Skip to main content

Advertisement

Log in

The tumor suppressor function of hsa_circ_0006282 in gastric cancer through PTEN/AKT pathway

  • Original Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

Circular RNAs (circRNAs) play key roles in carcinogenesis. However, the roles of circRNAs in gastric cancer are largely unknown. The aim of this study is to study the possible roles of hsa_circ_0006282 in gastric cancer.

Methods

The hsa_circ_0006282 levels in gastric cancer cell lines, 85 gastritis tissues, and 103 paired gastric cancer tissues and non-tumor tissues were first detected by quantitative real-time reverse transcription-polymerase chain reaction. RNA interference and hsa_circ_0006282 expression plasmid were further used to manipulate hsa_circ_0006282 expression in gastric cancer. Finally, biological effects of hsa_circ_0006282 were analyzed by real-time cell analysis, flow cytometry, Transwell, cell cloning assay and Western blot analysis.

Results

Hsa_circ_0006282 was down expressed in gastric cancer cells, gastritis tissues, and gastric cancer tissues. The abilities of cell proliferation, cell migration and resistance to apoptosis were enhanced after hsa_circ_0006282 was downregulated, while overexpression of hsa_circ_0006282 got opposite results. Besides, Western blot showed that the levels of protein kinase B (AKT) and cyclin-dependent kinase 2 (CDK2) were significantly increased and decreased after knockdown and up-regulation of hsa_circ_0006282, respectively, while phosphatase and tensin homolog deleted on chromosome ten (PTEN) was significantly opposite regulated. Finally, hsa_circ_0006282 promoted the expression of PTEN by sponging hsa-miR-136-5p.

Conclusion

By regulating the PTEN/AKT signaling pathway through competitively binding with hsa-miR-136-5p, hsa_circ_0006282 suppresses the growth of gastric cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets are available from the corresponding author.

References

  1. Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249

    Article  Google Scholar 

  2. Wang Y, Li Z, Xu S et al (2020) Novel potential tumor biomarkers: circular RNAs and exosomal circular RNAs in gastrointestinal malignancies. J Clin Lab Anal 34(7):e23359

    Article  CAS  Google Scholar 

  3. Ma Y, Li Z, Ma D et al (2022) Hsa_circ_0003195 as a biomarker for diagnosis and prognosis of gastric cancer. Int J Clin Oncol 27(2):354–361

    Article  CAS  Google Scholar 

  4. Shao Y, Qi C, Yan J et al (2022) Biological and clinical implications of hsa_circ_0086720 in gastric cancer and its clinical application. J Clin Lab Anal 36(5):e24369

    Article  CAS  Google Scholar 

  5. Li T, Shao Y, Fu L et al (2018) Plasma circular RNA profiling of patients with gastric cancer and their droplet digital RT-PCR detection. J Mol Med (Berl) 96(1):85–96

    Article  CAS  Google Scholar 

  6. Jin X, Gao J, Zheng R et al (2020) Antagonizing circRNA_002581-miR-122-CPEB1 axis alleviates NASH through restoring PTEN-AMPK-mTOR pathway regulated autophagy. Cell Death Dis 11(2):123

    Article  CAS  Google Scholar 

  7. Chen J, Xu L, Fang M et al (2022) Hsa_circ_0060927 participates in the regulation of caudatin on colorectal cancer malignant progression by sponging miR-421/miR-195-5p. J Clin Lab Anal 36(5):e24393

    Article  CAS  Google Scholar 

  8. Shao Y, Li J, Lu R et al (2017) Global circular RNA expression profile of human gastric cancer and its clinical significance. Cancer Med 6(6):1173–1180

    Article  CAS  Google Scholar 

  9. Tao X, Shao Y, Yan J et al (2021) Biological roles and potential clinical values of circular RNAs in gastrointestinal malignancies. Cancer Biol Med 18(2):437–457

    Article  CAS  Google Scholar 

  10. Zhang H, Shen Y, Li Z et al (2020) The biogenesis and biological functions of circular RNAs and their molecular diagnostic values in cancers. J Clin Lab Anal 34(1):e23049

    Article  Google Scholar 

  11. Li Z, Ruan Y, Zhang H et al (2019) Tumor-suppressive circular RNAs: mechanisms underlying their suppression of tumor occurrence and use as therapeutic targets. Cancer Sci 110(12):3630–3638

    Article  CAS  Google Scholar 

  12. Li Z, Huang C, Bao C et al (2015) Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22(3):256–264

    Article  Google Scholar 

  13. Tian M, Chen R, Li T et al (2018) Reduced expression of circRNA hsa_circ_0003159 in gastric cancer and its clinical significance. J Clin Lab Anal 32(3):e22281

    Article  Google Scholar 

  14. Shao Y, Chen L, Lu R et al (2017) Decreased expression of hsa_circ_0001895 in human gastric cancer and its clinical significances. Tumour Biol 39(4):1010428317699125

    Article  Google Scholar 

  15. Huang M, He YR, Liang LC et al (2017) Circular RNA hsa_circ_0000745 may serve as a diagnostic marker for gastric cancer. World J Gastroenterol 23(34):6330–6338

    Article  CAS  Google Scholar 

  16. Chen S, Li T, Zhao Q et al (2017) Using circular RNA hsa_circ_0000190 as a new biomarker in the diagnosis of gastric cancer. Clin Chim Acta 466:167–171

    Article  CAS  Google Scholar 

  17. Sun H, Tang W, Rong D et al (2018) Hsa_circ_0000520, a potential new circular RNA biomarker, is involved in gastric carcinoma. Cancer Biomark 21(2):299–306

    Article  CAS  Google Scholar 

  18. Shang X, Li G, Liu H et al (2016) Comprehensive circular RNA profiling reveals that hsa_circ_0005075, a new circular RNA biomarker, is involved in hepatocellular carcinoma development. Med (Baltim) 95(22):e3811

    Article  CAS  Google Scholar 

  19. Qin M, Liu G, Huo X et al (2016) Hsa_circ_0001649: a circular RNA and potential novel biomarker for hepatocellular carcinoma. Cancer Biomark 16(1):161–169

    Article  CAS  Google Scholar 

  20. Meager A (2002) Biological assays for interferons. J Immunol Method 261(1–2):21–36

    Article  CAS  Google Scholar 

  21. Hua Y, Wang H, Wang H et al (2021) Circular RNA Circ_0006282 promotes cell proliferation and metastasis in gastric cancer by regulating microRNA-144-5p/tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein β axis. Cancer Manag Res 2021(13):815–827

    Article  Google Scholar 

  22. Meager A (2020) Circular RNA circ_0006282 contributes to the progression of gastric cancer by sponging miR-155 to upregulate the expression of FBXO22. Onco Targ Ther 2020(13):1001–1010

    Google Scholar 

  23. Shi Y, Men J, Sun H et al (2022) The identification and analysis of microRNAs combined biomarkers for hepatocellular carcinoma diagnosis. Med Chem. https://doi.org/10.2174/1573406418666220404084532

    Article  PubMed  Google Scholar 

  24. Yang B, Zang J, Yuan W et al (2021) The miR-136–5p/ROCK1 axis suppresses invasion and migration, and enhances cisplatin sensitivity in head and neck cancer cells. Exp Ther Med 21(4):317

    Article  CAS  Google Scholar 

  25. Chen P, Zhao L, Pan X et al (2018) Tumor suppressor microRNA-136–5p regulates the cellular function of renal cell carcinoma. Oncol Lett 15(4):5995–6002

    PubMed  PubMed Central  Google Scholar 

  26. Jiang Z, Hou Z, Liu W et al (2022) Circular RNA protein tyrosine kinase 2 (circPTK2) promotes colorectal cancer proliferation, migration, invasion and chemoresistance. Bioeng 13(1):810–823

    CAS  Google Scholar 

  27. Shiu TY, Lin HH, Shih YL et al (2021) CRNDE-h transcript/miR-136-5p axis regulates interleukin enhancer binding factor 2 expression to promote hepatocellular carcinoma cell proliferation. Life Sci 284:119708

    Article  CAS  Google Scholar 

  28. Dong H, Jian P, Yu M et al (2020) Silencing of long noncoding RNA LEF1-AS1 prevents the progression of hepatocellular carcinoma via the crosstalk with microRNA-136–5p/WNK1. J Cell Physiol 235(10):6548–6562

    Article  CAS  Google Scholar 

  29. Zhu Y, Li B, Xu G et al (2022) lncRNA MIR4435–2HG promotes the progression of liver cancer by upregulating B3GNT5 expression. Mol Med Rep 25(1):38

    Article  CAS  Google Scholar 

  30. Huang X, Wang Z, Hou S et al (2022) Long non-coding RNA DSCAM-AS1 promotes pancreatic cancer progression via regulating the miR-136–5p/PBX3 axis. Bioeng 13(2):4153–4165

    CAS  Google Scholar 

  31. Liang M, Yao W, Shi B et al (2021) Circular RNA hsa_circ_0110389 promotes gastric cancer progression through upregulating SORT1 via sponging miR-127–5p and miR-136–5p. Cell Death Dis 12(7):639

    Article  CAS  Google Scholar 

  32. Geng Y, Bao Y, Zhang W et al (2020) Circular RNA hsa_circ_0014130 inhibits apoptosis in non-small cell lung cancer by sponging miR-136–5p and upregulating BCL2. Mol Cancer Res 18(5):748–756

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank for the technical support by the Core Facilities, Ningbo University School of Medicine.

Funding

It was supported by The National Natural Science Foundation of China (81772279), Ningbo Municipal Bureau of Science and Technology (No. 2021Z133, No. 2022Z130 and No. 2017C110019), Ningbo Nature Fund Project (No.2021J253), Zhejiang Province Public Welfare Technology Application Research Project of China (No. LGF22H160039), and the K. C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Contributions

ZL, YX, and BX collected clinical information; ZL, YX, and JG wrote the manuscript; JG designed the study. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Junming Guo.

Ethics declarations

Conflict of interest

No author has any conflict of interest.

Ethics approval

The authors adhered to institutional ethical standards. The Human Research Ethics Committee at Ningbo University (approval number 20100303) approved this study.

Consent for publication

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6216 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Xie, Y., Xiao, B. et al. The tumor suppressor function of hsa_circ_0006282 in gastric cancer through PTEN/AKT pathway. Int J Clin Oncol 27, 1562–1569 (2022). https://doi.org/10.1007/s10147-022-02210-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-022-02210-z

Keywords

Navigation