Skip to main content

Advertisement

Log in

LINC00163 inhibits the invasion and metastasis of gastric cancer cells as a ceRNA by sponging miR-183 to regulate the expression of AKAP12

  • Original Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

Gastric cancer (GC) is the most common and aggressive cancer of the digestive system and poses a serious threat to human health. Since genes do not work alone, our aim was to elucidate the potential network of mRNAs and noncoding RNAs (ncRNAs) in this study.

Methods

Transcriptome data of GC were obtained from TCGA. R and Perl were used to obtain the differentially expressed RNAs and construct a competing endogenous RNA (ceRNA) regulatory network. To investigate the biological functions of differentially expressed RNAs, loss-of-function and gain-of-function experiments were performed. Real-time PCR (RT-qPCR), western blot analysis, dual-luciferase reporter assays and fluorescence in situ hybridization were conducted to explore the underlying mechanisms of competitive endogenous RNAs (ceRNAs).

Results

Based on TCGA data and bioinformatics analysis, we identified the LINC00163/miR-183/A-Kinase Anchoring Protein 12 (AKAP12) axis. We observed that AKAP12 was weakly expressed in GC and suppressed invasion and metastasis in GC cells, which could be abolished by miR-183. In addition, LINC00163 can be used as a ceRNA to inhibit the expression of miR-183, thus enhancing the anticancer effect of AKAP12.

Conclusion

Our results demonstrated that weak LINC00163 expression in GC can sponge miR-183 to promote AKAP12. We established that the LINC00163/miR-183/AKAP12 axis plays an important role in GC invasion and metastasis and may be a potential biomarker and target for GC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siegel RL, Miller KD (2018) Jemal A (2018) Cancer statistics. CA Cancer J Clin 68(1):7–30. https://doi.org/10.3322/caac.21442

    Article  PubMed  Google Scholar 

  2. Al-Batran SE, Homann N, Pauligk C et al (2019) Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): a randomised, phase 2/3 trial. Lancet (London, England) 393(10184):1948–1957. https://doi.org/10.1016/s0140-6736(18)32557-1

    Article  Google Scholar 

  3. Schmitt AM, Chang HY (2016) Long noncoding RNAs in cancer pathways. Cancer Cell 29(4):452–463. https://doi.org/10.1016/j.ccell.2016.03.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Song YX, Sun JX, Zhao JH et al (2017) Non-coding RNAs participate in the regulatory network of CLDN4 via ceRNA mediated miRNA evasion. Nat Commun 8(1):289. https://doi.org/10.1038/s41467-017-00304-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Bartonicek N, Maag JL, Dinger ME (2016) Long noncoding RNAs in cancer: mechanisms of action and technological advancements. Mol Cancer 15(1):43. https://doi.org/10.1186/s12943-016-0530-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Morris KV, Mattick JS (2014) The rise of regulatory RNA. Nat Rev Genet 15(6):423–437. https://doi.org/10.1038/nrg3722

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Mattick JS, Rinn JL (2015) Discovery and annotation of long noncoding RNAs. Nat Struct Mol Biol 22(1):5–7. https://doi.org/10.1038/nsmb.2942

    Article  PubMed  CAS  Google Scholar 

  8. Salmena L, Poliseno L, Tay Y et al (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146(3):353–358. https://doi.org/10.1016/j.cell.2011.07.014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Liu N, Liu Z, Liu X, Chen H (2019) Comprehensive analysis of a competing endogenous RNA network identifies seven-lncRNA signature as a prognostic biomarker for melanoma. Front Oncol 9:935. https://doi.org/10.3389/fonc.2019.00935

    Article  PubMed  PubMed Central  Google Scholar 

  10. Li CY, Zhang WW, Xiang JL et al (2019) Integrated analysis highlights multiple long noncoding RNAs and their potential roles in the progression of human esophageal squamous cell carcinoma. Oncol Rep. https://doi.org/10.3892/or.2019.7377

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wang XW, Guo QQ, Wei Y et al (2019) Construction of a competing endogenous RNA network using differentially expressed lncRNAs, miRNAs and mRNAs in nonsmall cell lung cancer. Oncol Rep. https://doi.org/10.3892/or.2019.7378

    Article  PubMed  PubMed Central  Google Scholar 

  12. Li C, Deng L, Zhi Q et al (2016) MicroRNA-183 functions as an oncogene by regulating PDCD4 in gastric cancer. Anticancer Agents Med Chem 16(4):447–455

    Article  CAS  PubMed  Google Scholar 

  13. Xu L, Li Y, Yan D et al (2014) MicroRNA-183 inhibits gastric cancer proliferation and invasion via directly targeting Bmi-1. Oncol Lett 8(5):2345–2351. https://doi.org/10.3892/ol.2014.2504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Soh RYZ, Lim JP, Samy RP et al (2018) A-kinase anchor protein 12 (AKAP12) inhibits cell migration in breast cancer. Exp Mol Pathol 105(3):364–370. https://doi.org/10.1016/j.yexmp.2018.10.010

    Article  PubMed  CAS  Google Scholar 

  15. Jiang S, Cheng SJ, Ren LC et al (2019) An expanded landscape of human long noncoding RNA. Nucleic Acids Res 47(15):7842–7856. https://doi.org/10.1093/nar/gkz621

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hu Q, Ye Y, Chan LC et al (2019) Oncogenic lncRNA downregulates cancer cell antigen presentation and intrinsic tumor suppression. Nat Immunol 20(7):835–851. https://doi.org/10.1038/s41590-019-0400-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Zhang E, He X, Zhang C et al (2018) A novel long noncoding RNA HOXC-AS3 mediates tumorigenesis of gastric cancer by binding to YBX1. Genome Biol 19(1):154. https://doi.org/10.1186/s13059-018-1523-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Zhuo W, Liu Y, Li S et al (2019) Long noncoding RNA GMAN, up-regulated in gastric cancer tissues, is associated with metastasis in patients and promotes translation of ephrin A1 by competitively binding GMAN-AS. Gastroenterology 156(3):676–691.e611. https://doi.org/10.1053/j.gastro.2018.10.054

    Article  PubMed  CAS  Google Scholar 

  19. Sun TT, He J, Liang Q et al (2016) LncRNA GClnc1 promotes gastric carcinogenesis and may act as a modular scaffold of WDR5 and KAT2A complexes to specify the histone modification pattern. Cancer Discov 6(7):784–801. https://doi.org/10.1158/2159-8290.cd-15-0921

    Article  PubMed  CAS  Google Scholar 

  20. Gordon T, Grove B, Loftus JC et al (1992) Molecular cloning and preliminary characterization of a novel cytoplasmic antigen recognized by myasthenia gravis sera. J Clin Investig 90(3):992–999. https://doi.org/10.1172/jci115976

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Xia W, Unger P, Miller L et al (2001) The Src-suppressed C kinase substrate, SSeCKS, is a potential metastasis inhibitor in prostate cancer. Cancer Res 61(14):5644–5651

    PubMed  CAS  Google Scholar 

  22. Choi MC, Jong HS, Kim TY et al (2004) AKAP12/Gravin is inactivated by epigenetic mechanism in human gastric carcinoma and shows growth suppressor activity. Oncogene 23(42):7095–7103. https://doi.org/10.1038/sj.onc.1207932

    Article  PubMed  CAS  Google Scholar 

  23. Liu W, Guan M, Su B et al (2010) Quantitative assessment of AKAP12 promoter methylation in colorectal cancer using methylation-sensitive high resolution melting: correlation with Duke's stage. Cancer Biol Ther 9(11):862–871. https://doi.org/10.4161/cbt.9.11.11633

    Article  PubMed  CAS  Google Scholar 

  24. Gelman IH (2010) Emerging roles for SSeCKS/Gravin/AKAP12 in the control of cell proliferation, cancer malignancy, and barrier genesis. Genes Cancer 1(11):1147–1156. https://doi.org/10.1177/1947601910392984

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Lin X, Nelson PJ, Frankfort B et al (1995) Isolation and characterization of a novel mitogenic regulatory gene, 322, which is transcriptionally suppressed in cells transformed by src and ras. Mol Cell Biol 15(5):2754–2762. https://doi.org/10.1128/mcb.15.5.2754

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Su B, Bu Y, Engelberg D et al (2010) SSeCKS/Gravin/AKAP12 inhibits cancer cell invasiveness and chemotaxis by suppressing a protein kinase C-Raf/MEK/ERK pathway. J Biol Chem 285(7):4578–4586. https://doi.org/10.1074/jbc.M109.073494

    Article  PubMed  CAS  Google Scholar 

  27. Zhou T, Zhang GJ, Zhou H et al (2014) Overexpression of microRNA-183 in human colorectal cancer and its clinical significance. Eur J Gastroenterol Hepatol 26(2):229–233. https://doi.org/10.1097/meg.0000000000000002

    Article  PubMed  CAS  Google Scholar 

  28. Qiu M, Liu L, Chen L et al (2014) microRNA-183 plays as oncogenes by increasing cell proliferation, migration and invasion via targeting protein phosphatase 2A in renal cancer cells. Biochem Biophys Res Commun 452(1):163–169. https://doi.org/10.1016/j.bbrc.2014.08.067

    Article  PubMed  CAS  Google Scholar 

  29. Jin Z, Hamilton JP, Yang J et al (2008) Hypermethylation of the AKAP12 promoter is a biomarker of Barrett's-associated esophageal neoplastic progression. Cancer Epidemiol Prev Biomark 17(1):111

    Article  CAS  Google Scholar 

  30. Wang Z, Kambhampati S, Cheng Y et al (2019) Methylation biomarker panel performance in EsophaCap cytology samples for diagnosing Barrett's esophagus: a prospective validation study. Clin Cancer Res 25(7):2127–2135. https://doi.org/10.1158/1078-0432.ccr-18-3696

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tang X, Zheng D, Hu P et al (2014) Glycogen synthase kinase 3 beta inhibits microRNA-183-96-182 cluster via the beta-Catenin/TCF/LEF-1 pathway in gastric cancer cells. Nucleic Acids Res 42(5):2988–2998. https://doi.org/10.1093/nar/gkt1275

    Article  PubMed  CAS  Google Scholar 

  32. Yu BQ, Su LP, Li JF et al (2012) microRNA expression signature of gastric cancer cells relative to normal gastric mucosa. Mol Med Rep 6(4):821–826. https://doi.org/10.3892/mmr.2012.1006

    Article  PubMed  CAS  Google Scholar 

  33. Guo X, Wei Y, Wang Z et al (2018) LncRNA LINC00163 upregulation suppresses lung cancer development though transcriptionally increasing TCF21 expression. Am J Cancer Res 8(12):2494–2506

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Liu XH, Sun M, Nie FQ et al (2014) Lnc RNA HOTAIR functions as a competing endogenous RNA to regulate HER2 expression by sponging miR-331-3p in gastric cancer. Mol Cancer 13:92. https://doi.org/10.1186/1476-4598-13-92

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Yuan JH, Yang F, Wang F et al (2014) A long noncoding RNA activated by TGF-beta promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell 25(5):666–681. https://doi.org/10.1016/j.ccr.2014.03.010

    Article  PubMed  CAS  Google Scholar 

  36. Qu L, Ding J, Chen C et al (2016) Exosome-transmitted lncARSR promotes sunitinib resistance in renal cancer by acting as a competing endogenous RNA. Cancer Cell 29(5):653–668. https://doi.org/10.1016/j.ccell.2016.03.004

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

Liaoning S&T Project (20180550999), Shenyang young and middle-aged scientific & technological innovation talents support plan (RC180199).

Author information

Authors and Affiliations

Authors

Contributions

JZ performed the majority of experiments and analyzed the data and drafted the manuscript; ZZ, YZ designed the research; SG conducted the molecular biology assays and assisted in writing the manuscript; YW collected and analyzed the data; TZ provided critical revision of the manuscript for important intellectual content.

Corresponding author

Correspondence to Yan Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

The study was reviewed and approved by the Faculty of Science Ethics Committee at Liaoning Cancer Hospital and Institute (Cancer Hospital of China Medical University) (20181226).

Informed consent

All patients signed informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 kb)

10147_2019_1604_MOESM2_ESM.pdf

Supplementary file2: Sup Figure 1 Differentially expressed RNAs in GC. A-C. Heatmaps of the expression levels of the top 50 differentially expressed lncRNAs (DELs), miRNAs (DEMis) and mRNAs (DEMs) screened by limma. D-F. Volcano plots of the expression levels of differentially expressed lncRNAs (DELs), miRNAs (DEMis) and mRNAs (DEMs) screened by limma. G-I. Principal component analysis (PCA) evaluates the screening of DELs, DEMis and DEMs by limma. J. The upregulated DELs identified by limma and edgeR. K. The downregulated DEMis identified by limma and edgeR. L. The upregulated DEMs identified by limma and edgeR (PDF 1780 kb)

10147_2019_1604_MOESM3_ESM.pdf

Supplementary file3: Sup Figure 2 A. The vector of AKAP12 upregulated the expression of AKAP12. B. The vector of LINC00163 upregulated the expression of LINC00163 (PDF 374 kb)

10147_2019_1604_MOESM4_ESM.pdf

Supplementary file4: Sup Figure 3 Effect of LINC00163, miR-183 and AKAP12 on cell proliferation. A, B. MiR-183 could promote the proliferation of GC, but AKAP12 had no effect on it. (A. SGC-7901, B. BGC-823). C, D. The inhibition of GC proliferation by LINC00163 could be reversed by overexpressed miR-183. (C. SGC-7901, D. BGC-823) (PDF 520 kb)

10147_2019_1604_MOESM5_ESM.pdf

Supplementary file5: Sup Figure 4 Effect of overexpression of miR-183 on AKAP12 expression and invasion and metastasis in GES-1. A, B. RT-PCR and western blot analyzed AKAP12 expression in GES-1 cells with the upregulated of miR-183. C, D. With the overexpression of miR-183, the migration ability of GES-1 increased (PDF 1986 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Piao, Hy., Guo, S. et al. LINC00163 inhibits the invasion and metastasis of gastric cancer cells as a ceRNA by sponging miR-183 to regulate the expression of AKAP12. Int J Clin Oncol 25, 570–583 (2020). https://doi.org/10.1007/s10147-019-01604-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-019-01604-w

Keywords

Navigation