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Abstract

The discovery of the glymphatic system has revolutionized our understanding of cerebrospinal fluid (CSF) circulation and
interstitial waste clearance in the brain. This scoping review aims to synthesize the current literature on the glymphatic
system’s role in neurosurgical conditions and its potential as a therapeutic target. We conducted a comprehensive search in
PubMed and Scopus databases for studies published between January 1, 2012, and October 31, 2023. Studies were selected
based on their relevance to neurosurgical conditions and glymphatic function, with both animal and human studies included.
Data extraction focused on the methods for quantifying glymphatic function and the main results. A total of 67 articles were
included, covering conditions such as idiopathic normal pressure hydrocephalus (iNPH), idiopathic intracranial hypertension
(ITH), subarachnoid hemorrhage (SAH), stroke, intracranial tumors, and traumatic brain injury (TBI). Significant glymphatic
dysregulation was noted in iNPH and IIH, with evidence of impaired CSF dynamics and delayed clearance. SAH studies
indicated glymphatic dysfunction with the potential therapeutic effects of nimodipine and tissue plasminogen activator. In
stroke, alterations in glymphatic activity correlated with the extent of edema and neurological recovery. TBI studies high-
lighted the role of the glymphatic system in post-injury cognitive outcomes. Results indicate that the regulation of aqua-
porin-4 (AQP4) channels is a critical target for therapeutic intervention. The glymphatic system plays a critical role in the
pathophysiology of various neurosurgical conditions, influencing brain edema and CSF dynamics. Targeting the regulation
of AQP4 channels presents as a significant therapeutic strategy. Although promising, the translation of these findings into
clinical practice requires further human studies. Future research should focus on establishing non-invasive biomarkers for
glymphatic function and exploring the long-term effects of glymphatic dysfunction.
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Introduction system. However, subsequent studies struggled to identify

the mechanism for clearing interstitial solutes and metabolic

The lack of a lymphatic system in the central nervous system
(CNS) has long intrigued scientists. In 1914, Lewis H. Weed
published a study that outlined an alternative drainage path-
way for cerebrospinal fluid (CSF) [1]. By injecting Prussian
blue, a blue pigment, into the subarachnoid space, he found
pigment deposits in cervical lymph nodes and lymph chan-
nels. This demonstrated that CSF drains into the lymphatic
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waste from the brain interstitium until just over a decade
ago.

In 2012, Maiken Nedergaard with colleagues published
a paper introducing the concept of the glymphatic system,
necessitating a revision in our understanding of the cir-
culation of CSF within the CNS [2]. Serving as a brain-
wide drainage pathway, the glymphatic system facilitates
the removal of waste products from the brain by manag-
ing the circulation of CSF throughout it. From the suba-
rachnoid space, CSF traverses through the perivascular
spaces (PVS, also known as Virchow-Robin spaces) into
the brain’s interstitial space, a flow modulated by aqua-
porin-4 (AQP4) water channels in astrocytes [3]. This
fluid is subsequently drained into the perivenous spaces
and other conduits, eventually reaching the meningeal
lymphatic system, and culminating its journey in the deep
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cervical lymph nodes [4]. The recent finding of a fourth
meningeal layer, the subarachnoid lymphatic-like mem-
brane, has added even more complexity to the new model
of CSF dynamics [5]. Importantly, sleep has been shown to
optimize glymphatic clearance, with possible implications
for neurodegenerative disease processes [6].

Much is still unclear, but the body of knowledge in this
area of research is growing rapidly. Early studies were based
on animal experiments, but it has now been demonstrated
that the glymphatic system exists in humans and that it can
be visualized and quantified using MRI technology [2, 3].
Several studies also point to the role of the glymphatic sys-
tem in various disease processes in the brain [7].

As our understanding of the glymphatic system grows,
this scoping review aims to provide an overview of exist-
ing knowledge and explore the potential involvement of the
glymphatic system in various neurosurgical conditions. This
includes diseases potentially resulting from dysfunction in the
system, such as normal pressure hydrocephalus and idiopathic
intracranial hypertension (IIH). In other settings, like suba-
rachnoid hemorrhage (SAH) and traumatic brain injury (TBI),
the disease itself may trigger dysfunction of the glymphatic
system and consequently impact the course of the disease.

Materials and methods
Search strategy and study selection

To identify relevant articles, a search from January 1, 2012,
to September 30, 2022, was performed in the online data-
bases PubMed and Scopus. In PubMed, the search term
“elymph*” (used as a wildcard to cover variations such as
“glymphatic”) was used in “All fields,” while in Scopus,
the search was conducted using the term “glymph*” in the
“Title,” “Abstract,” or “Keywords” fields. The search was
subsequently updated on October 31, 2023, to ensure the
most recent content was included. The search results were
exported into Excel, and duplicates were removed.

In the initial screening, the titles and abstracts of the
articles were sequentially reviewed by two authors (TS and
MAM) and, in cases of doubt, discussed with a third review
author (ASJ). Eligible articles were peer-reviewed original
studies, had full-text available, and were deemed to have
potential neurosurgical relevance, i.e., studies with any con-
nection to neurosurgical diseases such as normal pressure
hydrocephalus, ITH, stroke, including SAH and intracerebral
hemorrhage (ICH), neuro-oncological conditions, and TBI.
Exclusion criteria included gray literature, non-English lan-
guage articles, and review papers. Papers related to both
human and animal studies were included.

@ Springer

Data extraction

The selected articles were reviewed in full text and the
data extraction was performed independently by two
reviewers (MAM and AC). Studies that raised questions
or uncertainties were discussed with a senior neurosurgical
consultant (ASJ). Since we anticipated collecting hetero-
geneous and limited data, the study was designed to be
purely descriptive, i.e., we did not plan for any statistical
or meta-analysis.

The following data were retrieved from the full text
of the papers: first author and publication year, species,
number of subjects, method for quantifying glymphatic
function, and main result. These data were systematically
tabulated and collaboratively reviewed by all team mem-
bers. The process of article selection is reported in Fig. 1.

Results
Search results

From the search conducted using the criteria outlined in
the “Materials and methods” section, we identified 1767
unique articles. A total of 67 articles were included,
focusing on the glymphatic system with neurosurgical
relevance. These articles were subdivided into categories
corresponding to neurosurgical conditions: idiopathic
normal pressure hydrocephalus (iNPH), ITH, SAH, stroke,
intracranial tumors, and TBI. For an overview of the arti-
cle selection, see Fig. 1.

Idiopathic normal pressure hydrocephalus

The glymphatic system’s alterations in patients with
iNPH were explored in ten human studies, as summa-
rized in Table 1 [8—17]. In four studies, intrathecal injec-
tion of gadobutrol followed by repeated MR imaging
was employed to assess the function of the glymphatic
system [10-12, 17]. In the study by Ringstad et al. CSF
dynamics and glymphatic flow were severely altered in
iNPH patients, showing delayed contrast enrichment of
intrathecally administered gadobutrol in CSF spaces and
PVS, retrograde flow in lateral ventricles, and delayed
clearance of contrast agent in all CSF spaces in compari-
son with reference subjects [10]. Delayed glymphatic
clearance has also been linked to dementia by the rela-
tion to accumulation of amyloid-f and visual pathway
impairments typically seen in iNPH patients [11, 12].
Additionally, the clearance of intrathecally administered
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Fig. 1 Flow chart of study inclusion

gadobutrol from the brain parenchyma has also been
investigated as a useful biomarker in predicting clinical
outcomes of shunt surgery, together with quantification
of ventricular reflux [17].

The DTI-ALPS (diffusion tensor imaging-along the
perivascular space) index has also been used to evaluate
the brain’s glymphatic function in iNPH patients. The
technique assesses the movement of interstitial fluid along
the PVS with diffusion MRI. It was observed that iNPH
patients exhibit a notably reduced ALPS index compared

to control subjects, signifying impaired glymphatic activ-
ity [13, 16]. Furthermore, a significant increase in the
ALPS index was seen in the iNPH patients responding
positively to lumboperitoneal shunt surgery, something
not seen in non-responders, suggesting improvement of
the glymphatic function [14]. Additionally, research have
shown that AQP4 expression was reduced in the astrocytic
endfeet of perivascular astrocytes in iNPH patients [8, 15],
and AQP4 autoantibodies were ruled out as a cause of this
reduction [9].
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The Glymphatic System and Its Potential Involvement
in Neurosurgical Diseases

Hydrocephalus (NPH)

 Dysregulation of
glymphatic flow

* Diminished expression
of AQP4

Subarachnoidal
hemorrhage

« Causes severe glymphatic
dysfunction
«Nimodipine may potentiate the

function of the glymphatic system
edema

Brain tumors

* Glymphatic system involved
in formation of peritumoral

Ischemic stroke

« Cerebral edema mainly
\ caused by CSF influx
* Decreased glymphatic
| function in subacute phase

*Meningeal vessel compression can
cause dysfunction.

* AQP4 links to tau buildup and
swelling, indicating varied post-
trauma roles.

* Gliomas block the outflow

of CSF

Fig.2 Overview of glymphatic system dysfunction in various neu-
rosurgical conditions. This figure illustrates the involvement of the
glymphatic system, which is responsible for waste clearance in the
central nervous system, in several neurosurgical diseases. Each
panel displays a computed tomography (CT) scan depicting a differ-
ent pathological condition, accompanied by bullet points summariz-

Idiopathic intracranial hypertension

Research on glymphatic dysfunction in ITH has been the
focus of three papers, all involving human subjects [18-20].
For a complete overview, see Table 2. In the study by
Eide et al. investigators used intrathecally administered
gadobutrol, an MRI contrast agent, to trace CSF after being
administered intrathecally [18]. Over 48 h, standardized
T1 MRI scans were performed on 15 IIH patients and 15
matched reference individuals to study tracer distribution in
the brain. Gadobutrol showed increased accumulation in the
brain parenchyma of IIH patients and took longer to clear
than in reference subjects which could indicate dysfunctional
glymphatic activity among individuals with ITH.

@ Springer

ing the associated changes in glymphatic function. In the center of
the figure is a schematic representation of the glymphatic pathway,
highlighting peri-arterial cerebrospinal fluid influx, interstitial solute
movement, and solute drainage mechanisms. AQP4, aquaporin-4;
CSF, cerebrospinal fluid; NPH, normal pressure hydrocephalus

Furthermore, Jones et al. evaluated the number of visible
PVS in 36 patients with IIH and in 19 controls, using high-
resolution pre-contrast T2- and T1-weighted images [19].
An increased number of dilated PVS was found in patients
with IIH compared with controls which has been suggested
as a potential indicator of glymphatic system dysfunction.

Subarachnoid hemorrhage

The impact of the glymphatic system has also been studied
in relation to SAH. An overview of the 13 studies can be
found in Supplemental Table 1, which includes 11 animal
studies, 1 study with human participants, and 1 study with
both human and animal subjects [21-33].
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Table 1 (continued)

Comments/other results

Main results

Method for quantifying
glymphatic function

Number of subjects

Species Age

Main interven-
tion (if appli-

cable)

Paper

ALPS index could serve

Lower ALPS index score

DTI-ALPS.

iNPH: n = 30, healthy

iNPH: 77 years, controls

Human

Georgiopoulos et al. [16] iNPH patients

as a marker of severity
of iNPH but could be

was found in iNPH
patients compared

controls n = 27

73 years

influenced by biological

with healthy controls.

gender and needs further

validation.

Healthy female controls
had a higher ALPS

index score than males.

CSF, cerebrospinal fluid; DTI-ALPS, diffusion tensor imaging along the perivascular space; iNPH, idiopathic normal pressure hydrocephalus

In mice, decreased fluorescent tracer penetration and
enlarged PVS, along with an increase in P-tau (phospho-
rylated tau) and tau-protein presence, decreased neurologi-
cal scoring, and AQP4 depolarization, were observed after
SAH, indicating glymphatic dysfunction [21, 23]. Deletion
of the AQP4 gene in mice and rats has also been observed
to aggravate glymphatic dysfunction, neuronal damage,
and neurological deficits following SAH [24, 33]. Further-
more, induced overexpression of AQP4 using a viral vector
resulted in improved depolarization of AQP4 and subsequent
improved neurobehavioral ability in mice [27]. SAH has also
been observed to cause severe glymphatic dysfunction in
the acute phase [25, 26, 28]. In mice, studies point toward
a decreased glymphatic function due to brain tissue factor,
fibrin deposits, and fibrinogen filling the PVS [26]. Further-
more, intraventricular injection of tissue factor antibodies
caused an increase in CSF flow following SAH [26].

The presence of fibrin in the PVS along with a decrease
in parenchymal penetration of contrast agent has also been
observed in non-human primates [29]. In humans, perivas-
cular presence of blood clots has been observed after aneu-
rysmal SAH as well as enlarged PVS in centrum semiovale
and the basal ganglia, indicating glymphatic dysfunction
[30]. Interestingly, Luo et al. found that tissue plasminogen
activator (tPA) improved neurological outcomes in mice of
SAH after 7 days due to an improvement of the glymphatic
clearance [28].

Nimodipine, a calcium channel antagonist commonly
used as a prophylactic agent against cerebral vasospasm in
SAH, was investigated in relation to the glymphatic system
in mice [31]. The results indicated that glymphatic function
improved after nimodipine administration and eliminated the
effects of edema and neurological dysfunction after SAH.
The authors therefore suggest that nimodipine has a neuro-
protective role after SAH.

Additionally, treatment with pituitary adenylate cyclase-
activating polypeptide has been shown to increase glym-
phatic function after SAH and alleviate the subsequent
increase in intracranial pressure and brain water content
following SAH [32].

Stroke

Ischemic and hemorrhagic strokes have also been investi-
gated in terms of their effect on the glymphatic system [25,
34-46]. See Supplemental Table 2 for an overview of the 14
included articles spanning 10 animal and 4 human studies.
In mice, middle carotid artery occlusion (MCAO)
resulted in reduced parenchymal penetration of both fluo-
rescent tracer and MRI contrast agent, along with an impair-
ment of perivascular polarity of AQP4 and impairment of
glymphatic system in thalamus [42, 45]. The post-stroke
edema was also investigated in mice, where intravenous

@ Springer
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and intracisternal administration of ’Na and *H-mannitol
revealed a predominant influx of CSF into the edematous tis-
sue from the lateral ventricles, cisterna magna, and the PVS
[35]. In the same study, vasoconstriction following MCAO
resulted in an enlargement of PVS, causing an increased
influx of CSF and contrast agent contributing to the edema.

Glymphatic function was investigated using TGN-020 to
mediate AQP4 inhibition and was correlated with a reduc-
tion in brain edema post-MCAO in rats and promoting neu-
rological recovery at 14 days post-stroke [36]. After MCAO
in rats, no difference in contrast agent penetration of the
brain was seen in the acute phase, although significantly
impaired parenchymal penetration and clearance was seen in
the subacute phase [37]. In humans, ischemic stroke resulted
in a lower ALPS index in the lesion hemisphere compared
to both the contralateral hemisphere in the same patient and
the ipsilateral hemisphere in reference subjects [38]. Fur-
thermore, ALPS values were less affected in smaller strokes,
and with longer follow-up post-stroke [38].

In patients with spontaneous ICHs, a higher ALPS index
was observed. Furthermore, an increased visibility of PVS,
known as PVS burden, was noted on MRI in the centrum
semiovale of these patients, regardless of the presence of
cerebral amyloid angiopathy [39]. Additionally, a greater
number of PVS correlated with more amyloid deposits in the
brain, indicating a link between cerebral amyloid angiopa-
thy and glymphatic dysfunction after spontaneous ICH [39].
Ligation and removal of the cervical lymph nodes (cervical
lymphatic blockage) in rats with induced ICH resulted in
higher brain water content and lower levels of AQP4 expres-
sion than only induction of ICH without cervical lymphatic
blockage [40]. In a case study, an idiopathic subdural hema-
toma in a pig resulted in an impairment of CSF tracer distri-
bution in the whole brain [41].

Intracranial tumors

The link between brain tumors and the glymphatic sys-
tem has been explored in six studies, as detailed in Table 3
[47-52]. Of these, three studies were conducted on human
subjects and three involved animal models.

Gliomas have been associated with lower ALPS indexes
than reference subjects in humans, where grade 4 IDH-
wild-type glioblastomas had the lowest ALPS indexes [47].
Furthermore, /DH-mutated gliomas showed a higher ALPS
index compared to IDH-wild-type gliomas. Induced gliomas
in mice have also been observed to block perineural and lym-
phatic outflow of CSF, shown through lower concentrations
of intracisternally injected fluorescent tracer in the saphen-
ous vein, deep cervical lymph nodes and mandibular lymph
nodes, and a lower perineural MRI signal [48]. Xu et al.
showed that the glymphatic flow was hindered and redirected
in rats with gliomas, along with a decreased expression of

AQP4 in the astrocytes [49]. Low ALPS index has also been
correlated with peritumoral brain edema (PTBE) in patients
with brain metastases and meningiomas. This provides evi-
dence for the role of glymphatic dysfunction in the formation
of PTBE [50, 51]. The glymphatic system also seems to
be affected in rat model with spontaneous pituitary tumor,
which could result in cognitive impairment [52].

Traumatic brain injury

There has been a significant interest to study glymphatic
function in TBI. For a comprehensive overview, refer to Sup-
plementary Table 3 [53-74]. Among the 22 studies included,
12 primarily utilized animal models to explore the effects of
TBI on the glymphatic system.

Repetitive mild TBI (mTBI) was shown to result in
increased penetration of intracisternally injected contrast
agent in amygdala, hypothalamus, hippocampus, and olfac-
tory bulb. This was coupled with a decreased efflux rate,
suggesting impaired glymphatic clearance compared to con-
trol mice [53]. Similar results were shown in the study by Li
et al. where moderate TBI resulted in a delay of both pen-
etration and clearance of intracisternally injected gadobutrol
in several brain areas, but most pronounced in the olfactory
bulb [54].

In another mouse study, a decrease in penetration of fluo-
rescent tracer was observed following TBI, combined with
decreased AQP4 perivascular polarization, increased glial
scarring, and increased P-tau accumulation [55]. Addition-
ally, knockout of AQP4 resulted in further increase of P-tau
accumulation. Lui et al. found that AQP4 knockout in mice
showed improved outcome regarding cognitive functions in
mice with TBI in comparison to wild-type mice with TBI,
including less brain edema, higher BBB integrity, higher
neurological and cognitive performance, decreased amy-
loid beta levels, and a decrease in inflammatory cytokines
[56]. The authors speculate that the AQP4 deficiency pro-
tected the blood-brain barrier integrity and clearance of
amyloid-p. Knockout of angiotensin II type receptor was
found to have a positive effect on glymphatic function in
mice with TBI, resulting in less perivascular depolarization
of AQP4, decreased infarction volume and brain water con-
tent, and higher clearance of amyloid-f than wild-type mice
[57]. Furthermore, in the study by Bolte et al. meningeal
lymphatics are also negatively affected by TBI, shown by
long-term changes in morphology and function following
mTBI in mice [58].

The effects of altering the glymphatic system on the
detection of common TBI biomarkers were also investi-
gated in mice. Approaches such as AQP4 knockout, cister-
nostomy, treatment with acetazolamide, and sleep depriva-
tion all resulted in a reduction in clearance of injected tracer
substance and blocked the glymphatic clearance [59]. Even
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Table 3 (continued)

Main results Comments/other results

Species Age Number of subjects Method for quantifying

Paper (author and year) Type of tumor

glymphatic function

Decrease in glymphatic func-

Meningiomas without

Calculation of ALPS index
using DTI-ALPS.

n=280

Human 58.8 +13.5

Meningioma

Toh et al. [51]

tion may be linked to the
formation of PTBE.

PTBE were associated

with a higher ALPS than
normal patients and men-
ingiomas with PTBE.

The glymphatic system

Intracisternal contrast injec- A lower incidence of

tion, evaluated with MRI
T2-weighted and dynamic

3D T1-weighted.

Rat 22-24 months n =14

Rats with spontaneous

Liet al. [52]

seems to be affected in rats
with spontaneous pituitary

tumor.

enhancement of glym-

pituitary tumor

phatic influx nodes and
pituitary and pineal

recesses in rats with pitui-

tary tumors.

dcLNs, draining cervical lymph nodes; DTI-ALPS, diffusion tensor imaging along the perivascular space; PTBE, peritumoral brain edema

though the mechanisms resulted in inhibition of clearance of
radiotracer, the blood serum biomarkers (S100beta, GFAP,
and NSE) also decreased in a similar fashion.

As for the human studies, the correlation between TBI,
sleep, and glymphatic function has been examined. Opel
et al. observed a correlation between the visibility of PVS
in MRI and sleep disturbance in patients with TBI [60].
In another study, Piantino et al. showed similar results in
military veterans, where a positive correlation between the
amount of mTBIs and PVS burden was shown. The authors
also found an interaction between mTBI and PVS burden
and suggest the increased PVS burden may be a sign of
glymphatic clearance dysfunction which also seems to be
associated with the severity of post-concussion symptoms
such as balance problems, dizziness, and nausea [61].

One study tested a hypothesis of “CSF shift edema,”
whereby a positive pressure gradient between the basal cis-
terns and the brain parenchyma is created by a head injury,
pushing CSF through the PVS into the brain parenchyma,
causing edema. A basal cisternostomy would reverse this
pressure gradient, potentially alleviating brain edema. When
combining decompressive hemicraniectomy with either par-
tial or complete basal cisternostomy, the authors found that
a low intracisternal pressure was associated with survival,
whereas an increase in intracisternal pressure was associated
with clinical worsening and death. However, the sample size
was too small for any meaningful statistical analysis [63].

The study by Chen et al. describes a surgical technique
aimed at improving outcomes for patients with chronic sub-
dural hematomas (CSDH). This technique involves fenestra-
tion of the inner membrane after the removal of CSDH and
it is hypothesized that this technique may enhance glym-
phatic flow postoperatively [74]. In mice with TBI, both
exogenous IL-33 and the activation of cerebral GLP-1 recep-
tors (GLP-1R) have been shown to have therapeutic effects
by enhancing the function of the glymphatic system. IL-33
improves motor and cognitive abilities by promoting lym-
phatic drainage and clearing toxic metabolites. Similarly,
activating GLP-1R helps to restore glymphatic transport and
reduce cognitive impairment [68, 69].

Discussion

In this scoping review, we present the current body of lit-
erature regarding the glymphatic system’s involvement in
several neurosurgical conditions, highlighting its crucial role
in the underlying pathophysiology of these disorders and
its emerging potential as a therapeutic target. Our synthesis
reveals that the glymphatic system is involved in the regula-
tion of brain swelling and CSF dynamics across a spectrum
of neurosurgical pathologies and the AQP4 channels emerge
as central regulators in this intricate system. Advanced
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imaging modalities, including DTI and MRI with intrathe-
cally contrast agents, have been instrumental in elucidat-
ing the alterations in glymphatic function, extending these
observations to human subjects. These studies collectively
suggest that dysfunction within the glymphatic system may
not only contribute to the progression of neurosurgical dis-
eases but may also, through its restoration, offer a conduit for
therapeutic intervention. The interest in clinically exploring
the glymphatic system is growing, as evidenced both by the
results of the current review and by planned and ongoing
studies listed on clinicaltrials.gov. These include research
on glymphatic function in patients undergoing ventriculop-
eritoneal shunt surgery, investigations into the glymphatic
pathway using brain imaging, and studies focusing on the
glymphatic system in epilepsy (clinicaltrials.gov visited
2024-01-02).

In iNPH, studies that use MR imaging with intrathecal
contrast have shown significant dysregulation of glym-
phatic flow, evidenced by delayed clearance of the contrast
agent and abnormal CSF dynamics. Furthermore, dimin-
ished expression of AQP4 in the perivascular astrocytic
endfeet may provide a pathophysiological explanation for
the glymphatic dysfunction seen in iNPH. Selecting iNPH
patients who are likely to respond well to shunt treatment
remains challenging; however, the clearance of intrathecal
gadobutrol could potentially serve as a biomarker to improve
patient selection. Moreover, the ALPS index may offer a
means to evaluate glymphatic function and could be useful
in a clinical setting, particularly in cases where the response
to shunt treatment is uncertain.

Similarly, in IIH, the glymphatic system’s impairment
is suggested by the prolonged presence of intrathecal
gadobutrol and increased visibility of PVS on MRI, which
could reflect a failure in efficient waste clearance. These
findings may have therapeutic implications, particularly
in the optimization of current treatment strategies and the
development of novel interventions.

In the context of SAH, our review has identified evidence
of glymphatic system dysfunction, due to accumulations
of fibrin and fibrinogen in the PVS. The therapeutic ben-
efits of enhancing glymphatic function are highlighted by
the positive outcomes associated with nimodipine and tPA
treatments. This underscores the importance of preserving
glymphatic integrity after the ictus. The potential effects of
tranexamic acid (TXA) on glymphatic function post-SAH
are not yet understood. It is interesting to speculate how
the administration TXA, to reduce the risk of rebleeding,
affects the function of the glymphatic system after SAH. To
date, there is a lack of research exploring whether TXA’s
antifibrinolytic properties could adversely affect glymphatic
function. In this light, the recent findings by Wolf et al. are
particularly intriguing, as they suggest that prophylactic
lumbar drainage after aneurysmal SAH may improve patient

@ Springer

outcomes by facilitating CSF clearance and reducing the
likelihood of secondary infarctions and unfavorable 6-month
prognoses [75].

The role of the glymphatic system in stroke recovery is
similarly noteworthy. Studies focusing on MCAO revealed
several key findings: enlargement of PVS [35], reduced con-
trast agent clearance during the subacute phase [37], and an
association between increased PVS burden and amyloid dep-
osition. All these findings may have a common explanation
through impaired glymphatic function [39]. The therapeutic
modulation of this system, through agents such as the AQP4
inhibitor TGN-020, suggests a promising avenue for enhanc-
ing neurological recovery and reducing cognitive deficits.
The potential benefits of CSF drainage in the aftermath of a
stroke present an intriguing area for exploration. Consider-
ing that cerebral edema may be predominantly composed of
CSF, the implementation of drainage systems could feasibly
mitigate the progression of edema. This approach warrants
further investigation as it may offer a therapeutic avenue to
alleviate post-stroke complications.

Concerning the relationship between brain tumors and
the glymphatic system, it is noteworthy to mention that the
impairment of glymphatic functions correlates with the
increasing malignancy of brain tumors. This dysfunction
is particularly pronounced in diffuse gliomas, where it is
associated with IDH mutation status and the WHO grade
of the tumor. It is plausible to speculate that the differential
response of PTBE to corticosteroids, as opposed to edema
from other causes such as stroke or TBI, could be due to
variations in the involvement of the glymphatic system.
This hypothesis suggests that an improved understanding
of glymphatic function in the context of brain tumors could
potentially inform more targeted therapeutic strategies and
contribute to better management of tumor-associated edema.

TBI and its connection to the glymphatic system have
been extensively studied, and research indicates that glym-
phatic dysfunction after TBI can contribute to long-term
cognitive impairment. This dysfunction may partly stem
from the compression of meningeal lymphatic vessels that
occurs during head trauma, leading to an accumulation of
harmful byproducts. Animal studies support this, showing
decreased efflux and increased accumulation of imaging
contrasts in brain regions critical for cognitive function,
hinting at a compromised glymphatic flow.

AQP4 channels have emerged as a significant factor also
in TBI pathology. While some studies suggest that a lack
of AQP4 polarization leads to an increase in tau-protein
accumulation, indicative of brain damage, others point to
less edema and better neurological function in the absence
of AQP4. These seemingly contradictory findings may
reflect the multifaceted roles AQP4 plays at different stages
post-injury. Angiotensin II receptor knockouts have led
to improved outcomes, suggesting that modulation of this
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pathway could have therapeutic potential. Similarly, studies
have demonstrated that interventions by the administration
of IL-33 or GLP-1R agonists can enhance waste clearance,
reduce edema, and improve cognitive outcomes. These
interventions highlight the glymphatic system’s therapeutic
potential in TBI management.

Moreover, the glymphatic system’s connection to sleep
has implications for TBI recovery, with increased PVS visi-
bility on MRI scans potentially signaling glymphatic impair-
ment and correlating with the severity of post-concussion
symptoms. It raises intriguing questions about the effects
of frequently waking patients for monitoring after a head
injury on glymphatic function, especially given its enhanced
activity during sleep. Future research should investigate how
such medical practices may affect glymphatic clearance and
patient recovery.

Strengths/limitations

This review systematically consolidates a wide range of
studies to provide a comprehensive understanding of the
glymphatic system’s role in various neurosurgical condi-
tions, representing a significant strength of this work. Our
methodological approach and inclusion of both animal and
human studies allow for a multifaceted perspective on the
glymphatic system’s functions and its potential therapeutic
targets. However, there are limitations to consider.

There remain significant uncertainties in our understand-
ing of this system. For instance, the drainage pathway from
the perivenous spaces to the meningeal lymphatics is still not
well described. Additionally, the mechanisms driving solutes
and waste from interstitial tissue along perivascular path-
ways are not fully understood. Furthermore, while AQP4 has
been implicated in perivascular fluid transport, the precise
nature of its involvement remains elusive. These areas of
uncertainty underscore the need for continued research to
fully elucidate the complexities of the glymphatic system.

The studies included are heterogeneous in terms of
design, measurement techniques, and outcomes, which may
affect the generalizability of the findings. It is also important
to consider that there are uncertainties associated with meth-
odologies employed to quantify glymphatic system function
in humans. The DTI-ALPS technique, used in many of the
papers, assesses the anisotropy of water diffusion along PVS
in white matter. However, the glymphatic system mainly
involves the movement of substances along PVS and in the
interstitium in gray matter. Consequently, the precise cor-
relation between DTI-ALPS measurements and glymphatic
functionality remains intricate and not fully understood. Fur-
thermore, while the majority of the data derive from animal
studies, providing invaluable insights, the extrapolation of
these findings to human pathology necessitates caution, as
direct applicability may be limited.

Conclusion

In summarizing the current literature, this scoping review
elucidates the integral role of the glymphatic system within
various neurosurgical conditions, highlighting its influence
on brain edema and CSF dynamics. The compilation of
findings emphasizes the system’s widespread impact and
the modulatory role of AQP4 channels as a common fac-
tor across different neurosurgical conditions. Despite the
advancements in imaging and biomarker identification, the
translation of these findings into clinical practice necessi-
tates further human studies. The glymphatic system has the
potential to lead to new treatments, especially by targeting
AQP4 channels. As our understanding of this complex sys-
tem grows, it offers the potential for developing new treat-
ment strategies that could improve patient care and outcomes
in neurosurgery.
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