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Abstract
Models of sexually-reproducing populations that consider only a single sex cannot capture the effects of sex-specific demo-
graphic differences and mate availability. We present a new framework for two-sex demographic models that implements 
and extends the birth-matrix mating-rule approach of Pollak. The model is a continuous-time matrix model that explicitly 
includes the processes of mating (which is nonlinear but homogeneous), offspring production, and demographic transitions 
and survival. The resulting nonlinear model converges to exponential growth with an equilibrium population composition. 
The model can incorporate age- or stage-structured life histories and flexible mating functions. As an example, we apply 
the model to analyze the effects of mating strategies (polygamy or monogamy, and mated unions composed of males and 
females, of variable duration) on the response to sex-biased harvesting. The combination of demographic complexity with 
the interaction of the sexes can have major population dynamic effects and can change the outcome of evolution on sex-
related characters.

Keywords Birth matrix-mating rule · BMMR · Demography · Matrix population models · Sex-biased harvest · Two-sex 
models

Introduction

Models of sexually-reproducing populations that consider 
a only single sex (typically females) implicitly assume that 
both sexes have identical vital rates and that the availability 
of the neglected sex (typically males) does not affect fertility 
(Pollard 1974; Caswell 2001; Iannelli et al. 2005). In reality, 
both these assumptions are frequently violated. Males and 
females often differ significantly in terms of fertilities and 

mortalities (Kuczynski 1932; Pollak 1990; Jenouvrier et al. 
2010), developmental schedules (Caswell 2001), behavioral 
interactions (Rankin and Kokko 2007), dispersal patterns 
(Miller et al. 2011), and selective harvest pressures (Ginsberg 
and Milner-Gulland 1994). Additionally, ecological, environ-
mental, and evolutionary changes may alter the most limiting 
sex over time (Hardy 2002; Miller and Inouye 2011). One-
sex models miss, and cannot explore, important components 
of population dynamics in all these cases. Here, we introduce 
a flexible framework that can explore many of these factors.

In response to growing concerns over discrepancies in 
male and female reproductive rates (Karmel 1947), early 
dynamical models with sex structure were introduced in the 
late 1940s. Pollard (1948) used coupled Lotka integral equa-
tions, considering female births to males and male births to 
females in order to reconcile the growth rates of both sexes. 
Kendall (1949) introduced a system of ordinary differential 
equations for males and females (and later, married cou-
ples), and was the first to incorporate nonlinear interactions 
between the sexes via a mating term. Subsequent models 
considered other nonlinear mating functions (Pollard 1974; 
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Yellin and Samuelson 1974) and couple dissolution through 
death and divorce (Hadeler et al. 1988).

Extensions to age-structured populations were made by 
Fredrickson (1971) and Hoppensteadt (1975), who allowed 
birth and death rates, as well as couple formation and divorce 
rates, to depend on age and sex. Hadeler later included the 
age (i.e., duration) of married pairs (Hadeler et al. 1988) 
and maturation delays (Hadeler 1993). Age-structured mat-
ing functions have similarly been proposed (Martcheva and 
Milner 2001). Many of these models use continuous-time 
equations that incorporate age structure through coupled 
McKendrick–von Foerster partial differential equations (Fre-
drickson 1971; Keyfitz 1972; Hoppensteadt 1975; Hadeler 
1989, 1993), though discrete-time two sex matrix models 
have also been developed (Caswell and Weeks 1986).

A powerful conceptual approach to two-sex models was 
proposed by Pollak (1986, 1987, 1990) and called the birth 
matrix-mating rule (BMMR) model. It proposes that mating, 
births, and life cycle transition processes repeat periodically, 
one after the other. It contains three main components:

1. A mating rule function that gives the number of matings 
uij between males of age i and females of age j.

2. A birth matrix whose entries bij are the expected number 
of male and female offspring produced by a mating of a 
male of age i and a female of age j.

3. Sex-specific mortality schedules, which project surviv-
ing individuals to the next age class, or, in our generali-
zation, include other stage-specific life cycle transitions.

BMMR is a useful approach for describing two-sex popu-
lations because it can specify age (and, more generally, 
stage) structure over all parts of the life cycle. This struc-
ture, in turn, can have significant effects on two-sex popula-
tion dynamics (e.g., Sundelöf and Åberg 2006, where the 
addition of size-specific birth functions affects growth rate 
and reproductive output) and recommended management 
strategies (e.g., Ginsberg and Milner-Gulland 1994, where 
incorporating age-specific fecundity changes the outcomes 
of sex-biased harvest).

Conceptually appealing as it is, the BMMR model has yet 
to be fully incorporated into the framework of stage-classified 
matrix population models. Our goal here is to do so, providing 
a general model that can be adapted to a wide range of life 
cycles and mating strategies. We do so by a novel extension 
of periodic matrix models to continuous time, based on transi-
tion rate matrices. In this paper, we focus on ecological impli-
cations of the model, but the approach can also be applied to 
study the evolution of sex-related traits using methods from 
adaptive dynamics (Shyu and Caswell 2016a, b).

Model development

For reasons that will become apparent, we have incorporated 
sex structure, stage structure, and life cycle processes into 
a continuous-time, rather than a discrete-time matrix popu-
lation model. The mating, birth, and transition processes 
from the BMMR framework are described by separate rate 
matrices. The mating process introduces nonlinearity into 
the model because reproduction depends on the relative pro-
portions of males and females, of appropriate stages, in the 
population. This dependence can be flexibly modeled by 
generalized weighted mean mating functions, which satisfy 
the biological criteria of sexual reproduction (Iannelli et al. 
2005). The resulting BMMR matrix models are nonlinear 
but homogeneous (i.e., frequency-dependent). Models of 
this form generally converge to an exponential growth rate 
and a stable stage frequency distribution (Martcheva 1999).

Incorporating sex and stage structure

The model classifies individuals into stages based on age, 
developmental state, sex, reproductive status, or other vari-
ables of interest. Stage densities are projected forward in 
time by a projection matrix that contains the demographic 
rates characterizing survival, reproduction, and transitions 
between stages. The properties of this projection matrix 
provide information about the population as a whole, 
thereby linking individual-level life cycle information (i.e., 
the stage-specific vital rates in the matrix entries) to popu-
lation-level properties important for ecology and evolution 
(e.g., growth rates or stage distributions).

A population with s stages is described by a s × 1 popula-
tion vector �(t) , the entries of which are the densities of each 
stage at time t. In a two-sex population, �(t) would contain 
male stages, female stages, and mated stages (unions) that 
could include married couples or breeding harems.

For example, the population vector for a two-sex popula-
tion with mating adults and nonmating juveniles could have 
the form:

The dynamics of the population vector are given by a system 
of ordinary differential equations

(1)�(t) =

⎛
⎜⎜⎜⎜⎜⎝

juvenile males

adult males

juvenile females

adult females

adult unions

⎞⎟⎟⎟⎟⎟⎠

(2)
d�

dt
= �[�] �(t)
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where the entries of � are either transition rates or rates of 
offspring production, and we have indicated that they may 
depend on the population vector.

Incorporating the BMMR processes

The BMMR framework incorporates mating, birth, and 
transition processes. We describe each of these processes 
by a separate matrix:

1. The mating (union formation) process, where adult 
males and females organize into reproductive unions, is 
described by the matrix �.

2. The birth process, where unions produce new offspring, 
is described by the matrix �.

3. The transition process, which includes other life cycle 
events like mortality, maturation, or divorce, is described 
by the matrix �.

Other life cycle processes can be included with additional 
matrices.

A discrete-time model would incorporate these processes 
as a periodic matrix product (Caswell and Shyu 2012). For 
example, the product ��� would describe mating, followed 
by the production of offspring from the matings, followed 
by survival and transitions of the resulting individuals. In 
continuous-time, we conceptualize the processes as occur-
ring simultaneously. It can be shown (Appendix 1) that the 
projection matrix � in the continuous-time matrix model 
(Eq. 2) is the average of the transition rate matrices, e.g.,:

Modeling the mating process

The mating process, as described by the union formation matrix 
� , depends on the relative numbers of males and females in the 
population, not all of which may be mature enough or available 
for breeding (Pollard 1974; Iannelli et al. 2005). As a result, � 
depends on the population’s sex and stage composition, making 
� a function of the population vector �(t).

The total mating function M(�) gives the rate of union forma-
tion (total number of unions formed per unit time in a population 
of composition � ). This embodies the mating rule in the BMMR 
framework. Here, “unions” refers to any mated, reproducing 
units in the population, including both one-to-one male-female 
pairs and harems with multiple individuals of the one sex.

We convert the total mating function into the per capita 
mating rates Um(�) and Uf (�) (the average mating rates per 
available males m or females f respectively),

(3)
d�

dt
=

1

3
(� + � + �)�(t)

= ��(t)

The total population mating rate is M = Umm = Uf f .
Many commonly used mating functions are generalized 

weighted means (Hölder means) of the form

where � and � are constants; 0 ≤ � ≤ 1 , 𝛼 < 0 (Hadeler 1989; 
Bessa-Gomes et al. 2010; Iannelli et al. 2005). Figure 1 
shows several generalized weighted mean mating functions 
and biologically desirable criteria that they satisfy (McFar-
land 1972; Pollard 1974; Yellin and Samuelson 1974).

If multiple male and female stages interbreed to form 
different types of unions, stage-specific mating preferences 
can also be integrated into this mating function (Shyu and 
Caswell 2016b; see  Appendix 4).

It is difficult to distinguish between mating functions 
in populations where the sex ratio does not vary signifi-
cantly (Keyfitz 1972). However, recent empirical studies 
(Miller and Inouye 2011) support the harmonic mean as a 
mating function. Because the harmonic mean satisfies rea-
sonable biological criteria for mating functions (Caswell 
and Weeks 1986; Iannelli et al. 2005), and captures the 
qualitative properties of other generalized means, we will 
use a harmonic mean mating function for our analyses.

Frequency‑dependent dynamics

The mating process often depends on the relative frequen-
cies, rather than absolute abundances, of males and females. 
As a result, although the mating function is nonlinear, it is 
homogeneous of degree 1 in � . That is:

(4)Um(�) =
M(�)

m

(5)Uf (�) =
M(�)

f
.

(6)M(�) =
[
�f � + (1 − �)m�

]1∕�

Fig. 1  Mating functions from the generalized weighted mean family 
(Eq.  6) with a check to indicate which of the biologically desirable 
mating function criteria they satisfy



24 Population Ecology (2018) 60:21–36

1 3

for any positive constant c.
As a result, the per capita mating functions (Eqs. 4 and 5) 

are homogeneous of degree 0 in � , so that:

If all entries in the projection matrix � in Eq. 3 are also 
homogeneous of degree 0, the system is said to be  fre-
quency-dependent. This means that � can be written as a 
function of the population frequency vector:

where ‖�‖ is the 1-norm of �.
Frequency-dependent models of this type usually con-

verge asymptotically to an equilibrium population structure 
�̂ (the stable stage distribution) in which all stage frequen-
cies are constant (e.g., see Yellin and Samuelson 1974; 
Hadeler 1989; Martcheva 1999). The population then grows 
or decays exponentially at a long-term growth rate given by 
the dominant eigenvalue � of �[�̂].

To find the equilibrium stage distribution �̂ and popula-
tion growth rate � , it is sufficient to consider the dynamics 
of �(t) . It can be shown (Appendix 2) that:

where �s is a s × s identity matrix and �� is a 1 × s vector of 
ones. One can integrate Eq. 10 with a numerical differential 
equation solver until population frequencies converge to �̂ . 
Then � is the dominant eigenvalue of �[�̂] . The dominant 
right eigenvector � of �[�̂] is proportional to the stable stage 
distribution �̂.

A 5‑stage BMMR matrix model

We now present an example of a BMMR matrix model with 
five stages: juvenile males m1 and juvenile females f1 , adult 
males m2 and adult females f2 , and reproducing unions u that 
consist of one adult male and one adult female. Single adult 
males and females interact to form unions, which then produce 
new juvenile offspring (Fig. 2). A summary of the variables, 
parameters, and matrices in this model is provided in Table 1.

As in Eq. 1, we write the population vector as

Using the harmonic mean mating function, the total and per 
capita mating functions are

(7)M(c�) = cM(�)

(8)
Um(c�) = Um(�)

Uf (c�) = Uf (�)

(9)� =
�

‖�‖

(10)
d�

dt
=
(
�s − ���

)
�[�] �

(11)�(t) =
(
m1 m2 f1 f2 u

)�

Again, we consider the life cycle in terms of mating, birth, 
and transition processes, which are described by matrices � , 
� , and � respectively.

1. The union formation matrix � contains the per capita 
mating functions from Eq. 12. 

 Note that Um and Uf  must halved in the last row of � to 
avoid double counting the unions formed from both male 
and female partners.

2. The birth matrix � contains k, the average reproductive 
rate of a union, and the primary sex ratio s1 , the propor-
tion of offspring that are male. 

(12)

M(�) =
2m2f2

m2 + f2

Um(�) =
2f2

m2 + f2

Uf (�) =
2m2

m2 + f2

(13)�(�) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 − Um(�) 0 0 0

0 0 0 0 0

0 0 0 − Uf (�) 0

0
1

2
Um(�) 0

1

2
Uf (�) 0

⎞⎟⎟⎟⎟⎟⎠

(14)=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 −
M(�)

m2

0 0 0

0 0 0 0 0

0 0 0 −
M(�)

f2
0

0
M(�)

2m2

0
M(�)

2f2
0

⎞⎟⎟⎟⎟⎟⎟⎠

Fig. 2  Life cycle diagram for a 5-stage population with juvenile 
males m1 and juvenile females f1 , adult males m2 and adult females 
f2 , and reproducing unions u. The functions and parameters shown 
here, as described in Table 1, appear in the union formation matrix � 
(Eq. 14) (red), birth matrix � (Eq. 15) (green), or transition matrix � 
(Eq. 16) (blue). From Shyu and Caswell (2016a)
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Fig. 3  Dynamics of the 5-stage BMMR model with monogamous 
unions and no harvest. The population consists of juvenile males m1 
and juvenile females f1 , adult males m2 and adult females f2 , and 
reproducing unions u. a) Growth of the population density vector � 

(11), where dynamics are given by (3). b) Convergence of the pop-
ulation frequency vector � (9), where dynamics are given by (17). 
Parameters are fixed at �m1 = �f1 = 0.5,�m2 = �f2 = 0.1, �m = �f =

0.5, s1 = 0.5, k = 20, d = 0.1, h = 1 , E = 0.

Table 1  A summary of the 
variables, parameters, matrices, 
and population properties in the 
5-stage BMMR matrix model

Matrices and vectors
� Projection matrix
� Birth matrix (15)
� Transition matrix (16)
� Union matrix (14)
� Population density vector (11)
� Population frequency vector (9)
�̂ or � Equilibrium stage structure
Population properties
� Long-term population growth rate, dominant eigenvalue of �[�̂]
s1 Primary sex ratio (proportion of offspring that are born male)
s2 Secondary sex ratio (proportion of adults that are male)
f1, f2 Juvenile, adult female density
m1,m2 Juvenile, adult male density
u Union (mated pair) density
Life cycle parameters
�m, �f Male, female maturation rates
d Divorce rate (rate at which a male-female pair bond breaks)
h Average harem size
k Union reproductive rate
�f1,�f2 Juvenile, adult female mortality rates
�m1,�m2 Juvenile, adult male mortality rates
M Total mating rate (total unions formed per time)
Um,Uf Per capita mating rates (4) and (5)
Harvest parameters
E Total harvest rate in (18)
sh Harvested sex ratio (proportion of harvest that targets males) in Eq. 18
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3. The transition matrix � contains the male mortality rates 
( �m1 for juveniles, �m2 for adults) and female mortal-
ity rates ( �f1 for juveniles, �f2 for adults), the rates of 
maturation from juveniles to adults ( �m for males, �f  for 
females), and the divorce rate d (rate at which the male-
female pair bond breaks). Note that unions may also 
dissolve due to partner death, and that union dissolution 
through both death and divorce returns surviving males 
and females to the single adult stages. 

The advantages of the continuous-time formulation are 
apparent at this point. The rates of maturation, mortality, 
and divorce in Eq. 16 combine in a simple additive fashion. 
Transition probabilities would not combine additively; they 
would involve sums of products of conditional probabilities, 
over all the possible events. The number of these products 
increases dramatically when more stages, and hence more 
mating combinations, are included. See Shyu and Caswell 
(2016b) and Appendix 4 for incorporation of multiple mat-
ing stages in the continuous-time model.

As per Eq. 3, the average of these three matrices is the 
continuous-time projection matrix �[�] . The corresponding 
equation for the proportional structure (Eq. 10) is thus:

where � is given by Eq. 14, � is given by Eq. 15, and � is 
given by Eq. 16.

As shown in Fig. 3, the population vector � ultimately 
grows exponentially, while the frequency vector � ultimately 
converges to the constant distribution of stages �̂ . To deter-
mine the equilibrium stage distribution �̂ , we integrated 
Eq. 17 with the Matlab ODE45 differential equation solver 
until population frequencies converged (e.g., until vector 
entries do not change significantly over consecutive inte-
gration intervals).

The Matlab code used for all the following examples is 
provided in the Electronic Supplementary Material.

(15)� =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 ks1
0 0 0 0 0

0 0 0 0 k(1 − s1)

0 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

(16)

� =

⎛
⎜⎜⎜⎜⎜⎜⎝

−(�m1 + �m) 0 0 0 0

�m − �m2 0 0 �f2 + d

0 0 − (�f1 + �f ) 0 0

0 0 �f − �f2 �m2 + d

0 0 0 0 − (�m2 + �f2 + d)

⎞
⎟⎟⎟⎟⎟⎟⎠

(17)
d�

dt
=
(
�s − ���

)1
3
(� + � + �[�])�

Mating systems and the effects of sex‑biased 
harvest

As an example of the use of the two-sex model, we consider 
the effectes of sex-biased harvesting. In sport or trophy hunt-
ing, harvest is often male-biased and significantly exceeds 
natural mortality (Festa-Bianchet 2003; Milner et al. 2007). 
Age or size bias is also common, as larger or older males 
with well-developed adult characteristics (e.g., large antlers 
or horns) are usually the most desirable targets. This unnat-
ural selection may alter population structure, reproductive 
strategies, body morphology, and developmental timing (e.g., 
Ashley et al. 2003; Festa-Bianchet 2003; Allendorf and Hard 
2009). The population response depends on multiple demo-
graphic factors, including the mating system.

The mating system determines how males and females 
organize for breeding and is thus a key component of two-
sex population structure (Emlen and Oring 1977). Some 
species form monogamous, one-to-one pair bonds between 
males and females. Other species have polygynous mating 
systems in which one male mates with multiple females 
(e.g., lions, deer, seals), or, more rarely, polyandrous systems 
where one female mates with multiple males (e.g., jacanas, 
pipefish). Unions formed by mating may be transient and 
limited to a single breeding episode (e.g., lek systems) or 
may persist over multiple breeding seasons (e.g., lion har-
ems) or even until partner death (e.g., albatrosses and other 
species with high mate fidelity) (Cézilly and Danchin 2008).

These factors motivate the use of a demographic two-sex 
model in analyzing harvest effects. To this end, we will use 
our BMMR matrix framework to explore the effect of mating 
systems on the response to sex-biased harvest. A range of 
mating systems will be approximated by varying two model 
parameters, d and h (Table 2).

– The divorce rate d. This is a measure of union transience. 
Unions with higher values of d are more likely to dissolve 
after a given mating, while unions with lower values of d are 
more likely to persist over multiple breeding interactions.

– The harem size h. This is a measure of polygamy. Unions 
with h = 1 are monogamous and consist only of one-to-
one male-female pair bonds, while unions with h > 1 are 
polygamous groups of size h + 1 . As polyandrous mating 
systems are relatively rare (Cézilly and Danchin 2008), 
we will consider only the polygynous form of polygamy, 
where one male mates with h females.

Harvest strategies are characterized by the overall har-
vest rate E and the harvested sex ratio sh (proportion of 
the total harvest rate that targets males). Assuming that 
only adults are harvested, the adult mortality rates are 
modified by harvest as follows:
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To determine how various mating systems, as characterized 
by different values of h and d, respond to sex-biased harvest, 
we will examine harvest effects on the long-term population 
growth rate � and the secondary sex ratio s2 (proportion of 
all adults that are male). We will assume that males and 
females have the same baseline vital rates, and that the pri-
mary sex ratio (proportion of males at birth) is 0.5. Thus, 
the main sex-specific differences we consider are sex-biased 
harvest pressures and male versus females roles within the 
polygynous mating systems.

Monogamy ( h = 1)

Consider a monogamous two-sex population with juve-
niles and adults. The mating process forms unions that are 
one-to-one pair bonds of adult males and females. This 
scenario uses the rate matrices � , � , and � as given by 
Eqs. 14, 15, and 16 respectively, and the mating functions 
in Eq. 12. We vary the divorce rate d to explore the effects 
of transient vs. persistent pair bonds.

(18)
�m2 → �m2 + Esh

�f2 → �f2 + E(1 − sh)

As shown in Fig. 4a, the proportion of adults in the 
reproductive union stage (mated adults) decreases as d 
increases. The unharvested population growth rate � simi-
larly decreases (Fig. 4b), because populations with more 
transient couples (fewer mated adults) cannot produce off-
spring as rapidly as populations with more persistent cou-
ples (more mated adults). Because males and females have 
the same baseline vital rates, the secondary sex ratio s2 
remains unbiased ( s2 = 0.5 , not shown) for all values of d.

Figure 4c shows how increasingly sex-biased harvest 
strategies affect population growth. Both biased and unbi-
ased harvest strategies most strongly reduce growth in 
populations with lower divorce rates, as adult mortality 
will also disrupt pair bonds. The greatest decreases in � 
occur when harvest is strongly sex-biased, i.e., sh is close 
to 0 (only females are harvested) or 1 (only males are har-
vested). This suggests that monogamous populations with 
high fidelity pair bonds will be the most impacted by sex-
biased harvest, and that concentrating harvest on a single 
sex will more greatly reduce population growth.

Figure 4d shows how the same harvest strategies decrease 
the secondary sex ratio s2 from equality. Unsurprisingly, male-
biased strategies reduce s2 , female-biased strategies increase 
s2 , and unbiased strategies ( sh = 0.5 ) have relatively minimal 

Table 2  Mating systems 
corresponding to different 
values of the divorce rate d and 
harem size h 

Low d (persistent unions) High d (transient unions)

h = 1 (monogamy) Persistent pair bonds, high mate fidelity (e.g., 
albatross)

Serial pair bonds (e.g., 
humans, Emperor 
penguins)

h > 1 (polygyny) Persistent harems (e.g., lion prides) Leks, scramble competi-
tion (e.g., grouse, cod, 
horseshoe crabs)

change in λ from harvest

divorce rate d

ha
rv

es
te

d 
se

x 
ra

tio
 s

h

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.165

-0.16

-0.155

-0.15

-0.145

-0.14

-0.135

-0.13

-0.125

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

ha
rv

es
te

d 
se

x 
ra

tio
 s

h

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5

divorce rate d
0 1 2 3 4 5

change in s2 from harvest

divorce rate d
0 1 2 3 4 5

%
 a

du
lts

 m
at

ed
λ,

 n
o 

ha
rv

es
t

0.15

0.2

0.3

0.25

0.2

0.3

0.4

dc
a

b

Fig. 4  Population growth rates, structure, and responses to adult har-
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effect. Populations with greater divorce rates experience larger 
reductions in s2 , possibly due to their lower growth rates 
(Fig. 4a) being unable to replenish harvested individuals as 
rapidly.

Polygyny ( h > 1)

Now consider a polygynous population that forms unions con-
sisting of one male with a harem of females. Because the death 
or departure of a single female changes the harem’s size and 
reproductive rate, we must now account for multiple union 
(harem) stages.

The stage ui represents polygynous unions consisting of one 
male and a harem of i females. When h is the maximum harem 
size, the population vector contains h union stages, which 
range from a union with a harem of size 1 ( u1 , equivalent to 
a monogamous couple) to a union with a harem of size h ( uh , 
the largest possible union):

Assume that when males and females mate, they form the 
largest possible union uh . Their union formation rate is still 
given by the harmonic mean mating function Eq. 12, but 
with the number of single females now replaced by the num-
ber of prospective harems:

Note that the total union formation rate M(�) is maximized 
when the sex ratio of single adults is

Thus, as the harem size h increases, a higher proportion of 
single females is needed to maximize the mating rate.

If an individual female has a reproductive rate of k, 
a harem with i females has a total reproductive rate of 
ik; larger harems are thus more productive. Each union 
ui , regardless of harem size, can change in three possible 
ways (Fig. 5):

1. The male harem leader dies (with mortality rate �m2 ). 
This returns i adult females to the stage f2.

(19)�(t) =
(
m1 m2 f1 f2 u1 u2 … uh

)�

(20)

M(�) =
2m2

f2

h

m2 +
f2

h

Um(�) =
2f2

hm2 + f2

Uf (�) =
2m2

hm2 + f2

(21)
m2

m2 + f2
=

1

1 +
√
h

2. A female harem member dies (with mortality rate �f2 ). 
This shrinks the union from ui to ui−1 . For the union 
u1 , which has only one female, ui−1 = u0 corresponds to 
the single adult male stage m2 (i.e., the death of a wife 
returns her husband to the pool of unmated singles).

3. A female harem member departs from the union, with 
divorce rate d. We assume that only females leave, which 
seems biologically plausible. Her departure returns one 
female to f2 and shrinks the union from ui to ui−1 . For 
the union u1 , divorce dissolves the union and returns one 
male to m2 and one female to f2.

As a result, a union may shrink (but not grow) in size due to 
the departure or death of its members (Fig. 6). After a union 
shrinks to the smallest possible size h = 1 , or if the male harem 
leader dies, the union dissolves and its members return to the 
stages for unmated adults.

Appendix 3 shows how to write the rate matrices � , � , and 
� for a polygynous system with maximum harem size h. The 
population vector and matrices for the case where h = 3 are 
as follows:

Fig. 5  Reproduction and three possible transitions for ui , a union with 
harem size i 

Fig. 6  Stages in a population with maximum harem size h, which 
include juveni le males m1 and juvenile females f1 , adult males m2 and 
adult females f2 , and reproducing unions ui (one male with a harem 
of i females). Adults form harems of size h when mating, and these 
harems can shrink in size, but not grow, over time
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(22)�(t) =
(
m1 m2 f1 f2 u1 u2 u3

)�

(23)� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0

0 − Um 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 − 3Uf 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0
1

2
Um 0

1

2
Uf 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

(24)� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 ks1 2ks1 3ks1
0 0 0 0 0 0 0

0 0 0 0 k(1 − s1) 2k(1 − s1) 3k(1 − s1)

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

(25)� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(�m1 + �m) 0 0 0 0 0 0

�m − �m2 0 0 �f2 + d 0 0

0 0 − (�f1 + �f ) 0 0 0 0

0 0 �f − �f2 �m2 + d 2�m2 + d 3�m2 + d

0 0 0 0 − (�m2 + �f2 + d) �f2 + d 0

0 0 0 0 0 − (�m2 + �f2 + d) �f2 + d

0 0 0 0 0 0 − (�m2 + �f2 + d)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 7 shows how the unharvested population rate of 
growth and secondary sex ratio vary across different values 
of d and h. As in the monogamous case, lower divorce rates 
result in more mated reproducing adults and, thus, higher 
population growth. Larger harems lead to more rapid popu-
lation growth, possibly because of their higher total repro-
ductive rates. Unions with a high maximum harem size are 
more resilient to divorce and female mortality, because they 
can lose more females before shrinking to a u1 and then 
dissolving.

Even without sex-biased harvest, the secondary sex ratio 
is slightly female-biased ( s2 ≈ 0.494 ), but varies only a few 
tenths of a percentage point across a wide range of h and d. 
Populations with high h and low d (large, persistent harems) 
are the most biased.

Figure 8 demonstrate how female-biased ( sh = 0 ), unbi-
ased ( sh = 0.5 ), and male-biased ( sh = 1 ) harvest strategies 
affect population growth rates and secondary sex ratios.

1. Female-biased harvest (Fig. 8a) most strongly reduces 
growth in populations with large d and small h, the same 
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populations with the lowest unharvested growth rates 
(Fig. 7a). Smaller harems are less resilient to female-
biased harvest for the same reason they are less resilient 
to divorce and female mortality - because they cannot 
lose as many females before dissolving. Female-biased 
harvest may reduce the average harem size, and also 
makes it difficult for large harems to form or reform 
after breaking up. When h is high, a higher proportion 
of females is needed to maximize the mating rate, in 
accordance with Eq. 21, but these females are depleted 
by harvest. Increasing the divorce rate increases the rate 
at which harems dissolve. This more drastically reduces 
growth for larger harems (contours are steeper at large 
h), because they need more females to reform.

2. Unbiased harvest (Fig. 8b) yields similar qualitative 
trends. Again, populations with higher divorce rates 
experience greater reductions in growth, and larger har-
ems are more affected by divorce. The effect of increas-
ing divorce is not as pronounced as with female-biased 
harvest (contours are flatter overall), as less female 
harvest makes it easier for harems to reform. At low 
h, however, populations with lower d are actually more 
impacted by harvest. Low h unions have only a few 
females and are more likely to dissolve from increased 
mortality. Unions with high divorce rates are already 
dissolving quickly, regardless of harvest mortality. 
Unions with low divorce rates, in contrast, break up 
much more frequently once harvest mortality occurs. 
As a result, low d, low h populations experience the 
largest decreases in growth.

3. Male-biased harvest (Fig. 8c) reverses the effects of 
increased divorce rate. Focusing harvest on males is 
more likely to dissolve harems by killing their male 
leaders. Populations with low d experience the larg-
est reductions in growth, because male-biased harvest 
makes these unions dissolve more frequently than they 

normally would (similar to the low d, low h case for 
unbiased harvest). As in the previous scenarios, the 
growth of large h populations is less affected by har-
vest. Even though male-biased mortality causes unions 
to break up more frequently, it also returns (potentially 
many) females to the f2 pool. This may be beneficial 
when h is high, as a higher proportion of females is 
needed to maximize the mating rate in accordance with 
Eq. 21.

As expected, the secondary sex ratio s2 increases during 
female-biased harvest, decreases during male-biased har-
vest, and undergoes only minimal changes when harvest is 
unbiased (Fig. 8, right). Populations with high d and low h 
experience the largest sex ratio shifts under biased harvest. 
This may be because the smaller growth rates of high d, low 
h populations are less effective in offsetting harvest-induced 
sex ratio biases.

Figure 9 shows how the growth rates of the mating sys-
tems in Table 2 vary with harvest bias and intensity. Again, 
we see that high h, low d populations (large, persistent har-
ems) have the largest growth rates of all the mating systems, 
even under harvest. Low h, high d populations (small, tran-
sient harems) have the smallest growth rates.

Increasing the total harvest rate E in Eq. 18 amplifies 
the differences between female-biased, unbiased, and 
male-biased harvest strategies. Female-biased harvest (red) 
decreases population growth more severely than male-biased 
harvest (blue) does, even across populations with different h 
and d. This may be because there is an excess of single males 
waiting to become harem leaders, whereas single females 
are usually in shorter supply (especially when h is large). 
Additionally, the death of a male harem leader immediately 
dissolves his union; this can return many females to the sin-
gles stage, allowing new, full-sized harems to reform with 
a new male leader. The death of female harem members, 

Fig. 9  Growth rates � as a 
function of the total harvest 
rate E for populations with 
various mating systems. The 
four types of mating systems 
shown correspond to different 
harem sizes h and divorce rates 
d (Table 2); in this example, low 
h = 2 , high h = 10 , low d = 0 , 
and high d = 2 . Harvest may be 
female-biased ( sh = 0 ), unbi-
ased ( sh = 0.5 ), or male-biased 
( sh = 1 ). Other parameters are 
the same as in Fig. 4
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in contrast, does not necessarily cause the union to dis-
solve, and may instead generate small, stunted harems with 
reduced productivity.

Depending on the mating system, unbiased harvest 
(black) can decrease growth rates more or less than female-
biased harvest does. In populations with low h (small har-
ems), female-biased harvest has the most drastic impacts of 
all the harvest strategies — again, perhaps, because small 
harems cannot afford to lose as many females before dis-
solving. In populations with high h (large harems), however, 
unbiased harvest may be just as, if not more, detrimental to 
population growth.

Discussion

The framework we present here is a tool for studying the 
effects of sexual reproduction, mating systems, and life his-
tories on population dynamics. Our implementation of the 
BMMR approach places no limitation on the complexity of 
the life cycle, and is flexible enough to accommodate age or 
stage structure, diverse mating systems, and mating preferences. 
Because it is formulated as a matrix model, powerful sensitivity 
analysis tools are available (see Shyu and Caswell 2016a, b).

There are interesting open problems to which the 
approach can be applied. As formulated here, the model 
describes a constant environment. Time-varying (seasonal 
or stochastic) models would be interesting and challenging 
extensions. Spatial models connecting multiple subpopula-
tions might have important effects on mate limitation. And, 
because the model is formulated in terms of pair formation, 
it will be interesting to see how it might apply to species 
that do not form pairs, but in which sex ratio may influence 
population dynamics (e.g., pollen limitation in plants).

In our application to sex-biased harvest we found that 
mating factors, including harem size and union duration, 
affect not only unharvested population growth, but also the 
responses of growth rate and sex ratio to sex-biased harvest. 
In unharvested populations, high rates of divorce, which lead 
to more transient unions, tend to reduce population growth, 
especially when harem size is small. Sex-biased harvest 
affects not only population sex ratios, but also long-term 
growth rates, with effects depending on sex bias, harem size, 
and divorce rate. These complex, and sometimes counterin-
tuitive, nuances would be impossible to capture without a 
demographic two-sex model like this, motivating the use of 
such models in ecological studies.

Our two-variable depiction of the mating system, defined 
by harem size and union duration, can be extended to other 
factors. Mating systems may differ in parental investment by 
males and females. While polygynous males tend to provide 
minimal parental care, monogamous males invest on par 
with their female partners (Emlen and Oring 1977; Cézilly 

and Danchin 2008). Sex-biased harvest may have different 
consequences for offspring survival in these mating systems. 
Other species have additional nuances in how they respond 
to sex-biased harvest; African lions, for instance, commit 
infanticide when male harem leaders are killed (Whitman 
et al. 2004), which exacerbates the effects of male harvest 
on population growth.

How populations respond to selective harvest also has 
important consequences for evolution. Growing evidence 
suggests that evolutionary considerations are relevant to sus-
tainable long-term management (Ashley et al. 2003), and that 
human-induced selection is especially important for harvested 
species. As harvest mortalities are often more severe and 
selective than natural mortalities, they may drive evolution 
in directions that would not occur under natural conditions.

Because it integrates life cycle structure, sex ratio, and 
a mating function, the approach introduced here is ideally 
suited to studying the evolution of sex ratio as a compo-
nent of life history evolution. Sex ratio evolution has a long 
and distinguished history in evolutionary demography (e.g., 
Darwin 1871; Fisher 1930; Trivers 1972; Charnov 1982, 
among many others). Many of these discussions invoke 
demographic factors, such as relative mortality of males 
and females, but do so without a demographic model that 
incorporates those factors.

Our approach provides such a model, and can be analyzed 
using the framework of adaptive dynamics (e.g., Geritz et al. 
1998), which accounts for the frequency-dependence inher-
ent in the mating process. We have applied this to the evolu-
tion of sex ratio as influenced by sex-biased offspring costs 
(Shyu and Caswell 2016a) and multiple maternal conditions 
(Shyu and Caswell 2016b). In these studies, the dynamics 
of the population frequency vector � are used to evaluate 
the possibility for a mutant phenotype to invade a resident 
phenotype; phenotypes that are not invasible are singular 
strategies; their stability properties lead to the identification 
of evolutionarily stable (ESS) or convergence stable strate-
gies. See Shyu and Caswell (2016a, b) for details.
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Appendix 1: Sequential processes 
in continuous time

The continuous-time two sex model is obtained by imagining 
that the processes of mating, birth, and transitions take place 
as a periodic sequence, each over a discrete time interval, and 
then shrinking the time interval so that, in the limit, all three 
processes are operating at every moment. The resulting contin-
uous-time projection matrix � is the average of the individual 
transition rate matrices in Eq. 3. Recall that the solution of a 
linear continuous-time system is

Thus, the matrix exponential eΔt� projects the population 
over a discrete period of length Δt:

Suppose that, e.g., three constant matrices � , � , and � act 
in sequence, over periods of length Δt . Then

To first order, as Δt → 0,

Dividing by 3Δt and taking the limit as Δt → 0 gives the 
derivative,

as in Eq. 3. Heuristically, this can be thought of as a periodic 
product operating so fast that all three processes are operat-
ing simultaneously. In our case, the matrix � is a function 
of �(t) , which changes over the interval [t, t + Δt] . However, 
as Δt gets sufficiently small, the result is equivalent to � 
evaluated at �(t).

Technically, this construction is known as the product 
integral (Gantmacher 1959). It originated in the mathemati-
cal work of the same Vito Volterra who is recognized by 
ecologists for his work on population dynamics (Volterra and 
Hostinksy 1938).

Appendix 2: Dynamics of the relative 
frequency vector �

Given the population vector of stage frequencies

(26)
d�

dt
= ��(t) → �(t) = et��(0)

(27)�(t + Δt) = eΔt��(t).

(28)�(t + 3Δt) = eΔt�eΔt�eΔt��(t)

(29)
�(t + 3Δt) ≈ (� + Δt�)(� + Δt�)(� + Δt�)�(t)

≈ [� + Δt(� + � + �)]�(t)

(30)

d�

dt
= lim

Δt→0

�(t + 3Δt) − �(t)

3Δt

=
1

3
(� + � + �)�(t)

= ��(t)

(31)� =
�

‖�‖

the derivative d�
dt

 is

Let �� be a 1 × s vector of ones. Because � is a 
non-negative vector,

Then Eq. 32 can be rewritten as

where �s is a s × s identity matrix.
If the population is initialized with a population vector 

� = � so that ‖�‖ = ��� = 1 , then Eq. 34 can be rewritten as:

as in Eq. 10.

Appendix 3: BMMR matrices 
for a polygynous mating system

Consider a polygynous system with a maximum harem size of 
h. When h is large, it is cumbersome to write the rate matrices 
� , � , � in full, especially since many of their entries will be 
zeros. Instead, we will consider these matrices in terms of their 
contributions to these nine regions of the projection matrix:

For the union formation matrix � , the only regions with 
nonzero contributions are:

(32)

d�

dt
=

‖�‖ d�

dt
− �

d‖�‖
dt

‖�‖2
=

1

‖�‖
d�

dt
−

�

‖�‖2
d‖�‖
dt

(33)
‖�‖ = ���

d‖�‖
dt

= ��
d�

dt

(34)

d�

dt
=

1

���

d�

dt
−

�

(���)2
��

d�

dt

=
1

���

(
�s − ���

)d�
dt

=
1

���

(
�s − ���

)
��(t)

(35)
d�

dt
=
(
�s − ���

)
��(t)

(36)� =

⎛⎜⎜⎝

�m→m �f→m �u→m

�m→f �f→f �u→f

�m→u �f→u �u→u

⎞⎟⎟⎠

(37)�m→m =

(
0 0

0 − Um

)
2 × 2

(38)�f→f =

(
0 0

0 − hUf

)
2 × 2
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For the birth matrix � , the only regions with nonzero con-
tributions are:

For the transition matrix � , the only regions with nonzero 
contributions are:

The h × h submatrix �u→u is also nonzero. It contains entries 
of −(�m2 + �f2 + d) all along its diagonal, and entries of 
�f2 + d all along its first superdiagonal.

As an example, the � , � , � matrices in the case where 
h = 3 are provided in Eqs. 23, 24, and 25 respectively.

Appendix 4: Multiple mating stages 
and mating preferences

Suppose1 that there are q adult male stages and r adult 
female stages. There are qr types of unions possible. The 
rate of production of (i, j) matings depends on males of stage 
i and females of stage j, and on preferences. In this case, it is 

(39)�m→u =

⎛
⎜⎜⎝

0 0

⋮ ⋮

0
1

2
Um

⎞
⎟⎟⎠

h × 2

(40)�f→u =

⎛
⎜⎜⎝

0 0

⋮ ⋮

0
1

2
Uf

⎞
⎟⎟⎠

h × 2

(41)�u→m =

(
ks1 2ks1 … khs1
0 0 … 0

)
2 × h

(42)

�u→f =

(
k(1 − s1) 2k(1 − s1) … kh(1 − s1)

0 0 … 0

)
2 × h

(43)�m→m =

(
−(�m1 + �m) 0

�m − �m2

)
2 × 2

(44)�f→f =

(
−(�f1 + �f ) 0

�f − �f2

)
2 × 2

(45)�u→m =

(
0 0 … 0

�f2 + d 0 … 0

)
2 × h

(46)�u→f =

(
0 0 … 0

�m2 + d 2�m2 + d … h�m2 + d

)
2 × h

a particular advantage to work with a continuous time model 
because it specifies the rates of mating rather than prob-
abilities; to specify probabilities would require accounting 
for probabilities of events that did not happen.

The mating process, where adult males and females pair 
into reproducing unions, is described by the union forma-
tion matrix � . Mating functions in � give the rates of union 
formation as functions of the relative frequencies of males 
and females available to mate, and are thus functions of the 
stage frequency vector �̂.

Mating preferences in the mating functions describe the 
probabilities of favoring partners of certain conditions. The 
female preference distribution gj(i) gives the proportion 
of Condition j females that mate with Condition i males. 
Similarly, the male preference distribution hi(j) gives the 
proportion of Condition i males that mate with Condition 
j females. Summing these distributions over all male and 
female conditions respectively yields a total probability of 1:

Examples of mating preference distributions include:

1. Fully assortative mating, where individuals only mate 
with partners in the same condition: 

2. Random mating, where individuals pick partners based 
on their relative abundances in the population: 

3. Biased mating, where individuals prefer partners of cer-
tain conditions. An attractiveness or competitiveness 
factor ci weighs the abundance of each partner condi-
tion, e.g.,: 

(47)
∑
i

gj(i) = 1 ∀ j

(48)
∑
j

hi(j) = 1 ∀ i

(49)
gj(i) = 1 if i = j, 0 else

hi(j) = 1 if i = j, 0 else

(50)

gj(i) =
mi∑
i mi

hi(j) =
fj∑
j fj

(51)

gj(i) =
cimi∑
i cimi

hi(j) =
cjfj∑
j cjfj

.

1 The material in Appendix  4 is extracted and modified from Shyu 
and Caswell 2016b under a Creative Commons Attribution license.
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 Partners with larger ci are more preferable mates. If all 
ci are equal, Eq. 51 reduces to the random mating case 
Eq. 50. If ci = 0 , individuals of stage i do not mate.

The total mating function Mij(�) gives total unions uij 
(Condition i males mated with Condition j females) formed 
per time. The most general and flexible mating functions 
are based on generalized weighted means (Hölder means). 
These have the general form:

where 0 ≤ b ≤ 1 and a < 0 (Hadeler 1989; Martcheva and 
Milner 2001; Caswell 2001). Note that Mij(�) is calculated 
only over individuals that are available to mate (i.e., adult 
single male stages mi and adult single female stages fj ). As a 
result, the mating function does not depend on the males and 
females in non-mating stages, such as immature juveniles or 
adults already in unions.

The harmonic mean mating function is one of the most 
widely used, because it satisfies the biological criteria for 
two sex models and captures the qualitative properties of 
a wide range of Holder means (Caswell and Weeks 1986; 
Iannelli et al. 2005). Hence, we use a harmonic mean mat-
ing function where a = −1, b = 1∕2 , so that:

The corresponding male and female per capita mating func-
tions are:
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