantage for CA-

MRSA, because low levels of antimicrobial agents use in

the community could be sufficient to drive the spread of

MRSA with SCCmecIV (imposing no biological cost) [12–

14]. In contrast, SCCmecI, SCCmecII, or SCCmecIII (all of

which impose biological cost) would need high levels of

antimicrobial agent use (in hospitals) to overcome the

Table 1 Characteristics of

USA300 isolates in each

country

EM ycerythromycin, LVFX
levofloxacin, TC tetracycline,

CLDM clindamycin, MUP
mupirocin, CPFX ciprofloxain,

KM kanamycin, ND no data

available
a spa types from the Ridom Spa

Server are shown in parentheses
b CA-MRSA associated
c HA-MRSA associated
d USA300-like strain

Country spa typea/

PFGE type

Major (non-b lactam)

drug resistance

Reference

North America

USA 1 (t008) /USA300-0114 EM, LVFX [111, 112, 116]

1 (t008)/USA300-0114 EM, LVFX, TC, CLDM, MUP

1 (t008)/USA300-0247 EM, LVFX, TC, CLDM, MUP

168 ND

Canada 1 (t008) EM, CPFX [108]

Europe

UK 1 (t008) EM [118]

Germany 1 (t008) EM, CPFX, etc. [119, 120]

Denmark 1 (t008)b KM, EM [121]

363 (t024)c EM, CLDM

Switzerland 1 (t008) ND [122]

Austria 1 (t008) EM, CPFX [123]

Italy 1 (t008) EM, CPFX [124]

Asia

Japan 363 (t024), 985 (t711) EM [125, 126]

Koread ND ND [127]

Taiwan ND ND [128]

Oceania

Australia ND EM (msrA), KM (aphA3) [129]

South America

Colombia ND ND [130]
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biological cost, and may restrict such HA-MRSA from

spreading into the community [12, 15, 16].

The PVL-positive ST30 clone carries the collagen

adhesin gene (cna) and bone sialoprotein adhesin gene

(bbp) [140], and the combination of PVL, cna and bbp

would play a role in colonization to matrix within the body.

The presence of the PVL gene and the cna gene correlates

with pulmonary manifestations, probably due to viral

infection-caused epithelial damage permitting binding of

PVL-positive S. aureus to exposed collagens and laminin

[150, 151]. In addition, presence of the bbp gene allows S.

aureus adherence to bone sialoprotein, leading to hemat-

ogenously spread osteomyelitis, arthritis, and iliopsoas

abscess [75, 152–154].

The PVL-positive ST22 clone exhibits heavy biofilm

formation (Fig. 4), which results in heavy colonization

among family members and their relatives [of the 12

members in 4 families, 9 (75%) were colonized with the

same MRSA, Fig. 4] [144]. In these families, cutaneous

abscess occurred every 2 months.

CA-MRSA is also spreading among healthy (asymp-

tomatic) people in the community (including families or

public transport). CA-MRSA colonizes the nares or cheek

in many cases, but also axilla, umbilicus, and groin (Fig. 5)

[144]. Although methicillin-resistant strains (MR-CNS) of

coagulase-negative staphylococci, a major pathogen of

nosocomial BSI, colonize even the feet [155], no MRSA is

isolated from the feet [144]. Cheeks and the nasal cavity

can be highly colonized by CA-MRSA in comparison with

other parts of possible colonization. So it is highly possible

that CA-MRSA can be transmitted through close body

contact (hugs, kisses, etc).

Virulence factors

Adhesins common to MRSA

Adhesins involve not only microbial surface components

recognizing adhesive matrix molecules (MSCRAMMs)

[156, 157], which are spike-like protein structures anchored

to the cell wall, but also biofilms [158], and signal peptides

of PVL [159]. MSCRAMMs commonly found in MRSA

are (e.g.) adhesins for laminin, fibronectin, elastin, fibrin-

ogen, and protein A (Spa). Some adhesins play a role not

only in cell adherence but also in cell invasion [160].

Immuno-modification factors at the initial stage

of infection

Spa (protein A) commonly presents on the cell surface of

most S. aureus clinical strains, and, in cases, is released in

culture supernatants [161–163]. The N-terminus of Spa

neutralizes immunoglobulins through direct binding to Fc

and Fab fragments, indicating immunoresistant protein

(which prevents efficient elimination of bacteria by immune

1 µm

(a)

(b)

Family 1

Family amily2 F 3 Family 4

Fig. 4 Scanning electron micrograph showing ST22 MRSA and its

biofilm (a) and family pedigree with ST22 MRSA infection (b). Data

are from Ref. [144]. a Strains were grown on trypticase soy agarII

with 5% sheep blood at 37�C overnight. Bar is 1 lm. b Square and

circle represent male and female, respectively. Closed mark repre-

sents the person who was colonized on infected with MRSA

0% Foot  53.8%

37.5%  Hands  30.8%

75% Nasal cavity 30.8%

87.5% Cheek 46.2%
25% Axilla 46.2%

25%  Umbilicus 30.8%

37.5% Inguinal area 61.5% 

MRSA MRCNS

Fig. 5 Distribution of MRSA and MRCNS in the body. Data from

Refs. [144, 155]. Percentages show MRSA incidence isolated from

patients and family members or MRCNS incidence isolated from

healthy volunteers
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cells). The C-terminus is the transmembrane domain. Short

sequence repeats (SSRs), consisting of eight amino acids, are

located between the Fc binding domain and transmembrane

domain and are used for spa typing [18–20]. Structures of

SSRs could vary the virulence of Spa by changing the dis-

tance of the Fc binding domain from the cell surface. It is also

known that Spa activates tumor necrosis factor receptor 1

signaling of human airway epithelial cells through the Fc

binding domain, resulting in release of IL-8 [164]. PVL and

Spa synergistically induce severe damage of lung tissue and

high mortality in murine necrotizing pneumonia models

using PVL-positive S. aureus [163].

Toxic shock syndrome toxin-1 (TSST-1) and staphylo-

coccal enterotoxin B (SEB) could suppress the motility of

polymorphonuclear neutrophils (PMNs) through the inhibi-

tion of MRSA exoproteins expression [165, 166]. SEG, SEI,

SEM, SEN, and SEO [all located on the enterotoxin gene

cluster (egc)] [167] modify polyclonal T cell proliferation

and induce immune anergy by T cell suppressor activity, B

cell depletion, and inhibition of antibody responses [167–

170]. And also, they may reduce S. aureus pathogenicity, and

may contribute to bacterial colonization [171, 172].

PVL targets PMNs and induces cell death, resulting in

bacterial evasion from bactericidal functions of PMNs

[173]. ACME inhibits human peripheral blood mononuclear

cell proliferation, and also inhibits nitric oxide production

of the immune cells, which is important in both innate and

adaptive immune responses [72]. Fibronectin-binding pro-

teins play a role in adherence to extracellular matrix and

invasion of host cells including epithelial cells and fibro-

blasts [174]. Therefore, possession of those factors could be

an advantage in colonization and/or invasion of MRSA.

Cytolysins

Hemolysins include a-hemolysin (a-toxin; gene, hla),

b-hemolysin (b-toxin; gene, hlb), c-hemolysin (c-toxin;

genes, hlgA, hlgB, hlgC), and d-hemolysin (d-toxin; gene,

hld) [174, 175]. Of those, at least a-, c-, and d- hemolysin

exhibit cytolytic activity even for non-erythrocytes. a-Hem-

olysin is a strong cytolytic toxin in murine models. c-Hem-

olysin consists of three component proteins, HlgA, HlgB, and

HlgC. Combination of HlgA and HlgB acts as hemolysin, and

combination of HlgB and HlgC acts as a leucocidin [173].

d-Hemolysin is a phenol-soluble modulin that may be clas-

sified as a cytolytic peptide [176]. The d-hemolysin gene is

located within the RNAIII region in the agr locus.

Leucocidins are a family consisting of LukED, PVL,

c-hemolysin (HlgB and HlgC), and LukM [173, 175, 177].

The first three leucocidins are virulent for humans [173],

while LukM is virulent for bovines (not for humans) [177].

PVL is unique to CA-MRSA. The PVL and LukM genes

are carried by a phage.

Cytolytic peptides

Cytolytic peptides are 22-25 amino acids or 40 amino acids

long [178]. S. aureus (including MRSA) harbors three dis-

tinct cytolytic peptide genes on three different loci on the

chromosome. The three genes are the d-hemolysin gene (as

described above), the PSMa gene (4 tandemly-repeated

genes, PSMa1 to PSMa4), and the PSMb gene (2 tandemly-

repeated genes, PSMb1 and PSMb2) [178]. They are

expressed to a higher extent in CA-MRSA [such as USA300

(ST8), USA400 (ST1), ST30, and ST59], than in HA-MRSA

[such as New York/Japan (ST5)] [178, 179]. In addition, HA-

MRSA carries additional cytolytic peptide genes on

SCCmecII and SCCmecIII [180]. The PSM-mec gene is not

present in SCCmecIV, which is common in CA-MRSA.

Superantigens

Superantigens bind to major histocompatibility complex

class II (MHC II) molecules and the variable part of the

b-chain of certain T-cell receptors (Vb-TCRs), resulting in

unusual activation of T-cells [181–185]. Staphylococcal

superantigens are also called SE, and include TSST-1

(previously SEF), SEA, SEB, SEC1, SEC2, SEC3, SED,

SEE, SEG, SEH, SEI, SEJ, SEK, SEL, SEK, SEL, SEM,

SEN, SEO, SEP, SEQ, SER, SES, SET, SEU, and SEV

[185, 186]. SEA (and a combination of multiple superan-

tigens) is associated with severe diseases [171, 187].

Moreover, TSST-1 and SEB may suppress the motility of

PMNs through the inhibition of exoprotein expression, and

allow MRSA to invade and damage tissues [165, 166].

Superantigen genes are located on a pathogenicity island

[165, 188], such as SaPI5 carrying seq2 and sek2, USa3mw

carrying sek, sea, sek2, and seq, SaPI3 carrying seb, sek,

seq, or seb, sel, and sek, SaPI1 carrying tst, and sek, and

SaPIm1/n1 carrying tst, sec, and sel. At least SaPI1 and

likely SaPI3 are mobile pathogenicity islands, and can be

transferred from bacterial cell to cell by the action of a

phage in such a way that SaPI is excised from the chro-

mosome, and packed into phage particles to be transferred

to other cells [189].

Exfoliative toxins

Exfoliative toxins are proteinase from S. aureus, which

digest desmoglein 1, resulting in exfoliation of the epi-

dermis cells [190]. Exfoliative toxin involves ETA, ETB,

and ETD. Of those, ETA and ETB are responsible for

staphylococcal scalded skin syndrome (SSSS) in infants

and bullous impetigo in children, while ETD is responsible

for not only bullous impetigo but also deep pyoderma in

adults [191]. ETA is expressed in ST88 CA-MRSA, and

ETB in ST89 or ST91 CA-MRSA. ST89 CA-MRSA is
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rarely positive for both ETA and ETB [141]. ETD is found

in ST80 CA-MRSA [35, 71]. The ETA gene is carried by a

phage [192], while the ETB gene is located on a plasmid

[193]. The ETD gene is located on a pathogenicity island

on the chromosome [194].

Structure, activity, and clinical importance of PVL

PVL is considered as an immunoresistant factor due to its

cytotoxity against human PMNs and monocytes [195].

Possible association of PVL with necrotizing lesion

development has been described. PVL, a member of

staphylococcal two-component pore-forming toxins, con-

sists of PVL-S (284 amino acids, 32 kDa) and PVL-F

(301 amino acids, 34 kDa) (Fig. 6a) [196–199], which

can be purified from bacterial culture supernatants as a

monomeric form [173]. Crystal structures of PVL-S and

PVL-F water-soluble monomers were reported in 2004

[199] and 1999 [196], respectively. Sequences of those

crystal structures were identical to those of the PVL gene

core sequence (in ST30 CA-MRSA and others) in Fig. 7

[32, 200, 201]. PVL-S monomer, but not PVL-F mono-

mer, can bind to PMN membrane with high affinity in

vitro, indicating that PVL-S mediates receptor binding

Fig. 6 Structures and functions of PVL. a Data from Refs. [173,

196–204]. Protein Data Base (PDB) codes of PVL-F monomer (PDB

code, 1PVL) [196] and PVL-S monomer (PDB code, 1T5R) [197]

were downloaded from the RCSB Protein Data Bank (http://

www.pdb.org/) [198], and their crystal structures were reconstructed

using SWISS-MODEL and the Swiss-Pdb Viewer (http://www.

expasy.org/spdbv/) [199]. b Schematic representation of primary

structures of recombinant histidine (His)-tagged PVL-S (H-PVL-S)

and PVL-F (PVL-F-H) and their cell lysis activities are shown.

Necrosis of human PMNs and monocytes was determined by

morphological change and trypan blue staining. Percents of cell lysis

(mean ± SD) are shown (black lines, human PMNs; blue line, human

monocytes). In the boxes, light micrographs of PMNs (incubated with

the indicated concentrations of PVL) are also shown. c PVL-induced

apoptosis of human PMNs was detected by TUNEL staining (green)

under a fluorescent microscope. Nuclei were also stained with pro-

pidium iodide (PI). d Neutralization of PVL activity with intrava-

neous immunoglobulin G (IVIG) was examined. PVL proteins were

pre-incubated with the different concentrations of IVIG for 15 min at

37�C and then incubated with human PMNs
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[202]. PVL-S and PVL-F assemble into the channel

complex on cell membrane and induce necrosis of PMNs

and monocytes within 30 min (Fig. 6b). Based on studies

of PVL and its homologues [196, 203, 204], deduced

channel complexes are hexamer-octamer. Amino acid

substitutions have been identified by phyrogenetic analy-

sis of the PVL gene (Fig. 7). Some of those are located at

the PVL-S surface contacting adjacent PVL-F or mem-

brane and membrane spanning regions of PVL-S

(Fig. 6a), and may alter receptor binding of PVL-S or

channel formation. Neither PVL-S nor PVL-F alone

induces necrosis even at more than ten times higher

concentrations (Fig. 6b). PVL also induces apoptosis of

PMNs within 4 h (Fig. 6c) through mitochondrial path-

way (cytochrome c/caspase-9/3 cascade) [195].

PVL-S has been stained in tissue cells in vivo. Despite

its presence in patients’ infected tissue and in vitro cyto-

lytic activity, the role of PVL in necrotizing lesion devel-

opment is still controversial. Subcutaneous injection of

rabbits [205] and nasal injection of murine [163] with

purified PVL developed necrotizing lesions, respectively.

Nasal injection of murine with PVL-positive S. aureus, but

not its PVL-knocked down mutant, also induced necrotiz-

ing pneumonia with PMN infiltration, tissue necrosis, and

hemorrhage [163]. A synergistic effect of PVL and Spa

was proposed. Brown et al. have indicated the importance
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Fig. 7 Schematic representation of the mutation sites in the PVL

genes (a), phyrogenetic analysis of the PVL genes (b), and amino acid

substitution sites in three-dimensional structures of PVL-S and PVL-F

proteins (c). Data, in part, from Refs. [32, 200, 201]. a A schematic

representation of the PVL gene core sequence of ST30 CA-MRSA

(GenBank, AB186917) is shown. S and Mature represent the

sequences encoding signal peptides and mature proteins, respectively.

The sites of nucleotide substitutions and amino acid substitutions are

indicated below the scheme. b A phylogenetic tree of the PVL gene is

shown. Box colors correspond to those of amino acid substitutions in

a. Clones indicated as the same color carry PVL genes giving the

same amino acid sequence. The PVL gene core sequence [including

MRSA ST30 (its single locus variant ST1335) and MSSA ST50] is

indicated as a black-lined red box. c Positions of amino acid

substitutions (shown in a) are indicated in three-dimensional struc-

tures of (PDB code, 1PVL) [196] and PVL-S (PDB code, 1T5R)

[197]. PDB codes were downloaded from the RCSB Protein Data

Bank (http://www.pdb.org/) [198], and crystal structures were

reconstructed using SWISS-MODEL and the Swiss-Pdb Viewer (

http://www.expasy.org/spdbv/) [199]. For the crystal structures, b-

sandwich domain is yellow in PVL-S and light yellow in PVL-F, rim

domain is blue in PVL-S and light blue in PVL-F, and pre-stem

domain is green in PVL-S and dark green in PVL-F. Deduced mode

of action of PVL was constructed according to the Refs. [32, 173,

196–204]. Amino acid substitutions in PVL-S may alter the spectrum

of its receptor recognition
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of PVL in CA-MRSA (USA300)-induced muscle lesions

and necrotizing pneumonia in the murine model and pro-

tective effects of PVL immunization [206]. These data

suggest the role of PVL in lesion development. In contrast,

Voyich et al. [207] and Bubeck Wardenburg et al. [208,

209] provided counterevidence. They showed no signifi-

cant difference in virulence (e.g., abscess volume, lesion

size, mortality) between PVL-positive CA-MRSA and its

PVL-knocked down mutants in the murine models (skin

abscess, dermonecrosis, pneumonia, and bacteremia).

Actually, necrotizing fasciitis caused by PVL-negative

MRSA has also been reported clinically [210].

Currently, the role of PVL in bacterial survival at the

early stage of infection has also been described elsewhere

[211]. Other than cytotoxity, the possible role of the PVL-S

signal peptide that attaches to the cell wall after cleavage in

bacterial adhesion to collagens (components of tissue

extracellular matrix) has also been described [159].

Although the exact role of PVL as a cytotoxin is still

controversial, possession of PVL may be an advantage for

CA-MRSA at the early stage of infection. Since patients

with PVL-positive CA-MRSA infection complain of severe

pain and much pus, it is also possible that PVL may induce

higher cytotoxity in human than that in other animal

species.

Subinhibitory concentrations of clindamycin, rifampi-

cin, and linezolid inhibit PVL production, while b-lactam

agents enhanced PVL production [212, 213]. Intravenous

immunoglobulin G (IVIG), a product of Japan, neutralizes

PVL activity against human PMNs at the levels of normal

blood IgG (8.7–17 mg/ml) or less (Fig. 6d). This was the

case even for human monocytes. Therefore, these agents

may have therapeutic potential for infection with PVL-

positive CA-MRSA.

PVL gene

The PVL region is a polycistronic operon, which contains

the S component gene (lukPVS, 939 bp) upstream and the F

component gene (lukPVF, 978 bp) downstream, with a

single-base intercistronic region [214, 215].

Gene mutations and amino acid changes of the PVL

gene that have been identified are summarized in Fig. 7a

[32, 200, 201]. All gene mutations were substitutions: 11

substitutions in the S gene and 5 substitutions in the F gene.

In the S gene, 6 of 11 were non-synonymous substitutions,

which change amino acids; all of the amino acid changes

occurred in the mature S component. In contrast, in the F

gene, of five synonymous substitutions (which do not

change amino acids), only one caused amino acid change

in the mature F component. The facts that amino acid

changes accumulate in the S component and the F com-

ponent is highly conserved strongly suggest that the S

component plays a role in receptor bindings in tissues and

the F component plays a role as a toxic component. This

result is consistent with a previous notion, obtained by

purified component analysis, that the S component acts as a

receptor binding, while the F component acts as a toxic

component.

The PVL gene is found in various MSSA and MRSA

clones. Phylogenetic analysis of the PVL gene is summa-

rized in Fig. 7b [32, 200, 201]. The PVL gene has been

identified in 12 ST types. Genes encoding the PVL com-

ponent with different amino acid sequences are distin-

guished by different colors. Based on phylogenetic tree

analysis, the core sequences could be those of the ST30/

ST1335 (single locus variant of ST30)/ST50 group—ST30

includes CA-MRSA and MRSA in the 1980s and 1990s,

and ST50 includes CA-MSSA associated with SSTIs; the

ST30/ST1335/ST50 group could be an origin of various

PVL gene sequences. The same PVL amino acid sequences

as those of the ST30/ST1335/ST50 group can be found in

ST1, ST22, ST25, ST59, ST80, ST121, and ST1010

(although the gene nucleotide sequences were divergent

from those of the ST30/ST1337/ST50 group). However, it

should be noted that there existed distinct PVL amino acid

sequences in ST30, ST1, and ST8. Distinct PVL amino

acid sequences are also found in five other minor cases

(Fig. 7b). Based on the previous data of PVL and its

homologues [32, 173], and amino acid changes in PVL

crystal structures[196–204] and deduced mode of action of

PVL are shown in Fig. 7C. In PVL-S, a change at His68 is

located at the bottom surface of rim domain (blue, Fig. 7c),

suggesting the effect on receptor binding. Of four amino

acid changes located in b-sandwich domain (yellow,

Fig. 7c), Val27, His148, and Asn233 are located on the

surface contacting adjacent PVL-F. These three, as well as

one more change at Phe129 located in pre-stem (membrane

spanning) domain (green, Fig. 7c), may alter channel for-

mation. In contrast to PVL-S, Val 11, only one amino acid

change in PVL-F, is located at the loop-out region of

b-sandwich domain (Fig. 7c). Therefore, PVL-F is func-

tionally conserved, suggesting that PVL-F may play a

critical role in PVL activity in addition to channel

formation.

Genome and SCCmec

Genome

The entire genome structure of USA300 [USA300-0114

(strain FPR3757)] [72] is shown in Fig. 8a. The PVL genes

are located in the prophage called USA2USA. At the

opposite position on genome USA300, SCCmec(IVa) is

present. USA300 SCCmecIVa is linked to ACME. The
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connection of SCCmec to ACME is most probably a

recombination process at invert repeat (IR) sequences

(Fig. 8b). Moreover, SCCmecIVa and ACME could be

excised by the ccr recombinase function at the repeat

sequences, and the circular DNA generated could be

transferred to other bacterial cells [12, 43].

USA300 (USA300-0114) is resistant to fluoroquinolones

(e.g., ciprofloxacin) macrolides (erythromycin), lincosa-

mides (clindamycin), and tetracycline. Of those resistances,

fluoroquinolone resistance is due to the gyraseA (gyrA)

mutation on the chromosome, while the other resistance

genes are on the plasmid (Fig. 8a).

SCCmec

SCCmec types were reported previously [25–27]; however,

SCCmec typing has recently been reproposed by the

SCCmec Working Committee (IWS-SCC) [28]. SCCmec

types, including those reproposed by the committee (shown

in parenthesis) [25–28, 32, 137], are shown in Fig. 9. Since

SCCmec is inserted at the attachment site (att), which is

located at the right end of orfX, all SCCmec structures

contain the att sequence at both ends. SCCmec contains

core structures consisting of a mec complex representing

methicillin resistance and a ccr complex. The locations of

primers used for previous typing are shown in Fig. 9

(arrows). On the other hand, retyping recommended by the

committee is determined by the mec complex and ccr

complex, located to the right side of the mec complex. In

some cases, SCCmec type III is linked to SCCmercury

(HG). SCCmec type IVa (of USA300) is linked to ACME.

SCCmec types II and III carry the peptide toxin gene

(PSM-mec) [180]. Besides methicillin resistance, SCCme-

cII confers kanamycin resistance and erythromycin/clin-

damycin resistance. SCCmercury/type III carries the

erythromycin/clindamycin resistance gene, tetracycline

resistance gene, and cadmium resistance gene. SCCmec

types II and III are seen in pandemic HA-MRSA clones.
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SCCmecVII (currently SCCmec type V) contains the

ccrC-carrying unit at the orfX end side and adjacent to

IS431 [137]. This core unit is also seen in other SCCmec

structures, suggesting that it is used to construct SCCmec

mosaic structures through recombination (Fig. 10).

Rapid detection of PVL-positive CA-MRSA

Multiplex PCR is developed for the rapid detection of

major PVL-positive CA-MRSA clones. The targets for an

assay are a combination of the gene or DNA sequence

unique to each clone. Targets include the PVL gene, the

MW1409 and MW0756 loci, and the seh gene for ST1

(USA400) [35, 36]; the PVL gene and the arcA gene (on

ACME) for ST8 (USA300) [35–37]; the PVL gene and the

etd gene for ST80 [35]; and the PVL gene and the cna and

bbp genes for ST30 [38]. The mecA gene and the nuc gene

(encoding for S. aureus-specific thermostable nuclease)

may also be included in an assay to differentiate MRSA

from MSSA and S. aureus from CNS, respectively [36].

Drug resistance

Drug resistance genes and their resistance mechanisms in

MRSA are summarized in Table 2. Some of them are

found in CA-MRSA. Breakpoints for drug resistance have

been defined by the CLSI.

b-lactam agents [32, 35, 71, 73, 216–219]

Ampicillin resistance is encoded for by the blaZ gene.

Methicillin resistance is encoded by the mecA gene, whose

product is methicillin-resistant penicillin binding protein 2

(peptidoglycan-associated transpeptidase, PBP2), known as

PBP2a or PBP20. The expression level of the mecA gene is

under the control of chromosomal genes such as fem. Some

MRSA exhibits a low oxacillin MIC level (MIC,\4 lg/ml),

and thus are susceptible to oxacillin according to the CLSI’s

breakpoints; such MRSA is called borderline MRSA. To

improve controversial phenomena, and to diagnose border-

line MRSA, cefoxitin is used to judge MRSA.

CA-MRSA exhibits low oxacillin and carbapenem

(especially imipenem) MIC levels compared to HA-MRSA.

For instance, oxacillin MIC90s are 32 lg/ml for CA-MRSA

and C256 lg/ml for HA-MRSA, and imipenem MIC90s are

1 lg/ml for CA-MRSA and 64 lg/ml for HA-MRSA. This

phenomenon is even more remarkably observed: imipenem

MIC90s 0.12 lg/ml for PVL-positive CA-MRSA and 2 lg/

ml for PVL-negative CA-MRSA. It is possible that HA-

MRSA strains that have been selected in more cases over

longer periods by b-lactam agents in hospitals have resulted

in higher resistance. For example, in Japan, MRSA isolated

from hospitals from 1976 to 1989 was susceptible, or only

slightly resistant, to imipenem (MIC90, 12.5 lg/ml), while

that isolated in 1990 and 1991 was highly resistant to imi-

penem (MIC90, C100 lg/ml). If this is the case, in the future

CA-MRSA could also manifest high oxacillin and imipenem

resistance, just as HA-MRSA has been selected.

As for distribution in the community in Japan, MRSA is

isolated from children at a few percent, no MRSA is iso-

lated from university students, and it is isolated in public

transport (trains and subways) at 2.5%.

Vancomycin [220–223]

Vancomycin is a first-line antimicrobial agent for the

treatment of MRSA infections. Vancomycin-intermediate

S. aureus (VISA, MIC; 4-8 lg/ml) is characterized by cell
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wall thickness (although the responsible gene has not been

identified yet). VISA is MRSA in many cases. Heteroge-

neous VISA (hVISA) has also been noted. Vancomycin-

resistant S. aureus (VRSA, MIC; C16 lg/ml), which is

always MRSA, carries the vanA gene (on the Tn1546-like

structure in a plasmid). The vanA gene is transmissible.

The vanA plasmid pLW1043 confers multiple-drug resis-

tance, including ampicillin (blaZ), gentamicin (aacA/

aphD), trimethoprim (dfrA/thyA), and quaternary ammo-

nium compound resistance (qacC). VRSA has been iso-

lated not only from the US, but also from India and Iran.

VRSA is highly associated with USA100 (New York/

Japan clone) and USA800 (pediatric clone) in the US.

VISA has also been found in the most remarkable CA-

MRSA clone in the US, USA300.

Linezolid [224, 225]

Linezolid is an alternative to vancomycin for the treatment

of MRSA infections. Linezolid is able to penetrate into

tissues (such as lung tissues) better than vancomycin. One

of the resistance mechanisms is G to U substitution at

position 2576 in the peptidyl transferase center of 23S

rRNA, exhibiting MIC levels C8 lg/ml. The G2576U

mutation-mediated resistance levels are affected by the

number of copies of mutated 23S rRNA genes on the

chromosome (present in five copies per cell). The other

mechanism is methylation of adenine at position 2503 in

the peptidyl transferase center of 23S rRNA, exhibiting

8 lg/ml. The responsible methyltransferase is encoded by

the cfr gene; cfr also confers on host bacterial cells mul-

tiple resistance to chloramphenicol, clindamycin, tiamulin,

and quinupristin/dalfopristin, in addition to oxazolidinones.

Aminoglycosides [32, 35, 71, 142, 145, 219, 226–233]

Gentamicin has widely been used for the treatment of S.

aureus infections in the community, such as bullous impe-

tigo, in Japan. Arbekacin has been used as an anti-MRSA

agent in Japan. Resistance to gentamicin is mainly due to

gentamicin modification (inactivation) by 60-aminogly-

coside N-acetyltransferase-200-aminoglycoside O-phos-

photransferase [AAC(60)-APH(200)] (Fig. 11). Higher

production of AAC(60)-APH(200) results in resistance to

arbekacin as well; a breakpoint for arbekacin resistance is

2 lg/ml (Japanese Society for Chemotherapy).

Fluoroquinolones [32, 72, 234, 235]

In S. aureus, fluoroquinolone resistance is caused by a

mutation in the DNA gyrase gene (gyr) and/or topoiso-

merase IV gene (grl). The quinolone resistance-determin-

ing region (QRDR) is located in gyrA and grlA.T
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Fluoroquionlone resistance is at a severe level for HA-

MRSA. Ciprofloxacin and levofloxacin resistance has been

noted. Some CA-MRSA clones have also become fluor-

oquionlone resistant. For example, the USA300 clone is

now multiple-drug resistant, and ciprofloxacin resistance

(one of such multiple resistance) is due to a Ser84Leu

chromosomal mutation of gyrase A encoded by the gyrA

gene.

Rifampicin [236–238]

Rifampicin exhibits extremely high in vitro activity against

S. aureus including MRSA. However, single use of rif-

ampicin results in the rapid emergence of resistance.

Rifampicin resistance is caused by a mutation in the RFP

resistance-determining clusters I and II located in the

b-subunit gene (rpoB) of bacterial RNA polymerase.

To prevent rifampicin-resistance, combination therapy

with appropriative drugs (such as linezolid) has been

continuously investigated. Moreover, rifampicin-resistant

MRSA has been isolated in tuberculosis wards.

Macrolide-lincosamide-streptogramin B (MLSB)

[32, 35, 71, 72, 111, 145, 219, 239–243]

Clindamycin has been, in part, used for the treatment of

S. aureus infections including MRSA infections. However,

failure of treatment by clindamycin has already been noted

due to the presence of inducible clindamycin resistance.

Inducible-clindamycin-resistant strains are always resistant

to erythromycin, and inducible clindamycin resistance can

be induced by erythromycin. Inducible clindamycin resis-

tance assay is called the D test (Fig. 12b, c). Clindamycin

cannot be an effective inducer. The mechanism of clinda-

mycin resistance is considered to be that in the absence of
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Fig. 11 Chemical structures of aminoglycosides and target residues

of enzymatic modification. Chemical structures of gentamicin,

kanamycin, and arbekacin are shown. Hydroxyl and amino residues

shown in red and blue, respectively, are the targets of the enzymes.

The inactivating enzymes are from Table 2

Fig. 12 Model for translational regulation of ermC expression (a)

and D test (b, c). Data from Refs. [298, 299]. a Secondary structures

upstream of ermC mRNA in the absence and presence of erythro-

mycin are shown. The leader peptide sequence (19 amino acids) and

ermC are indicated as gray and dark gray lines, respectively. SD-1
Shine-Dalgarno sequence for leader peptide translation, SD-2 Shine-

Dalgarno sequence for ermC translation. In the absence of EM, SD-2

is masked by stem-loop (constructed by sequences 3 and 4). In the

presence of EM, a complex of ribosome and EM tightly binds to the

leader peptide sequence. This induces disruption of the two stem-

loops, resulting in initiation of ermC translation from unmasked SD-2.

b, c Results of D test of ermC-positive strain (b) and ermC-negative

erythromycin-resistant strain (c) are shown. EM erythromycin, CLDM
clindamycin
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an erythromycin inducer, a ribosome-binding (SD)

sequence of clindamycin resistance mRNA is hidden due to

the mRNA secondary structure, and thus clindamycin

resistance mRNA cannot be translated, while with the

presence of the inducer, this secondary structure of mRNA

is disrupted resulting in translation of clindamycin resis-

tance mRNA (Fig. 12a).

Trimethoprim–sulfamethoxazole (TMP–SMX) [244]

Mild SSTIs may be treated with TMP-SMX. Occasionally,

the dfrA gene is associated with SCCmec-n1.

Mupirocin [72, 111, 245, 246]

Mupirocin has been used in the eradication of naris-colo-

nizing MRSA. As for resistance, ileS mutation is low-level

resistance (MICs; 8–256 lg/ml), while the mupA (ileS-2)

gene confers high-level resistance (MICs; C512 lg/ml).

The multiple-drug-resistant USA300 clone (ST8) carries

the mupA gene on a plasmid. Also, the multiple-drug-

resistant ST80 clone carries the mupA gene.

Fusidic acid [145, 247–249]

High-level fusidic acid-resistance (MICs; [12 lg/ml)

involves mutation of the fusA gene. ST80 CA-MRSA, a

worldwide clone, carries the fusA gene, and thus the fusA

gene has been a marker of ST80 CA-MRSA spread in

Europe. Occasionally, the fusB1 gene is found on SCCmec

(SCCmec-n1 carrying dfrA).

MRSA in the community in Japan

Young school age children have nasal MRSA at higher

levels with a peak at 5–9 years (isolation rate 2.2%),

compared with other age groups, e.g., university students

(isolation rate \0.25%) [250]. In other reports, isolation

rates were 3.8 or 4.3% for children in kindergartens and

day-care centers [251, 252]. All MRSA strains are PVL-

negative. In their families, MRSA transmits among family

members [250]. Examples include ST8/SCCmecIVx

MRSA or ST764/SCCmecII MRSA. Moreover, children

have ST88/SCCmecIVx MRSA (associated with bullous

impetigo), ST857/SCCmecX (IIb) MRSA (new type), or

ST380/SCCmecIVc and ST22/SCCmecI MRSA (rare iso-

lates). The HA-MRSA New York/Japan clone (ST5/

SCCmecII) is also detected from children; in one study, it

was only from pediatric outpatients [250].

MRSA is also distributed in the environment. Although

no MRSA was isolated from play settings such as karaoke,

pachinko, amusement arcades, and gyms, MRSA was

isolated from public transport (trains, subways, or buses) at

2.5% [155]. They were all PVL-negative. Such MRSA falls

into three groups: i) bullous impetigo-related CA-MRSA,

such as ST8/SCCmecIVx or I MRSA and ST88/SCCme-

cIVx MRSA, ii) the HA-MRSA New York/Japan clone,

and iii) uncategorized MRSA [155]. It is conceivable that

such MRSA is transferred from the hands of passengers in

trains, subways, or buses.

The New York/Japan clone, a typical HA-MRSA clone

in Japan, is occasionally isolated from the community, as

described above. It could be due to (e.g.) frequent pediatric

visits to hospitals (which could be a high risk factor for

pediatric MRSA colonization); for instance, some children

visit hospitals for treatment several times a month. More

importantly, ST764/SCCmecII MRSA is spreading not

only in hospitals but also widely in the community [155,

253]. The ST764 clone is a derivative of the New York/

Japan clone and is multiple-drug-resistant just like the New

York/Japan clone; however, it seems to persist more in the

community. The ST764 MRSA clone was first isolated

from bacteremia in an inpatient in Sado (Niigata) in 2005

[253], and then from the hands of a medical student

(undergoing clinical practice) in 2007 [155]. ST764 was

also isolated from an intrafamilial transmission case in

2008 [250], from necrotizing fasciitis in the community in

2008 (unpublished data), and in enteritis in the community

in 2009 (unpublished data), suggesting that the ST764

clone is an emerging hybrid-type clone with a higher

ability to adapt to the community. The ST764 clone lacks

SaPIm1/n1 (carrying three superantigen genes, tst, sec, and

sel) present in the New York/Japan clone, but instead has a

superantigen gene seb2 [a variant of seb (seb1)] [138]. The

seb1 gene is detected in the major PVL-positive CA-

MRSA [ST59/SCCmecVII (or V)] in Taiwan [32]. The seb

gene may contribute to adaptation to the community.

It has also turned out recently that ST8/SCCmecIVx is a

major CA-MRSA clone in Japan. It exhibits mainly spa606

(with some minor spa types) and is PVL- and ACME-

negative and distinct from USA300. It has been associated

with a wide range of community infections, including

bullous impetigo [141], atopic dermatitis (unpublished

data), slight wound infection in a sumo-wrestling team

[254], bacteremia and subsequent epidural abscesses [255],

and fatal pneumonia [256]. A very similar MRSA was also

isolated from cutaneous abscesses (in the community) of

Japanese family members who had moved to Hong Kong

[137].

Bullous impetigo is a common disease among children,

and CA-MRSA is frequently isolated from these infected

children (at 19–51%) [141, 194]. Such bullous impetigo-

associated CA-MRSA (biCA-MRSA) belongs to ST8,

ST88, ST89, and ST91 [141]. Those isolates are positive

for the cna gene in many cases (at 86.4%) [257]. We
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speculate that biCA-MRSA infects skin soft tissues through

binding to collagens, exposed by scratching, to cause bul-

lous impetigo. biCA-MRSA is highly resistant to genta-

micin (at 80–90%) [141, 258], reflecting frequent use of

gentamicin ointment for the treatment of bullous impetigo.

Recently, a variety of PVL-positive MRSA clones have

been accumulating in Japan (albeit still at a low frequency),

including ST30/SCCmecIVa [92], ST30/SCCmecIVc [75,

141], and their ST single locus variants, ST765/SCCme-

cIVx (or I) [71] and ST1335/SCCmecIVc (unpublished

data), ST59/SCCmecVII (or V) [138], ST8/SCCmecIVa

(US300 clone) [125], and ST22/SCCmecIVa [144]. Of

those, ST59 may originate in Taiwan (although the patient

and his family members had never been to Taiwan). As for

USA300, the first isolate was from a visitor (Indian girl)

from the US in 2007 in Tokyo. This was followed by a

Japanese child infection case in Saitama in 2008 (this

patient and her family members had never been abroad),

indicating the spread of USA300 in Japan, although the two

isolates in 2007 and 2008 are divergent [126].

CA-MRSA infections in other areas of Asia

Taiwan

In Taiwan, the ST59/SCCmecVII (or alternatively

assigned as V) clone has been noted as a major CA-

MRSA clone [32, 259, 260]. They are mostly PVL-posi-

tive [32, 259]. On the other hand, ST59/SCCmecIV is

mostly PVL-negative [32, 259, 260]. Nasal colonization

of healthy adults (age of [18 years) with MRSA has also

been reported (isolation rate 3.8%) [260]. Of those, PVL-

positive ST59 and PVL-negative ST59 accounted for

approximately 38 and 46%, respectively. The PVL-posi-

tive and -negative ST59/SCCmecIV/V clones were rela-

tively multidrug-resistant [(e.g.) tetracycline, kanamycin,

MLSB, chloramphenicol] [32]. Although the most fre-

quent clone in the hospital in Taiwan is ST239/SCCme-

cIII (Hungarian clone), PVL-positive and -negative ST59

clones are spreading not only in the community but also

in the hospital [32, 259]. Currently, a fatal case of a 12-

year-old boy who was infected by USA300 was reported

[128].

China

Recent studies have shown the appearance of a worldwide

clone, ST30 CA-MRSA, in China [106, 261, 262]. Yu

et al. [261] investigated community- and hospital-

acquired S. aureus isolates from the patients of a teaching

hospital in Wenzhou and found two CA-MRSA isolates.

One was a worldwide clone, PVL-positive ST30/

SCCmecIV, and mostly susceptible to non-b-lactam

antimicrobial agents; the other was PVL-positive ST398/

SCCmecIV, resistant to erythromycin and gentamicin. In

the same study, ST398/SCCmecIV was also found as HA-

MRSA.

More information about the molecular characteristics

of CA-MRSA is available in Hong Kong [136, 262, 263].

Ho and his colleagues collected CA-MRSA strains from

patients and their household members from 2004 to 2007

[136, 263]. Most of the CA-MRSA isolates (78% of all

CA-MRSA isolates) were associated with SSTI. Among

the CA-MRSA isolates, 72% were positive for PVL.

Sixty-seven percent of the PVL-positive CA-MRSA iso-

lates showed ST30/SCCmecIV, typically characteristic of

worldwide clones, and were mostly susceptible to non-b
lactam antimicrobial agents. The other set of PVL-posi-

tive CA-MRSA isolates in Hong Kong was ST59. ST59

clones showed multidrug resistance (MLSB, tetracycline,

or chloramphenicol), indicating similar characteristics to

PVL-positive ST59 seen in Taiwan [32]. PVL-negative

CA-MRSA isolates were also isolated and showed ST8/

SCCmecIVx [262], which has typical characteristics of

PVL-negative CA-MRSA in Japan [141]. Recently, after

PVL-negative ST88/SCCmecIV CA-MRSA was reported

in Japan [250], a similar PVL-negative ST88/SCCme-

cIVA CA-MRSA has also been isolated in Guangzhou, a

city adjacent to Hong Kong [264]. A PVL-negative ST59/

SCCmecIVA CA-MRSA was isolated in this study as

well.

In hospitals in Hong Kong, ST239/SCCmecIII/IIIA is a

major clone, and ST5/SCCmecII and ST45/SCCmecIV

(and its variant) are found as well [58]. Currently, the

ST45/SCCmecIV clone is increasing.

These data indicate that CA-MRSA strains in China

have divergent genotypes closely related to clones isolated

worldwide and in areas around mainland China including

Taiwan and Japan.

Russia

There are many distinct MRSA clones in the territory of the

Russian Federation. Among them, the ST239 Hungarian

clone could be a major clone in Russian hospitals [265]. In

addition, another unique ST239 MRSA clone (so-called

Russian clone) was found in the far eastern part of Russia

[57]. It can transfer multidrug resistance to other S. aureus

or MRSA strains. In addition, one strain of PVL-positive

worldwide CA-MRSA was isolated. Its genotype was

ST30/spa19/SCCmecIVc [139]. A multidrug-resistant

ST239 clone, described above, has been isolated from

outpatients, in addition to inpatients, in Russia, indicating

that the multidrug-resistant ST239 clone is spreading even

in the community. This may be, in part, because the
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patients in Russia can obtain antibiotics without doctor’s

prescription in the community. Therefore, selection pres-

sure by antibiotics in the community is slightly higher than

that in other countries like Japan or the US, suggesting that

different criteria for CA-MRSA should be considered.

However, further study is needed.

Korea

In Korea, MRSA is spreading in hospitals and in the

community like in other countries [266]. But the major ST

type is very unique. ST72, which is SCCmecIV and PVL

negative, is the major CA-MRSA clone in Korea, but does

not spread in other areas. The ST5/SCCmecII and ST239/

SCCmecIIIa clone are spreading both in hospitals and in

the community [266]. Only one case of a USA300-like

clone has been reported [127].

MRSA in animals

MRSA has also been isolated from companion and live-

stock animals. Those MRSA strains have currently been

noted as a source of infection in humans, and transmission

cases are summarized in Table 3 [267–278]. For example,

in case of companion animals, the EMRSA-15 clone

(ST22/SCCmecIV/PVL-negative) has been isolated from

dogs and cats in Europe, including the UK, Ireland, and

Germany [279–284]; the Canadian epidemic MRSA-2

clone (ST5/SCCmecII/PVL-negative) from dogs and cats

Table 3 Cases of MRSA transmission between humans and animals

Country Animal Transmission to

humans (numbers

of infected persons)

Genotype and resistance References

MLST spa
type

SCCmec
type

PVL

gene

PFGE type

(SmaI type)

Drug resistance

Europe

Hungary Cows 1 1 t127 IVa - ND TC, EM [267]

The Netherlands Pigs 7 ND t108 ND ND Non-typeable ND [268]

The Netherlands Pigs 3 398 t108 V - Non-typeable ND [269]

The Netherlands Pigs 4 398 t011 IV ND Non-typeable GM, KM, TC,

EM, TS, LCM

[270]

The Netherlands Dogs 3 80a ND IVa ? RIVM cluster 28 TC, FA [271]

The Netherlands Dogs 65 ND ND NT ND RIVM cluster 35 OFLX, ST, FA [272]

Germany Dogs 1 398 t034 V - Non-typeable TC, EM, CLDM [273]

Germany Dogs 1 225 t014 II - ND EM, CLDM,

ERFX

[273]

Germany Cats 4 80 t131 IV ? ND FA [274]

North America

USA Dogs 7 ND ND II - Canadian epidemic

MRSA-2

EM, CLDM,

CPFX, MUP

(5/10)

[275]

USA Cats 4 ND ND II - Canadian epidemic

MRSA-2

EM, CLDM,

CPFX

[275]

USA Cats 1 8 ND IVa ? USA300 EM, ERFX [276]

Canada Dogs 2 ND ND II - Canadian epidemic

MRSA-2

EM, CLDM,

CPFX, MUP

(2/4)

[275]

Canada Cats 1 ND ND II - Canadian epidemic

MRSA-2

EM, CLDM,

CPFX, MUP

[275]

Canada Horsesb 13 ND ND IV - Canadian epidemic

MRSA-5c
GM, TC, DOXY,

EM

[277]

TC tetracycline, EM erythromycin, GM gentamicin, KM kanamycin, TS tylosin, LCM lincomycin, FA fusidic acid, OFLX ofloxacin, ST
sulfamethoxazole–trimethoprim, CLDM clindamycin; ERFX enrofloxacin, CPFX ciprofloxain, MUP mupirocin, DOXY doxycycline, ND no data

available, NT non-typeable
a In other references, RIVM cluster 28 has been reported to be ST80 and SCCmecIV [278]
b Infection in veterinary hospital of neonatal intensive care unit of horse
c Canadian epidemic MRSA-5 is related to USA500 [277]
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[275]; and the Canadian epidemic MRSA-5 clone (ST8/

SCCmecIV/PVL-negative) from horses in North America

[285]. In addition, human PVL-positive CA-MRSA clones

have been isolated from companion animals [274, 276].

Sing et al. [274] have reported a recurrent infection case of

PVL-positive ST80 CA-MRSA through intrafamilial

transmission among households and cat. To prevent

recurrent infections, the eradication of MRSA from com-

panion animals, as well as patients and their households, is

important. Other than the ST80 clone, transmission of the

USA300 strain from a cat has also been reported [276].

On the other hand, MRSA strains have also been isolated

from livestock (e.g., pigs, cattle, and chickens) in (e.g.) the

Netherlands, Belgium, Germany, Hungary, the US,

Australia, and Korea [267, 269, 286–290]. van Rijen et al.

[291] concluded in their report that the infection risk for pig

and cow farmers (32%) is three times higher than for people

who do not have direct contact with those animals. ST398

clones with SCCmecIV or V, as animal-associated CA-

MRSA clones, have been widely spreading among livestock

[269, 286–290, 292] and companion animals (e.g., horses)

[293]. ST398 clones were originally known as non-typeable

MRSA in PFGE due to methylation of C-residues in the

SmaI recognition site [294]. Currently, transmission of those

animal clones to farmers and their households has been

noted (Table 3). Furthermore, isolation of the ST398 clone

from a patient, family member (carrier), and nurse (carrier)

who was taking care of that patient has also been observed,

indicating possible transmission from human to human

[268]. Those ST398 clones were PVL-negative. However,

PVL-positive ST398 CA-MRSA has also been isolated from

a human patient with abscesses in China although there had

been no description of contact with animals [261].

Other than ST398, possible transmission of ST9 clones

with SCCmecIII or V among pigs and farmers has also been

reported in Asia. In those cases, no ST398 clones were

observed in contrast to Europe, North America, and Aus-

tralia, suggesting a spread of different clones in Asia [295,

296].

In Japan, MRSA with SCCmecIV has been isolated from

chicken meat, although MLST was unknown [297]. On the

other hand, we have examined the carriage of MRSA

among healthy companion animals (mainly dogs and cats)

in Japan. However, no MRSA has been isolated from

healthy companion animals, although other methicillin-

resistant Staphylococcus spp., such as methicillin-resistant

S. intermedius, have been isolated.

Companion and livestock animals, which are carriers of

MRSA, are potential risk factors for MRSA infection in

humans. In cases of recurrent MRSA infection among

family members, tests should be conducted on MRSA

carriage in animals in the house or farm. If positive, MRSA

eradication should be carefully considered.

Closing remarks

Historically, several waves of MRSA infections have

attacked humans, including those due to penicillin G-

resistant S. aureus in the mid 1940s, multidrug-resistant S.

aureus in the late 1950s, and MRSA since 1961 (but with

worldwide outbreaks in the 1970s–1980s). They all seem to

have been driven by high levels of antimicrobial agent use

in hospitals. The concept of MRSA infection has drasti-

cally changed since the late 1990s, when CA-MRSA was

noted worldwide. CA-MRSA is well adapted to the com-

munity and triggers even unexpected cases of diseases for

clinicians. Apparently, new countermeasures against the

emerging threat (such as active surveillance of CA-MRSA

in high risk groups, such as children and their families, and

its eradication) must be considered and constructed.
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