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Abstract

Intracranial aneurysm (IA) animal models are paramount to study IA pathophysiology and to test new endovascular treat-
ments. A number of in vivo imaging modalities are available to characterize IAs at different stages of development in these
animal models. This review describes existing in vivo imaging techniques used so far to visualize IAs in animal models.
We systematically searched for studies containing in vivo imaging of induced IAs in animal models in PubMed and SPIE
Digital library databases between 1 January 1945 and 13 July 2022. A total of 170 studies were retrieved and reviewed in
detail, and information on the IA animal model, the objective of the study, and the imaging modality used was collected. A
variety of methods to surgically construct or endogenously induce IAs in animals were identified, and 88% of the reviewed
studies used surgical methods. The large majority of IA imaging in animals was performed for 4 reasons: basic research for A
models, testing of new IA treatment modalities, research on IA in vivo imaging of IAs, and research on IA pathophysiology.
Six different imaging techniques were identified: conventional catheter angiography, computed tomography angiography,
magnetic resonance angiography, hemodynamic imaging, optical coherence tomography, and fluorescence imaging. This
review presents and discusses the advantages and disadvantages of all in vivo IA imaging techniques used in animal models to
help future IA studies finding the most appropriate IA imaging modality and animal model to answer their research question.
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Introduction

Intracranial aneurysm (IA) is an arterial disease resulting
in abnormal enlargement of the vessel lumen. IAs generally
form at bifurcations of intracranial arteries in the circle of
Willis, an arterial network that supplies blood to the brain
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[1, 2]. IAs affect 2 to 5% of the population and are mostly
asymptomatic [3, 4]. However, unstable IAs can rupture
causing subarachnoid hemorrhage (SAH) that is fatal in
25-50% of cases [5]. Moreover, 35% of the patients that
survive SAH suffer from long-term sequelae such as physi-
cal or cognitive disabilities impairing their quality of life [6].
To reduce this risk, the decision to secure the aneurysm by
surgical clipping, endovascular coiling, and/or flow diver-
sion could be taken [5]. In vivo imaging techniques are of
paramount importance in the management of IAs. Indeed,
high-resolution imaging is needed to assess precisely size
and morphology of the IA (presence of blebs, lobules, rough
aspect), which is necessary to evaluate the risk of rupture
of an IA at its discovery and during follow-up imaging [7,
8]. IAs of large diameter or displaying irregular vessel walls
have been linked to an increased risk of rupture. These fea-
tures are commonly used in the different A risk scoring sys-
tems, even if the biological processes leading to A rupture
is still unknown [9-11]. Longitudinal studies to understand
the pathophysiology underlying the relation between these
morphological features and the increased risk of rupture
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require research on IA animal models. Such models also
allow for the testing of new endovascular treatments.

In this context, various IA animal models have been
established. The first induced IAs in animals were surgically
constructed to mimic IAs in human cerebral arteries [12].
Already in 1954, German and Black [13] induced IAs by
grafting a vein-pouch into the common carotid artery (CCA)
of dogs. Thereafter, different venous pouch models allow-
ing for the formation of aneurysms with adaptable sizes,
at different locations, and with various shapes have been
used in several species [12]. Altes et al. [14] developed a
rabbit model of IAs located at the origin of the right CCA
using elastase incubation and ligation of the right CCA.
Later, endogenous IA animal models mimicking the human
disease helped to better understand IA pathogenesis and
development [15]. Different risk factors for the formation
of IAs have been identified and can be used in animals to
endogenously induce IAs. Hemodynamic stress in combina-
tion with other vascular risk factors, such as hypertension,
is known to be involved in the initiation of IA formation
[16]. One component of hemodynamic stress is wall shear
stress (WSS), which is the drag force exerted by blood flow
onto the endothelium, the innermost layer of the vessel wall.
High and low WSS seem both involved in the progression
or growth of IAs [2]. Connective tissue disorders like the
Ehlers-Danlos syndrome and the Marfan syndrome also
put patients more at risk to develop IAs [1]. Thus, chemi-
cal compounds that weaken connective tissue extracellular
matrix components such as B-aminopropionitrile (BAPN)
and elastase are used in animals to favor IA formation [15].
These endogenous IA animal models mimic arterial wall
modifications that characterize the human disease, such as
loss of the internal elastic lamina, loss of endothelial and
smooth muscle cells, as well as inflammatory cell infiltra-
tion [16].

To study the size and morphology at different stages of
IA development in these surgical and endogenous animal
models, in vivo IA imaging is necessary. Like in human,
angiography is used in animals to image the IA and, more
particularly, to assess the patency of induced IAs over time
or after endovascular treatment [17]. The same imaging
modalities have been used in human and animal models;
however, IA imaging in animal models is challenging, as
many induced IAs are smaller than human IAs. [15]. Digital
subtraction angiography (DSA) remains the gold standard
imaging technique, but progress in imaging technologies
increased image resolution, and many different imaging
modalities are currently available to image IAs in vivo in
animals [18]. We performed a systematic review to list
all imaging techniques used in IA animal models to help
researchers finding the most appropriate IA imaging modal-
ity to answer their research question. In this review, we first
describe briefly all existing in vivo imaging techniques used
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for IA visualization in animal studies. Then, we critically
compare the different imaging modalities and discuss their
advantages and disadvantages.

Methods
Search strategy

We systematically searched for studies in PubMed between
1 January 1945 and 13 July 2022 containing in vivo imag-
ing of [A in animal models. We used the combination of the
following Medical Subject Headings (MeSH) terms: “intrac-
ranial aneurysm” AND “animal models” AND (“diagnostic
imaging” OR “diagnostic technique, cardiovascular”) and
excluded reviews. A hand search in the PubMed database
and in the SPIE Digital library was also performed to find
studies not found with the MeSH terms cited above. Then,
potentially eligible studies were screened and included or
excluded from this review following the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines [19] (Fig. 1). Included studies were carefully
examined, and information on the objective(s) of the study,
the IA animal model(s), and the imaging modality(ies) used
was collected (Table 1).

Eligibility criteria

Exclusion criteria were defined by the objective of this study
to review only articles containing in vivo [A imaging in ani-
mal models. Articles that did comprise the following criteria
were not included in this review: (1) no in vivo imaging, (2)
no A created, and (3) results previously reported. Studies in
which TA imaging was performed after sacrifice of the ani-
mal were also not included as this review focuses on in vivo
imaging modalities that can be used in living animals. How-
ever, animal models using extracranial aneurysms as an [A
animal model were included in this review as they mimic
human IAs in terms of aneurysm size and vessel diameter.

Results

A total of 178 potentially eligible studies were found in
PubMed using MeSH terms and 39 after the hand search
(Fig. 1). Moreover, 1 additional potentially eligible study
was found on SPIE Digital library. After the screening of
the title and the abstract of these 218 studies, 3 articles were
excluded as they were not original studies. Full texts from
2 studies were not available and had to be excluded for this
reason. Following the exclusion criteria defined above, 43
articles were withdrawn from the review, yielding 170 stud-
ies included in this review (Table 1).



Neurosurgical Review (2023) 46:56

Page30f29 56

Fig.1 Preferred Reporting
Items for Systematic Reviews
and Meta-Analyses (PRISMA)
flow diagram. Two hundred
eighteen studies were identified
on PubMed and SPIE Digital

Studies removed before screening
(n=0)

Library, and no duplicate were
found. Three studies were
excluded after title/abstract
screening as they were not
original studies. Full texts of

Studies excluded
Not original studies (n=3)

213 out of 215 studies were
available and retrieved. Forty-
three studies were excluded
after full text analysis according
to the exclusion criteria, yield-

Studies not retrieved
(n=2)

ing 170 studies included in this
review

43 studies excluded
No in vivo |A imaging (n=24)

No |A created (n=18)

—  — —  —

Results previously reported (n=1)

IA animal models

A animal models are required to test new endovascular devices
and to better understand IA pathophysiology. However, spon-
taneous endogenous cerebral aneurysms are extremely rare in
animals [187]. Consequently, many techniques to induce IAs
in various animal species were successfully established. Large
animal models like swines and dogs are well-characterized IA
animal models with an easy access for diagnostic and IA treat-
ment; however, they are expensive models [188]. Rabbit TA
models are also well characterized and commonly used as their
carotid artery size is comparable to human cerebral arteries
[189]. Unfortunately, rabbits have a relatively high periopera-
tive morbidity and mortality [188]. Finally, the use of small
rodents, like mice and rats, allow for lower study costs, but
their arteries are much smaller than human cerebral arteries,
making surgery and imaging more difficult and not adapted to
human endovascular techniques [188].

Different techniques to surgically construct or endog-
enously induce IAs in animal models are available. In the
first category, [As are surgically constructed using venous or
arterial pouch grafting (Fig. 2A, right side) or using artery
ligation in combination with vessel wall weakening using
elastase like in the frequently used rabbit elastase model
[188] (Fig. 2A, left side). In the second category of endog-
enously induced IA animal models, animals are exposed to
known IA risk factors such as hemodynamic stress or con-
nective tissue weakening [15] (Fig. 2B). Hemodynamic stress

can be increased by unilateral or bilateral CCA ligation or
by the creation of a new bifurcation between 2 arteries.
Therefore, hemodynamic stress can be increased in specific
extracranial arteries or in intracranial arteries of the circle of
Willis. Hemodynamic stress can also be increased by induc-
ing hypertension by ligation of one renal artery (RA), with or
without high salt diet or deoxycorticosterone acetate (DOCA)
pellet implantation. In addition, the vessel wall can be weak-
ened by elastase injection or inclusion of BAPN in the food
of the animals. Furthermore, genetic modifications have been
occasionally used in combination with other manipulations
to induce IAs [15]. The vast majority of the studies used sac-
cular IA models, and only 2% of the studies used an animal
model of fusiform IAs (Table 1).

Eighty-eight percent of the reviewed studies used surgi-
cal methods (Table 1). Indeed, in most of the studies, IAs
are surgically induced in large animals like rabbits or dogs
that are relatively simple to image (Fig. 2C). In contrast,
only 12% of the reviewed articles used methods in which
IAs are endogenously formed. Actually, endogenous IA
models mainly use small animals like rats (Fig. 2D) mak-
ing IA imaging more difficult due to the very small size of
the induced lesions [8].

Purpose of in vivo imaging of IAs in animal models

The large majority of IA imaging in animals was performed
in the reviewed studies for 4 reasons: basic research for IA
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A

Elastase-induced IA
model:

Right CCA ligation +
Elastase incubation

Venous/arterial
pouch grafting

1%1 %

9%

B Rabbits

E Dogs
O Rats
[ Swines
I Monkeys

[ Several type of animals

Total=150

Fig.2 IA animal models can be divided in surgical and endogenous
models. A Surgical IAs can be constructed using venous or arte-
rial pouch grafting or elastase incubation in combination with right
CCA ligation. B Endogenous IA models comprise models using IA
risk factors such as increased hemodynamic stress, vessel wall weak-

models, testing of new IA treatment modalities, research on
in vivo imaging of IAs, and research on IA pathophysiology
(Table 1 and Fig. 3A). The objectives of 3 studies was classi-
fied as “other” as they could not be categorized in the above
classes. The vast majority of the studies included in this review
focused on testing new IA treatment options (Fig. 3A). Indeed,
imaging is essential during coiling or flow diverter implantation
and later to check the effectiveness of the treatment over time.
A imaging is also instrumental in research on IA animal mod-
els as it allows for the visualization and characterization of IA
morphology and IA patency surveillance over time. Moreover,
in vivo imaging of IAs also helps to understand IA pathophysi-
ology better as it allows to follow IA size and morphology from
IA initiation to rupture, for instance. Thus, in vivo imaging of
IAs is crucial in animal models. Actually, 17% of reviewed
articles explicitly aimed at research on IA imaging itself.

Description of the IA in vivo imaging techniques

The different imaging modalities found in the reviewed
articles were classified in 6 different imaging techniques:

B

Increased L/ Y l ¥, Vessel wall weakening:
hemodynamic stress: ) BAPN diet
CCA ligation [

i El injection
Creation of new astase injectio

bifurcation

Induced hypertension:
RA ligation

High salt diet

DO

DOCA pellet

Bl Rabbits
[ Dogs
[ Rats
B Mice
B Monkeys

[ Several type of animals

Total=20

ening, induced hypertension, or genetic modifications. C and D The
distribution of animal species is different between surgical (C) and
endogenous (D) IA animal models in the 170 reviewed studies. Rab-
bit is the most frequently used animal for surgically constructed IAs,
whereas rats are more frequently used in endogenous IA models

conventional catheter angiography, computed tomogra-
phy angiography (CTA), magnetic resonance angiography
(MRA), hemodynamic imaging, optical coherence tomog-
raphy (OCT), and fluorescence imaging. Pros and cons of
these imaging modalities have been highlighted (Table 2).
These advantages and disadvantages are likely responsible
for the specific distribution of the imaging modalities among
the different animal species, with conventional catheter angi-
ography being most frequently used in larger animals, and a
preference for MRA was found in smaller animals (Fig. 3B).

¢ Conventional catheter angiography

Catheter angiography is the conventional angiography
method that uses X-ray and injection of a nonionic iodi-
nated contrast agent, usually through an arterial catheter,
to image blood vessels [190]. In 1954, German and Black
[13] were the first to image a constructed IA in the CCA
of dogs, using 2D catheter angiography. Until 1993, cath-
eter angiography was the only available modality to image

@ Springer
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A

Basic research for 1A
model

Testing of new 1A
treatment modalities

Research on in vivo
imaging of IAs

Research on |IA
pathophysiology

Other

Total=170

Conventional catheter
angiography
Magnetic resonance
angiography

Swines Dogs

B D ODDO® O

Fig. 3 Purpose, distribution among species, and evolution of the dif-
ferent in vivo IA imaging modalities in animal studies. A Reasons for
IA in vivo imaging in animals. B Distribution of the use of imaging
modalities in swines, dogs, rabbits, rats, and mice. The two studies

IAs in animal models (Fig. 3C). Imaging improvements
continued [25] and led Wakhloo et al. [36] to use DSA to
image IAs in CCA of dogs in 1994. DSA is a 2D catheter
angiography that uses subtraction of precontrast images to
obtain an image of the vasculature only [191]. From then on,
DSA became the gold standard to detect IAs in human [192]
and in animal models [18]. Actually, 84% of the reviewed
studies used conventional catheter angiography (Table 1).
Indeed, as mentioned before, the most frequent purpose to
use in vivo imaging of IAs in animal studies is to test new
endovascular treatment modalities, and 97% of these studies
use catheter angiography. Conventional catheter angiogra-
phy allows the correct assessment of IA occlusion following
IA endovascular treatment. DSA in animal models is mainly
performed through the femoral artery. However, it can also
be performed through the central artery of the ear in rabbits
[78] or through veins (e.g., ear vein) [18, 48, 50, 65, 71,
73, 91]. Intra-venous DSA (i.v. DSA) is less invasive and
allows for repeated imaging compared to intra-arterial DSA
(i.a. DSA), which requires exposure, cutdown, and ligation
of arteries making serial imaging sessions more difficult
and risky [50, 71]. Doerfler et al. [18] showed that i.v. DSA
is as precise as i.a. DSA to efficiently predict IA size and
geometry in the rabbit elastase IA model. However, other
studies revealed that i.v. DSA underestimates the IA dimen-
sion [112] or is insufficient to assess aneurysm occlusion

@ Springer
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Hemodynamic imaging
Computed tomography
angiography

Optical coherence
tomography
Fluorescence imaging

with monkeys used conventional catheter angiography to image IAs
(not shown). C Number of published articles among the years using
in vivo imaging in IA animal models

after flow diverter treatment [166] compared to i.a. DSA.
The authors postulated that this difference results from a
decreased contrast agent aneurysm filling due to contrast
agent dilution in the bloodstream and/or decreased velocity
during i.v. DSA. Moreover, it should be noted that, despite
its decreased invasiveness, i.v. DSA did not replace i.a. DSA
in clinic because of the decreased contrast density and the
vessel overlapping visualization due to the simultaneous
imaging of veins and arteries [193].

3D rotational DSA (3D-DSA) images cerebral vessels from
all viewpoints, thereby increasing precision for 3D geometry
assessment of arteries [194]. This allows for visualization of
vascular modeling to create precise vascular devices [66, 133].
It is assumed that 3D-DSA offers the greatest resolution com-
pared to other imaging techniques [112]. However, it has been
shown in human studies that DSA displays a better resolution
of small vessels, which allows a greater sensitivity in small
IAs than with 3D-DSA [192].

As it provides an very high resolution allowing the visu-
alization of small cerebral vessels (< 1 mm), e.g., the anterior
choroidal artery [195], DSA continues to be the gold stand-
ard [7, 18]. However, DSA remains an invasive method using
radiation and injection of contrast agent through a catheter
and is associated with a complication rate of 0.04-0.30% in
humans [194]. Therefore, less invasive imaging methods rep-
resent a safe alternative in human and animal models [18].
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Table2 Advantages and
disadvantages of the different
in vivo imaging modalities

Imaging modalities

Advantages

Disadvantages

Conventional i
ca}theter . ——  Hich resolution * Jonizing radiation
angiography g . . * Contrast agent
* 3D imaging possible L
Injection
Computed S * Venous contrast agent
tomography > * Less ionizing radiation | injection
angiography * Good resolution * Presence of artifacts
* 3D imaging possible « Insufficient resolution
< MS-CTA )( FD_CTA) in small IAs (< 3mm)
Magnetic % * No ionizing radiation | Contrast agent venous
resonance » 1 * Optimal for long-term iniection (C%E-MRA)
angiography /"‘ﬁ | studies ) ;
* Presence of artifacts

* 3D imaging possible
* Molecular imaging
possible

« Insufficient resolution
in small [As (< 3mm)

Hemodynamic

<TOF MRA> <CE MRA) (PC MRA
imaging

(o) wﬁ

* Visualization of blood
flow

* No precise A anatomy
visualization (Doppler)

Lirel * No ionizing radiation
coherence * High resolution * No [A anatomy
tomography * Precise assessment of | visualization
endovascular treatment
Fluorescence
imaging * No ionizing radiation * Invasive artery

* Low cost

dissection

e Computed tomography angiography

CTA uses X-ray and contrast agent injection through a
venous catheter to image the vasculature and allows for a
60% decrease of ionizing radiation making CTA less inva-
sive than conventional catheter angiography [7]. This imag-
ing modality uses the rotation of a CT scanner in combina-
tion with a motile patient table that allows a continuous 2D
or 3D image acquisition at a higher speed than conventional
catheter angiography [196, 197]. The first use of CTA in an
IA animal model was described in 2004, and only 10 stud-
ies included in this review used CTA (Table 1 and Fig. 3C).
Human studies revealed that CTA has an insufficient resolu-
tion in small IAs (diameter <3 mm) [198]. However, several
studies showed that CTA is as efficient as DSA to detect IAs
in animal models [18, 79, 80, 102, 142].

Different types of detectors can be used with CT: multi-
slice detectors (MS-CTA) and flat-detectors (FD-CTA),
which have been introduced later and use a smaller detector
element size. Struffert et al. [102] showed that CT with both
detectors allowed for measurement of similar IA dimensions

in the rabbit elastase model, but images seem to be better
delineated using FD-CTA due to a higher spatial resolution.

A major limitation of CTA in human is the presence
of artifacts when clips, stent, or coils are used [192]. Yet,
Dudeck et al. [79] did not observe such effects in CCA aneu-
rysms constructed in swine and coiled with a liquid embolic
agent. Moreover, Ott et al. [142] observed limited coil arti-
facts with FD-CTA in comparison with MS-CTA. In addi-
tion, metal reduction software used on high-resolution CT
scans considerably decreases stent artifacts [147].

e Magnetic resonance angiography

Magnetic resonance imaging allows for less invasive 2D
and 3D angiography using powerful magnetic fields without
ionizing radiation nor iodine-based contrast agent injection
[199]. This less invasive imaging modality makes MRA an
optimal instrument for serial imaging in long-term studies.
Indeed, safe serial imaging in long-term studies using MRA
was performed in dogs [113], mouse [143, 156, 174], rats
[96, 136, 137, 181], and rabbit elastase IA models [18, 169].

@ Springer
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Several studies in human suggest that MRA could be
considered equivalent to DSA to detect IAs [7]. However,
it has also been shown that the resolution was insufficient
to detect small IAs (<3 mm) [7]. Sixteen percent of the
animal studies included in this review used MRA (Table 1),
and this imaging modality was more often used in the last
10-15 years (Fig. 3C). In 1996, Kirse et al. [38] were the
first to image IAs in a surgical rat model using MRA. In
this study, however, DSA showed a better resolution than
MRA. Different MRA methods are available: time of flight
MRA (TOF-MRA), phase contrast MRA (PC-MRA), or
contrast-enhanced MRA after venous contrast agent injec-
tion (CE-MRA) [200]. Krings et al. [56] imaged IAs in 5
rabbits using the elastase model with the 3 afore-mentioned
MRA methods. They observed that, in contrast to CE-MRA,
TOF-MRA and PC-MRA were not sufficient to detect all
constructed IAs and that the gold standard DSA detected all
IAs. The authors postulated that this can be explained by the
induced turbulent blood flow which results in signal loss in
TOF-MRA and PC-MRA. This effect is overcome in CE-
MRA, which uses contrast agents and images vasculature
regardless of blood flow. Another study confirmed that CE-
MRA is as good as DSA to detect IAs in animal models [59].

Paramagnetic objects, such as coil, may disturb the mag-
netic field and therefore create artifacts on MRA images.
Therefore, Spilberg et al. [113] evaluated the signal overes-
timation, i.e., the created artifact, of CCA IAs in dogs using
CE-MRA during 28 weeks after coiling. They described a
gradual decay of the signal overestimation until 4 weeks
post-surgery to reach a 25% decrease. Moreover, as for CTA,
Dudeck et al. [79] did not report any artifact when imaging
swine CCA IAs coiled with a liquid embolic agent.

MRA lacks resolution with endogenous IAs especially
in small animals like rats or mice. Therefore, few studies
using endogenous IA animal models used MRA (Table 1).
In 2015, using MRA, Makino et al. [143] were able to
detect a large aneurysm induced in a mouse cerebral artery
after elastase injection in the cerebrospinal fluid. However,
because of their small size, most endogenous IAs are impos-
sible to image with MRA despite huge improvement in MRI
technology with the development of 7 T or even 9.4 T MRI.
Thus, most studies use MRA not to image IAs, but rather
to image vascular remodeling in the circle of Willis or to
determine intra-arterial hemodynamics using computational
fluid dynamics (CFD) analyses [146, 156, 168].

Furthermore, as IAs with thin walls are associated with an
increased risk of rupture, MRA has also been used to meas-
ure IA wall thickness in the rabbit venous pouch IA model
[139]. Unfortunately, it appeared that 3 T MRI overestimates
the wall thickness and that a better resolution is needed to
study differences of < 0.4 mm in wall thickness. MRI can
also be used to study vessel wall enhancement (VWE) after
contrast agent injection in IA animal models. Indeed, in a

@ Springer

rabbit elastase model, VWE was observed and correlated
positively with the number of inflammatory cells [169].
Moreover, molecular imaging can be performed in animal
models using MRA. Thus, IA wall inflammation was imaged
in the rabbit elastase model after lipopolysaccharide injec-
tion using an MRI contrast agent targeting myeloperoxidases
[101, 138]. In addition, Shimizu et al. [181] imaged feru-
moxytol contrast agent accumulation in a rat A wall with
macrophage infiltration. Ferumoxytol is considered a true
blood pool contrast agent and in addition can leak through
permeable endothelium and is taken up by macrophages
[201]. With targeted MRI contrast agent, it is thus possible
to visualize an excess of inflammatory cells, but whether the
method is sensitive enough for other potential A instability
markers remains to be proven. In this respect, it is interesting
to mention that Zhang et al. [183] used a nanoplatform (zinc
and iron oxide nanoparticles targeting the platelets) to target
thrombus in the rabbit elastase IA model.

¢ Hemodynamic imaging

Hemodynamic imaging is a functional method that
measures active changes in hemodynamic parameters,
which is fundamental in studies using IA animal models as
disturbed blood flow patterns control IA pathophysiology.
For instance, PC-MRA is a hemodynamic imaging modal-
ity that allows for the quantitative measurement of blood
flow velocity [200] and has been used in IA animal mod-
els [56, 109, 113, 181]. Doppler ultrasonography, which is
another modality that measures the velocity of flow [202],
was the first imaging technique enabling the study of intra-
aneurysmal hemodynamics in such animal models. In 1993,
Hashimoto [31] used this modality to measure blood flow
velocity in a rabbit venous pouch IA model. Since then, this
technique has been used in a number of IA studies to study
blood flow velocity in cerebral arteries or within the IA and
to check IA patency over time or after treatments [41, 42,
44,91, 154, 176, 178].

Other hemodynamic imaging methods like CFD
started to be used in animal models of IAs. CFD uses ves-
sel geometry obtained with high-resolution 3D imaging
to numerically simulate complex vascular hemodynam-
ics [203]. Already in 2007, Kadirvel et al. [88] simu-
lated hemodynamic forces (e.g., WSS), using CFD from
3D-DSA images in the elastase rabbit model. Interestingly,
they found a correlation between altered WSS and mark-
ers of vascular remodeling. In IA animal models, CFD
has been simulated from 3D-DSA [88, 98, 106, 109, 110,
123, 131-134, 144, 146] and 3D-MRA [109, 156, 181].
In the principle, CFD can also be generated from 3D-CT,
but no studies using IA animal models were found. CFD
simulations in IA animal models allowed for a better
understanding of IA pathophysiology and participated
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in research for new IA treatments. Indeed, Cebral et al.
[131, 134] used CFD to study hemodynamic patterns after
flow diversion treatment. CFD analyses were also used to
study hemodynamics in induced IAs [109, 144] and even
confirmed that IA hemodynamics are similar in human
IAs and elastase-induced IAs in rabbits [106]. Moreover,
several studies highlighted correlations between dynamic
changes in hemodynamics and vascular remodeling [88,
91, 98, 110, 132, 133, 156].

High-resolution 3D images are needed to generate CFD,
which may be difficult to obtain in small animals. Therefore,
it could be an option to use vascular casts created after the
sacrifice of animals to re-create a precise 3D arterial geom-
etry and therefore a precise CFD, as shown by Tutino et al.,
for instance [146].

e Optical coherence tomography

OCT is a high-resolution and less invasive optical
imaging technique that uses light produced by a vascu-
lar probe (e.g., linear scanning probes or MEMS-based
probes [204]) to obtain high-resolution tomography of
tissues like eyes or blood vessels [205]. The near-infra-
red light reflects on tissue and the depth in which this
reflection occurred is calculated using the delays of the
back-reflected wave [205]. Indeed, OCT uses an interfer-
ometer composed of a sample arm and a reference arm
to measure the interference granting a high-resolution
imaging modality [204]. In 2005, Thorell et al. [67] used
bench-TOP OCT on ex vivo dog-coiled surgical CCA
aneurysms. They could easily identify the IA neck and
coil pattern and obtained a good correlation between
OCT images and histological findings. OCT was then
used in vivo in induced IAs in dogs, rabbits, and rats
(Table 1). OCT is mainly used for the evaluation of
endovascular devices [161-163, 171, 173], i.e., IA reca-
nalization following an incomplete coil occlusion, flow
diverter malposition, or neointimal hyperplasia, which
are important limitations of these treatment modalities.
However, OCT does not allow the visualization of the
IA form and size. Interestingly, Liu et al. [165] were
able to observe internal and external elastic lamina dis-
ruption using OCT in elastase-induced IAs in rabbits.
Moreover, Fries et al. [177] found OCT more sensitive
as it allowed the detection of 18 residual aneurysms after
flow diverter implantation in the rabbit elastase model
as compared to DSA, which allowed the detection of 12
residual aneurysms only. More recently, Vardar et al.
[182] showed the potential of high-frequency OCT (HF-
OCT) in the rabbit elastase model to assess the correct
IA occlusion after endovascular treatment as well as
during follow-up imaging.

¢ Fluorescence angiography

The development of fluorescence microscopy in the
beginning of the 1900s brought the possibility to observe
emitted fluorescence after the excitation of a fluorophore
in cultured cells or on slides [206]. Furthermore, this imag-
ing modality can also be applied in vivo to image cells and
tissues in IA animal models for instance. Indeed, in 1993,
Nakatani et al. [30] used fluorescent particles to visualize
blood flow in an IA rat model. More recently, a transgenic
rat line expressing a green fluorescent protein specifically
in endothelial cells [164, 179] was used to visualize the
wall motion in IAs. Moreover, fluorescence angiography
using fluorescein injection has been described to visualize
blood flow and assess IA patency in rat and rabbit models
[167, 170]. This imaging technique is not associated with
increased mortality or morbidity and shows high contrast
and sensitivity for a low-cost imaging modality. However,
it is an invasive method as the artery and IA have to be dis-
sected to be exposed to the light source.

¢ Combination of imaging modalities

A total of 44 reviewed articles (i.e., 26% of the reviewed
articles) combined several imaging modalities (see Table 1).
Obviously, a large portion of these studies used numerous
modalities to compare different imaging techniques and
research on in vivo imaging. However, other studies com-
bined several imaging techniques to use the advantages of
the different imaging modalities and acquire more infor-
mation on the induced IAs. For instance, hemodynamic
parameters or IA patency can be measured using Doppler
ultrasonography and combined with conventional catheter
angiography or MRA to image accurately the morphology
and size of the [As. Moreover, DSA being the gold standard
IA imaging modality, 38 reviewed articles combined DSA
with one or several other imaging techniques to visualize TA
in animals. Of note, DSA is commonly used in animals dur-
ing the surgical construction of IAs and in combination with
CTA, MRA, or OCT after IA construction to obtain more
detailed information on the morphology of the IA.

Discussion

Purpose of in vivo imaging of IAs in animal models
The large number of articles included in this review using
surgical IA animal models reveals the paramount importance
of in vivo IA imaging in such models. Indeed, to surgically

construct and check the correct IA patency over time, in vivo
imaging is essential. As size of surgically created IAs in
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animals is similar to the human ones, imaging techniques
used in clinical settings can be employed in these large ani-
mal models. Moreover, surgical models are mainly used to
test endovascular procedures, and in vivo imaging is neces-
sary to assess treatment efficacy.

In contrast, only 12% of the reviewed articles use endog-
enous A animal models. Indeed, in vivo imaging of IAs
seems to be less often used in endogenous animal mod-
els as discussed in a recent review by Tutino et al. [15].
They showed that only 7% of studies on endogenous IAs
in animals were combined with medical imaging. This lack
of use can be partially explained by the fact that in vivo
imaging is not essential in these studies. Indeed, most of
them aim to better understand IA pathophysiology and not
to test new endovascular treatment modalities. Therefore,
in vivo imaging is not essential as they can directly observe
the IA samples after animal euthanasia. Most studies report
using (immuno) staining to characterize IA wall changes
or observe artery bulging under a binocular microscope
or scanning electron microscopy of circle of Willis casts.
Furthermore, the lack of in vivo imaging in studies using
endogenous models can be explained by an insufficient
image resolution to visualize endogenously induced IAs of
small size. Indeed, spatial resolution of the commonly avail-
able modalities to image [As in animals is limited: DSA
(<0.5 mm [207]), CT (~1 mm [7]), and MRA (1-2 mm
[208]). Yet, in vivo imaging has greatly improved, and
several high-resolution imaging modalities exist: 3D-DSA
(0.15 mm [209]), high-resolution CTA (0.25 mm [8]), high-
resolution MRA (50 um [156]), as well as HF-OCT (10 um
[182]). Small rodents like rats and mice, which are mostly
used for endogenous IA models, are often exposed to MRA
and hemodynamic imaging and less frequently to conven-
tional catheter angiography, which is mainly used in bigger
animal models (Fig. 3B). As diverse IA imaging modalities
are nowadays more generally available (Fig. 3C), imaging
of endogenously induced IAs has become more accessible.

Despite these limitations of in vivo imaging of IAs in
small animal models, there are many good reasons to per-
form in vivo imaging in rodents like mice or rats. Indeed,
without in vivo imaging, endogenous IAs can only be stud-
ied at the sacrifice of the animal, whereas in vivo imaging
permits the observation of IA size, shape, and hemodynam-
ics at different stages during IA development. Studies moni-
toring IA development require endogenous animal models
because surgical models do not reflect the natural IA for-
mation and progression. Studies with follow-up imaging
would lead to a better understanding of the morphological
IA changes appearing before IA rupture. Such knowledge
would greatly help in clinical follow-up imaging to deter-
mine whether an unruptured IA is at risk of rupture or not
and whether it needs to be secured or not. Moreover, link-
ing in vivo imaging and histology could also greatly help
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in this decision process. Indeed, essential changes in wall
composition have been identified in ruptured human IAs
when compared to unruptured IAs. Increased inflammatory
cell infiltration, luminal thrombosis, and less smooth muscle
cells and collagen fibers have been observed in wall of rup-
tured human IAs [210, 211]. The emergence of molecular
imaging could allow for the in vivo visualization of these
changes in the IA wall. So far, molecular imaging using tar-
geted MRI contrast agents allowed for the visualization of
the inflammation-associated tissue marker, myeloperoxidase
[101, 138], macrophage infiltration using ferumoxytol [181],
and thrombus using a nanoplatform targeting the platelets
[183] in animal TA models. The development of other tar-
geted MRI contrast agents would critically help to elucidate
modifications in the vessel wall during IA development and
prior to rupture. During MRI, the observation of VWE,
which reflects a gadolinium-based contrast agent accumu-
lation in the aneurysm wall, has been associated with an
increased risk of IA rupture in human. The pathophysiologi-
cal reasoning behind the occurrence of VWE is unknown,
but enhanced permeability of arterial endothelium, excessive
macrophage infiltration, or presence of (leaky) vasa vasorum
have been proposed as potential mechanisms [212]. Studies
using in vivo imaging and animal models of IA could help
to elucidate this phenomenon, like the study of Wang et al.
[169].

Therefore, in vivo IA imaging should be used more
frequently in studies using endogenous animal models.
Indeed, this would help to better understand morphologi-
cal and hemodynamic changes of IAs during their evolution
before rupture. Moreover, MRA molecular imaging allows
for the observation of in vivo wall modifications. Thus, it
is essential that in vivo imaging continues to improve to
obtain images of small IAs in endogenous animal models at
sufficient resolution.

Comparison of the IA in vivo imaging techniques

In vivo imaging is important for studies using surgical and
endogenous IA animal models, and many imaging tech-
niques are now available (Fig. 3C). All imaging modalities
have advantages and disadvantages (Table 1), and it is essen-
tial to choose the most appropriate modality.

All imaging modalities do not provide the same resolu-
tion, which is a first consideration. Based on human data,
conventional MRA and CTA exhibit an insufficient resolu-
tion for IAs having a diameter < 3 mm [7]. Therefore, these
techniques are not appropriate for endogenously induced
IAs in small animals which require high-resolution imag-
ing. DSA is the gold standard technique as it displays a
high resolution that can further be increased with 3D-DSA
[8]. The resolution of CTA seems to be increased when
combined with a flat detector [102]. MRA resolution
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can be improved using a higher magnetic field (7 T or
even 9.4 T), which has been shown to allow for accurate
imaging of the rat circle of Willis [156, 168, 174]. More
recently, HF-OCT showed a great potential to assess
appropriate treatment of IAs, thanks to a very high-spatial
resolution close to 10 pm [182]. CFD uses high-resolution
3D imaging to simulate the flow at every position in the
IA and adjacent arteries. In comparison, Doppler ultra-
sonography measures the average blood flow velocity for
the entire IA, which is less precise for A studies. Human
studies comparing both techniques show that WSS meas-
ured by Doppler ultrasonography is consistently smaller
compared to CFD simulations [213].

The choice of the imaging modality should obviously take
the invasiveness of the procedure into consideration. Indeed,
when several imaging modalities allow for IA visualization
at sufficient resolution for the goal of the study, the less inva-
sive technique should be selected. DSA, despite being the
gold standard technique, remains the more invasive modal-
ity. However, the use of a venous instead of an arterial cath-
eter decreases DSA invasiveness. Fluorescence angiography
is also invasive, as it requires artery dissection. CTA is a
less invasive technique as the ionizing radiation is lower and
as the contrast agent is injected through a venous catheter.
Finally, MRA and OCT are the less invasive in vivo imaging
modalities for IAs as they do not require ionizing radiation
nor contrast agent injection except for CE-MRA that requires
a venous contrast agent injection. Long-term and repetitive
studies should obviously use the less invasive IA in vivo
imaging modality. Doerfler et al. [18] showed that induced
IAs in the rabbit elastase model can be serially imaged dur-
ing a long-term study using i.a. DSA, i.v. DSA, CTA, and
MRA. Therefore, the less invasive CTA and MRA modali-
ties should be preferred over the more invasive techniques.

IA patency, with or without endovascular treatment, can
be evaluated using different in vivo imaging modalities. DSA,
CTA, MRA, and Doppler ultrasonography are routinely used,
and OCT, which is a more recent high-resolution technique,
is very efficient to assess IA patency accurately [182]. As dis-
cussed above, DSA is the more invasive technique and should
be avoided when possible. OCT being non-invasive and dis-
playing a high resolution should be preferred. However, this
imaging modality does not allow for global morphology visu-
alization of IAs and may be combined with another imaging
modality. The presence of artifacts in some imaging modali-
ties due to endovascular treatments should also be consid-
ered. Indeed, artifacts in presence of clips, stent, or coils can
be observed in CT and MRA [192]. Metal artifact reduction
software are available for clinical CT [214]; Yuki et al. [147]
successfully decreased CT stent artifacts in a swine model of
IAs. Moreover, Spilberg et al. [113] observed a decay in MRA
artifact until 4 weeks post-surgery, which could be linked to
IA thrombus modifications.

This review did not discuss 4D imaging because only
2 reviewed studies used time-resolved 4D imaging, which
combined sequentially obtained 3D images [108, 109]. How-
ever, such imaging techniques are known to significantly
improve imaging in clinic. For instance, 4D-DSA could lead
to a voxel volume of 0.008mm? [215]. Temporal resolution
is an important parameter to consider in time-resolved imag-
ing, as it will determine the capability of the imaging modal-
ity to distinguish fast physiological temporal processes.

Limitations of the study

Despite a careful database search following the PRISMA
guidelines and using precise MeSH terms and additional
hand searches, this systematic review might have missed
some studies using in vivo imaging in A animal models.
Therefore, we cannot exclude a slight bias in the distribution
of the different IA animal models and imaging modalities.

Conclusion

In vivo imaging of IAs has tremendously improved in recent
years and should be used more frequently in IA animal mod-
els. However, all imaging techniques have advantages and
disadvantages, and the most appropriate imaging modality
should be chosen. The imaging resolution and invasiveness
should be considered with respect to the goal of the study.
In particular, studies aiming to test endovascular treatment
should consider ability to assess IA patency of the imag-
ing modality and the presence of potential metal artifacts.
Research to improve imaging modalities should continue, in
particular in the field of molecular imaging to better under-
stand IA physiopathology.
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