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Abstract
Investigator-led clinical trials are pragmatic trials that aim to investigate the benefits and harms of treatments in routine clini-
cal practice. These much-needed trials represent the majority of all trials currently conducted. They are however threatened 
by the rising costs of clinical research, which are in part due to extensive trial monitoring processes that focus on unimportant 
details. Risk-based quality management focuses, instead, on “things that really matter”. We discuss the role of central statisti-
cal monitoring as part of risk-based quality management. We describe the principles of central statistical monitoring, provide 
examples of its use, and argue that it could help drive down the cost of randomized clinical trials, especially investigator-led 
trials, whilst improving their quality.
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Introduction

Medical practice largely relies on the evidence generated 
by clinical trials, particularly randomized controlled trials 
(RCTs). These are considered the gold-standard approach 
for evaluating therapeutic interventions due to their capac-
ity to allow for inferences about causal links between treat-
ment and outcomes [1]. A general property of experimen-
tal research is that internal validity (i.e., the reliability of 
results) and external validity (i.e., their generalizability) tend 
to move in opposite directions in response to attempts to 
control trial features such as the population, the intervention, 

and the assessment of outcomes. This gives rise to different 
attitudes towards clinical trials in general, and RCTs in par-
ticular: one that prioritizes internal validity (the explanatory 
attitude), and one that places more emphasis on the gener-
alizability of results (the pragmatic attitude) [2]. Industry-
sponsored trials, here defined as trials that aim to investi-
gate experimental drugs with largely unknown effects, are 
typically characterized by an explanatory approach, which 
is suitable for the development of these novel agents or 
combinations. In contrast, investigator-led clinical trials, 
here defined as trials that aim to investigate the benefits and 
harms of treatments in routine clinical practice, are typically 
characterized by a pragmatic attitude. Table 1 characterizes 
some of the contrasts between an explanatory and a prag-
matic approach to clinical trials. These contrasts have direct 
implications on the conduct of investigator-led trials, notably 
with regards to ways of ensuring their quality, which is the 
focus of this paper. Investigator-led clinical trials belong to a 
research area known as comparative-effectiveness research. 
We note that “real-world evidence” is a broader concept, 
given that it is often applied to observational research, some-
thing that falls outside the scope of our paper [1, 3].

Why are investigator‑led clinical trials needed?

Industry-sponsored clinical trials are essential for the devel-
opment of new treatments. These clinical trials need to fulfil 
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commercial interests and market expectations, which may 
not always address all patients’ needs [4]. Moreover, clini-
cal trials that lead to the approval of novel drugs or devices 
often have shortcomings that have been recognized for dec-
ades. Such shortcomings include the strictness of the eli-
gibility criteria, the choice of comparators, the effect size 
of interest, the choice of outcomes, and insufficient data 
on long-term toxicity [5]. Arguably, some of these short-
comings are a by-product of the general principles under-
lying marketing approval by regulatory agencies, such as 
the Japanese Pharmaceutical and Medical Devices Agency 
(PMDA), the European Medicines Agency (EMA), and the 
US Food and Drug Administration (FDA). These agencies 
must determine whether a new drug is sufficiently safe and 
effective to be made available for clinical use, which requires 
a careful assessment of the quality of the pivotal trial design, 
conduct, data and analysis whilst allowing safe and effective 
new drugs to enter the market quickly [6]. However, the need 
remains to generate additional, post-approval evidence on 
novel drugs or devices [6, 7]. Such evidence is required for 
clinical practice, as it provides a far better understanding of 
the effectiveness and safety of competing interventions in 
“real life”. Moreover, it allows the assessment of patients 
and settings not necessarily covered by the initial approval, 
thus leading to potential extensions of indications and refine-
ment of the drug usage in patient subgroups. Even for newly 
approved drugs, many questions of clinical interest typically 
remain unanswered at the time of approval, including the 
duration of therapy, dose or schedule modifications that may 
lead to a better benefit/risk ratio, combinations of the new 
drug with existing regimens, and so on. Likewise, repur-
posing of existing drugs, whose safety and efficacy profile 
is well documented in other indications, is more likely to 
be attractive in the setting of investigator-led trials than to 
pharmaceutical companies for whom a given product ceases 
to be financially attractive towards the end of its life-cycle 
[8]. Finally, large, simple trials that address questions of 
major public health importance have been advocated for dec-
ades as one of the pillars of evidence-based medicine [9]. 
All in all, more and larger investigator-led trials are needed, 

and it is crucially important to identify ways of conducting 
them as cost-effectively as possible [10, 11]. In particular, 
excessive regulation of investigator-led trials, using industry-
sponsored trials as a model, is both unnecessary and coun-
terproductive [11]. Taruno et al. (2019) have shown that, in 
Japan, the enactment of the Clinical Trial Act in March 2018 
has resulted in a halving of the number of interventional 
cancer trials registered in the UMIN and jRCT clinical trial 
registries (Fig. X (Table 3) in [12]).

Importance of investigator‑led clinical trials 
in oncology

Publicly available clinical-trial registries are useful to assess 
the importance of investigator-led clinical trials in world-
wide clinical research. The longest established and largest 
registry is ClinicalTrials.gov, with 333,529 trial protocols 
as of March 19, 2020. ClinicalTrials.gov contains trial pro-
tocols from both the US and other countries, and distin-
guishes between four major types of funders: (1) Industry 
(e.g., pharmaceutical and device companies), (2) the US 
National Institutes of Health, (3) other Federal agencies 
(e.g., FDA, Centers for Disease Control and Prevention, or 
Department of Veterans Affairs), and (4) all others (includ-
ing individuals, universities, and community-based organi-
zations). For the purposes of this paper, we focus on clinical 
trials conducted by sponsors other than the pharmaceutical 
and device industry, i.e., funder types (2)–(4), as opposed 
to funder types (1). We call these trials “investigator-led” 
clinical trials for simplicity.

Figures 1 and 2 show the number of registered interven-
tional clinical trials in oncology, by funder type and year 
the trial started, in the US (Fig. 1) and all other countries 
(Fig. 2). In the US, about 2000 such trials were reported 
to have started in 2019, about 1000 being industry tri-
als and about 1000 investigator-led trials (roughly half of 
which sponsored by NIH and other federal agencies, and 
half by other sponsors). In other countries, about 2600 
such trials were reported in 2019, about 800 being indus-
try trials versus about 1800 investigator-led trials (with 

Table 1  Explanatory versus 
pragmatic approach to clinical 
trials

Approach Explanatory Pragmatic

Type of trial Industry-sponsored Investigator-led
Primary purpose of trial Regulatory approval Public health impact
Patient selection Fittest patients All patients
Effect of interest “Ideal” treatment effect Actual treatment effect
Endpoint ascertainment Centrally reviewed Per local investigator
Preferred control group Untreated (when feasible) Current standard of care
Experimental conditions Strictly controlled Clinical routine
Volume of data collected Large, for supportive analyses Key data only
Data quality control Extensive and on-site Limited and central only
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this latter number having increased fastest over time). 
There may be substantial under-reporting of clinical tri-
als to ClinicalTrials.gov, especially for non-US trials and 
for investigator-led trials, so it is conservative to assume 
that investigator-led trials outnumber industry-sponsored 
trials worldwide. As such, investigator-led trials have the 
potential to generate much of the evidence upon which 

the treatment of cancer patients is decided. Yet, as stated 
above, investigator-led trials may be under threat because 
of excessive regulation and bureaucracy, and the accom-
panying direct and indirect costs.

Fig. 1  Number of cancer inter-
ventional trials by sponsor type 
and year trial started (USA)

Fig. 2  Number of cancer inter-
ventional trials by sponsor type 
and year trial started (all other 
countries)
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Clinical trial costs

The rising costs of clinical trials have been a matter of major 
concern for some time [13]. The contribution of clinical tri-
als to the overall costs of drug development is not known 
with precision, but recent estimates suggest that pivotal 
clinical trials leading to FDA approval have a median cost of 
US$ 19 million; such costs are even higher in oncology and 
cardiovascular medicine, as well as in trials with a long-term 
clinical outcome, such as survival [14]. Interestingly, the 
cost of clinical trials was found to have huge variability, with 
more than 100-fold differences at the extremes of the cost 
distribution among the 138 trials surveyed [14]. The extent 
to which the skyrocketing costs of clinical research depend 
on individual components of clinical-trial conduct can vary 
substantially across trials, and likely when industry-spon-
sored studies are compared with investigator-led trials. In 
industry-sponsored trials, a great deal of resources are spent 
in making sure that the data collected in clinical trials are 
free from error. This is usually done through on-site moni-
toring (site visits) including source-data verification and 
other types of quality assurance procedures, alongside with 
centralized monitoring including data management and the 
statistical monitoring that is the focus of the present paper. 
While some on-site activities make intuitive sense, their cost 
has become exorbitant in the large multicenter trials that are 
typically required for the approval of new therapies [15]. 
It has been estimated that for large, global clinical trials, 
leaving aside site payments, the cost of on-site monitoring 
represents about 60% of the total trial [16].

The effectiveness of central versus on‑site 
monitoring

The high costs of monitoring could be justified if monitoring 
activities were likely to have an impact on patient safety or 
on the trial results [17]. Yet, there is no evidence showing 
that extensive data monitoring has any major impact on the 
quality of clinical-trial data, and none of the randomized 
studies assessing more intensive versus less intensive moni-
toring has shown any difference in terms of clinically rel-
evant treatment outcomes [18–22]. Besides, there may also 
be a lack of effectiveness of sending large numbers of data 
queries to the centers as part of the data management pro-
cess. In one limited study, only six queries were found (0.4% 
of 1395 queries) that might have influenced the results of 
three phase 1 cancer clinical trials, had the discrepancy not 
been revealed [23]. But without question, the most time-con-
suming and least efficient activity is source-data verification, 
which can take up to 50% of the time spent for on-site visits, 
hence it is especially important to make sure that such time 
is well spent. A large retrospective study of 1168 industry-
sponsored clinical trials has shown that only 1.1% of all data 

were changed as a result of source-data verification [24]. 
Moreover, it has been shown via simulations that random 
errors, which comprise most of the errors detected during 
source-data verification, have a negligible impact on the trial 
results [25]. In contrast, systematic errors (those that create 
a bias in the comparison between the treatment groups of a 
randomized trial) can have a huge impact on the trial results, 
but these types of errors can either be prevented or detected 
and corrected centrally [25, 26]. All in all, the monitoring of 
clinical trials needs to be re-engineered, not just for inves-
tigator-led trials, but also for industry-sponsored trials. To 
instigate and support this much-needed transition, regulatory 
agencies worldwide have advocated the use of risk-based 
quality management, including risk-based monitoring and 
central statistical monitoring (CSM) [27, 28].

Risk‑based quality management

The central principle of risk-based quality management is 
to “focus on things that matter”. What matters for a rand-
omized clinical trial is to provide a reliable estimate of the 
difference in efficacy and tolerance between the treatments 
being compared. It is important to stress that the criteria to 
assess efficacy and tolerance may differ between industry-
sponsored trials and investigator-led trials. For instance, in 
terms of efficacy, industry-sponsored trials often use the 
centrally reviewed progression-free survival (PFS), which 
may provide the most sensitive indicator of the antitumor 
effect of a treatment, while investigator-led trials use the 
locally assessed PFS, which may provide the most relevant 
indicator of disease progression for clinical decision-making 
(for instance to change therapy). Neither of these two assess-
ments of PFS is better than the other; they serve different 
purposes and have their own advantages and limitations. 
Centrally reviewed PFS is arguably a “cleaner” endpoint, but 
it is quite expensive to measure and does not reflect clinical 
routine; as such it is neither feasible nor desirable in investi-
gator-led trials. In terms of safety, investigator-led trials can 
collect much simpler data than industry-sponsored trials of 
drugs for which safety has not yet been demonstrated. Typi-
cally, in investigator-led trials, the occurrence of Common 
Terminology Criteria for Adverse Events grade 3 or 4 tox-
icities will suffice, plus any unexpected toxicity not known 
to be associated with the drug being investigated. Finally, 
medical history and concomitant medications, which may 
be important to document drug interactions with an experi-
mental treatment, serve no useful purpose in investigator-led 
trials. All in all, investigator-led trials should collect radi-
cally simpler data than industry-sponsored trials.

Similarly, data quality needs to be evaluated in a “fit for 
purpose” manner: while it may be required to attempt to 
reach 100% accuracy in all the data collected for a pivotal 
trial of an experimental treatment, such a high bar is by no 
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means required for investigator-led trials, as long as no sys-
tematic bias is at play to create data differences between 
the randomized treatment groups (for instance, a higher 
proportion of missing data in one group than in the other) 
[25]. Both types of trials may benefit from central statistical 
monitoring of the data; industry-sponsored trials to target 
centers that are detected as having potential data quality 
issues, which may require an on-site audit, and investigator-
led trials as the primary method for checking data quality.

Principles of central statistical monitoring

Central statistical monitoring (CSM) is part of risk-based 
quality management [29]. As shown in Fig. 3, the process 
starts with a Risk Assessment and Categorization Tool 
(RACT) [30]. CSM helps quality management by providing 
statistical indicators of quality based on data collected in the 
trial from all sources.

A “Data Quality Assessment” of multicenter trials can 
be based on the simple statistical idea that data should be 
broadly comparable across all centers [31]. Note that this 
idea is premised on the fact that data consistency is an 
acceptable surrogate for data quality. Note also that other 
tools of central monitoring can be used in addition, to 
uncover situations in which data issues occur in most (or 
sometimes all) centers; these other tools, which include 
“Key Risk Indicators” and “Quality Tolerance Limits”, are 
beyond the scope of this article. Taken together, all these 
tools produce statistical signals that may reveal issues in 
specific centers. Actions must then be taken to address these 
issues, such as contacting the center for clarification, or in 
some cases performing an on-site audit to understand the 
cause of the data issue (Fig. 3).

Although it is a simple idea to perform a central data 
quality assessment based on the consistency of data across 
all centers, the statistical models required to implement the 
idea are necessarily complex to properly account for the 
natural variability in the data [32, 33]. Essentially, a central 
data quality assessment is efficient if:

1. data have undergone basic data management checks, 
whether automated or manual, to eliminate obvious 
errors (such as out-of-range or impossible values) 
that can be detected and corrected without a statistical 
approach;

2. data quality issues are limited to a few centers, while the 
other centers have data of good quality;

3. all data are used, rather than a few key data items such as 
those for the primary endpoint or major safety variables;

4. many statistical tests are performed, rather than just a 
few obvious ones such as a shift in mean or a difference 
in variability.

It is worth emphasizing the last two points, namely that 
it is statistically preferable to run many tests on all data col-
lected than on a few data items carefully selected for their 
relevance or importance. Hence, what matters for a reliable 
statistical assessment of data quality is volume rather than 
clinical relevance. The reason is that the power of statistical 
detection comes from an accumulation of evidence, which 
would not be available if only important items and stand-
ard tests were considered [34]. In addition, investigators 
pay more attention to key data (such as the primary efficacy 
endpoint or important safety variables), which, therefore, do 
not constitute reliable indicators of overall data quality. This 
being said, careful checks of key data are also essential, but 
such checks, for the most part, are not statistical in nature.

Central statistical monitoring in practice

Figure 4 shows a made-up example of systolic blood pres-
sure, measured during six successive visits, in nine centers 
(numbered C1–C9) of a fictitious multicentre trial. Each 
colored line represents one patient. It is easy, even visually, 
to spot centers that deviate from the norm: a lack of vari-
ability is apparent in center C3, an upward shift in mean in 
center C5, and data propagation in center C7. While these 
inconsistencies are too extreme to be commonly seen in 
practice, others may escape visual scrutiny and yet be reveal-
ing of issues worth investigating further. For instance, the 

Fig. 3  The Risk-Based Quality 
Management process
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data of center C6 may well be inconsistent with the data of 
other centers, as it seems to have smaller variability, but it 
is impossible to tell from Fig. 4 if this inconsistency falls 
beyond the play of chance.

Figure 4 depicts only one variable, but the power of the 
statistical approach is to perform many tests on all variables. 
This can lead to a large number of tests: in a trial of 100 
centers, if data are available on 400 variables, and if five 
tests on average are performed on each variable, the system 
generates 100 × 500 × 5 = 200,000 tests. There is obviously 
a need to summarize the statistical information produced by 
all these tests in an overall inconsistency index. Essentially, 
if Pij represents the P value of the jth statistical test in center 
i, the data inconsistency score for center i is equal to 

DISi = exp

�

1
∑N

j=1
wj

∑N

j=1
wjlogPij

�

 , where wj is a weight that 

accounts for the correlation between the tests. Put simply, 
the DIS is a weighted geometric mean of the P values of all 
tests performed to compare center i with all other centers. In 
fact, the calculation of the DIS is more complex than this 
formula suggests, but the technical details are unimportant 
here [35]. Venet et al. discusses other ways of combining 
many statistical tests to identify data issues in multicenter 
trials [31]. It is visually useful to display the DIS as a func-
tion of center size, as shown in Fig. 5 [36]. When the trial 
includes many centers, it may be useful to limit the number 
of centers found to have statistical inconsistencies by setting 
the false discovery rate to a low probability, such as 5% [37].

Timmermans et al. provide a detailed example of CSM 
applied to a completed trial, the Stomach Cancer Adjuvant 
Multi-Institutional Trial (SAMIT) Group Trial, involv-
ing 1495 patients across 232 centers in Japan, which was 

subsequently published [36, 38]. This trial, like many trials 
in oncology, included many centers with only a couple of 
patients [36]. Table 2 shows the main findings of CSM in 
this trial, which led to further checks and data corrections 
prior to final analysis [38]. This example shows the power 
of CSM to identify data issues even in small centers, pro-
viding a large enough number of patient-related variables 
are included in the analysis [34]. Table 2 also shows the 
actions taken, when required, to correct the few data issues 
that remained in this final dataset. It is noteworthy that some 
of the statistical findings led to no action if an explanation 
was found for them (e.g., visits on unusual days of the week), 
or if, upon further investigation, the findings seemed likely 
to be due to the play of chance.

CSM findings

Experience from actual trials [29, 31, 32, 36, 39] as well as 
extensive simulation studies [35] have shown that a statisti-
cal data quality assessment based on the principles outlined 
above is quite effective at detecting data errors. Experience 
from actual trials suggests that data errors can be broadly 
classified as:

1. fraud, such as fabricating patient records or even fabri-
cating entire patients [34, 39, 40]

2. data tampering, such as filling in missing data, or propa-
gating data from one visit to the next [31]

3. sloppiness, such as not reporting some adverse events, 
making transcription errors, etc. [33]

4. miscalibration or other problems with automated equip-
ment [32]

Fig. 4  A made-up example 
of systolic blood pressure, 
measured during six successive 
visits, in 9 centers (numbered 
C1–C9) of a multicentre trial. 
Each colored line represents the 
systolic blood pressure of one 
patient over time
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Whilst some of these data errors are worse than others, 
in so far as they may have a more profound impact on the 
results of the trial, all of them can potentially be detected 
using CSM, at a far lower cost and with much higher effi-
ciency than through labor-intensive methods such as source 
data verification and other on-site data reviews. Investigator-
led trials generate more than half of all randomized evidence 
on new treatments, and it seems essential that this evidence 
be submitted to statistical quality checks before going to 
print and influencing clinical practice.
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