Skip to main content

Advertisement

Log in

A systematic review and meta-analysis of factors involved in bone flap resorption after decompressive craniectomy

  • Review
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

Decompressive craniectomy (DC) is effective in controlling increasing intracranial pressure determined by a wide range of conditions, mainly traumatic brain injury (TBI) and stroke, and the subsequent cranioplasty (CP) displays potential therapeutic benefit in terms of overall neurological function. While autologous bone flap (ABF) harvested at the time of DC is the ideal material for skull defect reconstruction, it carries several risks. Aseptic bone flap resorption (BFR) is one of the most common complications, often leading to surgical failure. The aim of our study was to systematically review the literature and carry out a meta-analysis of possible factors involved in BFR in patients undergoing ABF cranioplasty after DC. A systematic review and meta-analysis was performed in accordance with the PRISMA guidelines. Different medical databases (PubMed, Embase, and Scopus) were screened for eligible scientific reports until April 30th 2021. The following data were collected for meta-analysis to assess their role in BFR: sex, age, the interval time between DC and CP, the presence of systemic factors, the etiology determining the DC, CP surgical time, CP features, VP shunt placement, CP infection. Studies including pediatric patients or with less than 50 patients were excluded. Fifteen studies were included. There was a statistically significant increased incidence of BFR in patients with CPF > 2 compared to patients with CPF ≤ 2 (54.50% and 22.76% respectively, p = 0.010). TBI was a significantly more frequent etiology in the BFR group compared to patients without BFR (61.95% and 47.58% respectively, p < 0.001). Finally, patients with BFR were significantly younger than patients without BFR (39.12 ± 15.36 years and 47.31 ± 14.78 years, respectively, p < 0.001). The funnel plots were largely symmetrical for all the studied factors. Bone flap fragmentation, TBI etiology, and young age significantly increase the risk of bone resorption. Further studies are needed to strengthen our results and to clarify if, in those cases, a synthetic implant for primary CP should be recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Agrawal A, Sabharawal G, Rajendra P, Mathew T (2009) Characteristics of associated craniofacial trauma in patients with head injuries: an experience with 100 cases. J Emergencies Trauma Shock 2:89. https://doi.org/10.4103/0974-2700.50742

    Article  Google Scholar 

  2. Artico M, Ferrante L, Pastore FS, Ramundo EO et al (2003) Bone autografting of the calvaria and craniofacial skeleton. Surg Neurol 60:71–79. https://doi.org/10.1016/S0090-3019(03)00031-4

    Article  PubMed  Google Scholar 

  3. Bhaskar IP, Inglis TJJ, Lee GYF (2014) Clinical, radiological, and microbiological profile of patients with autogenous cranioplasty infections. World Neurosurg 82:e531–e534. https://doi.org/10.1016/j.wneu.2013.01.013

    Article  PubMed  Google Scholar 

  4. Bowers CA, Riva-Cambrin J, Hertzler DA, Walker ML (2013) Risk factors and rates of bone flap resorption in pediatric patients after decompressive craniectomy for traumatic brain injury. J Neurosurg Pediatr 11:526–532. https://doi.org/10.3171/2013.1.PEDS12483

    Article  PubMed  Google Scholar 

  5. Brommeland T, Rydning PN, Pripp AH, Helseth E (2015) Cranioplasty complications and risk factors associated with bone flap resorption. Scand J Trauma Resusc Emerg Med 23:75. https://doi.org/10.1186/s13049-015-0155-6

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chibbaro S, Vallee F, Beccaria K, Poczos P et al (2013) Impact de la cranioplastie sur l’hémodynamique cérébrale comme facteur pronostic de l’amélioration clinique chez les patients craniectomisés pour traumatisme crânien grave. Rev Neurol (Paris) 169:240–248. https://doi.org/10.1016/j.neurol.2012.06.016

    Article  CAS  Google Scholar 

  7. Corliss B, Gooldy T, Vaziri S, Kubilis P et al (2016) Complications after in vivo and ex vivo autologous bone flap storage for cranioplasty: a comparative analysis of the literature. World Neurosurg 96:510–515. https://doi.org/10.1016/j.wneu.2016.09.025

    Article  PubMed  Google Scholar 

  8. Dobran M, Nasi D, Polonara G, Paracino R et al (2020) Clinical and radiological risk factors of autograft cranioplasty resorption after decompressive craniectomy for traumatic brain injury. Clin Neurol Neurosurg 196:105979. https://doi.org/10.1016/j.clineuro.2020.105979

    Article  PubMed  Google Scholar 

  9. Dünisch P, Walter J, Sakr Y, Kalff R et al (2013) Risk factors of aseptic bone resorption: a study after autologous bone flap reinsertion due to decompressive craniotomy. J Neurosurg 118:1141–1147. https://doi.org/10.3171/2013.1.JNS12860

    Article  PubMed  Google Scholar 

  10. Elsalanty ME, Genecov DG (2009) Bone grafts in craniofacial surgery. Craniomaxillofac Trauma Reconstr 2:125–134. https://doi.org/10.1055/s-0029-1215875

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ewald C, Duenisch P, Walter J, Götz T et al (2014) Bone flap necrosis after decompressive hemicraniectomy for malignant middle cerebral artery infarction. Neurocrit Care 20:91–97. https://doi.org/10.1007/s12028-013-9892-4

    Article  PubMed  Google Scholar 

  12. Fan M, Wang Q, Sun P, Zhan S et al (2018) Cryopreservation of autologous cranial bone flaps for cranioplasty: a large sample retrospective study. World Neurosurg 109:e853–e859. https://doi.org/10.1016/j.wneu.2017.10.112

    Article  PubMed  Google Scholar 

  13. Fiorot JA Jr, Silva GS, Cavalheiro S, Massaro AR (2008) Use of decompressive craniectomy in the treatment of hemispheric infarction. Arq Neuropsiquiatr 66:204–208. https://doi.org/10.1590/S0004-282X2008000200012

    Article  PubMed  Google Scholar 

  14. Giese H, Meyer J, Unterberg A, Beynon C (2021) Long-term complications and implant survival rates after cranioplastic surgery: a single-center study of 392 patients. Neurosurg Rev 44:1755–1763. https://doi.org/10.1007/s10143-020-01374-4

    Article  PubMed  Google Scholar 

  15. Gosain AK, Gosain SA, Sweeney WM, Song L-S et al (2011) Regulation of osteogenesis and survival within bone grafts to the calvaria: the effect of the dura versus the pericranium. Plast Reconstr Surg 128:85–94. https://doi.org/10.1097/PRS.0b013e31821740cc

    Article  CAS  PubMed  Google Scholar 

  16. Göttsche J, Mende KC, Schram A, Westphal M et al (2020) Cranial bone flap resorption—pathological features and their implications for clinical treatment. Neurosurg Rev. https://doi.org/10.1007/s10143-020-01417-w

    Article  PubMed  PubMed Central  Google Scholar 

  17. Grant GA, Jolley M, Ellenbogen RG, Roberts TS et al (2004) Failure of autologous bone—assisted cranioplasty following decompressive craniectomy in children and adolescents. J Neurosurg Pediatr 100:163–168. https://doi.org/10.3171/ped.2004.100.2.0163

    Article  Google Scholar 

  18. Greene AK, Mulliken JB, Proctor MR, Rogers GF (2007) Primary grafting with autologous cranial particulate bone prevents osseous defects following fronto-orbital advancement. Plast Reconstr Surg 120:1603–1611. https://doi.org/10.1097/01.prs.0000282106.75808.af

    Article  CAS  PubMed  Google Scholar 

  19. Henry J, Amoo M, Murphy A, O’Brien DP (2021) Complications of cranioplasty following decompressive craniectomy for traumatic brain injury: systematic review and meta-analysis. Acta Neurochir (Wien) 163:1423–1435. https://doi.org/10.1007/s00701-021-04809-z

    Article  Google Scholar 

  20. Honeybul S, Ho KM (2016) Cranioplasty: morbidity and failure. Br J Neurosurg 30:523–528. https://doi.org/10.1080/02688697.2016.1187259

    Article  PubMed  Google Scholar 

  21. Im S-H, Jang D-K, Han Y-M, Kim J-T et al (2012) Long-term incidence and predicting factors of cranioplasty infection after decompressive craniectomy. J Korean Neurosurg Soc 52:396. https://doi.org/10.3340/jkns.2012.52.4.396

    Article  PubMed  PubMed Central  Google Scholar 

  22. Iwama T, Yamada J, Imai S, Shinoda J et al (2003) The use of frozen autogenous bone flaps in delayed cranioplasty revisited. Neurosurgery 52:591–596. https://doi.org/10.1227/01.NEU.0000047891.86938.46

    Article  PubMed  Google Scholar 

  23. Jeon JP, Heo Y, Kang S-H, Yang JS et al (2019) Retrospective chronologic computed tomography analysis of bone flap fusion and resorption after craniotomy and autologous cryopreserved cranioplasty. World Neurosurg 129:e900–e906. https://doi.org/10.1016/j.wneu.2019.06.088

    Article  PubMed  Google Scholar 

  24. Jin S, Kim S, Ha S, Lim D et al (2017) Analysis of the factors affecting surgical site infection and bone flap resorption after cranioplasty with autologous cryopreserved bone: the importance of temporalis muscle preservation. Turk Neurosurg. https://doi.org/10.5137/1019-5149.JTN.21333-17.2

    Article  Google Scholar 

  25. Joo JK, Choi JI, Kim CH, Lee HK et al (2018) Initial dead space and multiplicity of bone flap as strong risk factors for bone flap resorption after cranioplasty for traumatic brain injury. Korean J Neurotrauma 14:105. https://doi.org/10.13004/kjnt.2018.14.2.105

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kim JH, Hwang S-Y, Kwon T-H, Chong K et al (2019) Defining “early” cranioplasty to achieve lower complication rates of bone flap failure: resorption and infection. Acta Neurochir (Wien) 161:25–31. https://doi.org/10.1007/s00701-018-3749-8

    Article  Google Scholar 

  27. Klinger DR, Madden C, Beshay J, White J et al (2014) Autologous and acrylic cranioplasty: a review of 10 years and 258 cases. World Neurosurg 82:e525–e530. https://doi.org/10.1016/j.wneu.2013.08.005

    Article  PubMed  Google Scholar 

  28. Korhonen TK, Tetri S, Huttunen J, Lindgren A et al (2019) Predictors of primary autograft cranioplasty survival and resorption after craniectomy. J Neurosurg 130:1672–1679. https://doi.org/10.3171/2017.12.JNS172013

    Article  Google Scholar 

  29. Kriegel R, Schaller C, Clusmann H (2007) Cranioplasty for large skull defects with PMMA (polymethylmethacrylate) or Tutoplast® processed autogenic bone grafts. Zentralblatt für Neurochir - Cent Eur Neurosurg 68:182–189. https://doi.org/10.1055/s-2007-985857

    Article  CAS  Google Scholar 

  30. Kwiecien GJ, Rueda S, Couto RA, Hashem A et al (2018) Long-term outcomes of cranioplasty. Ann Plast Surg 81:416–422. https://doi.org/10.1097/SAP.0000000000001559

    Article  CAS  PubMed  Google Scholar 

  31. Lee JH, Chough CK, Choi HJ, Ko JK et al (2019) Bone flap changes after cranioplasty using frozen autologous bone flaps: a three-dimensional volumetric reconstruction study. Yonsei Med J 60:1067. https://doi.org/10.3349/ymj.2019.60.11.1067

    Article  PubMed  PubMed Central  Google Scholar 

  32. Liang ES, Tipper G, Hunt L, Gan PYC (2016) Cranioplasty outcomes and associated complications: a single-centre observational study. Br J Neurosurg 30:122–127. https://doi.org/10.3109/02688697.2015.1080216

    Article  PubMed  Google Scholar 

  33. Maas AIR, Menon DK, David Adelson PD, Andelic N et al (2017) Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research. Lancet Neurol 16:987–1048. https://doi.org/10.1016/S1474-4422(17)30371-X

    Article  PubMed  Google Scholar 

  34. Malcolm JG, Mahmooth Z, Rindler RS, Allen JW et al (2018) Autologous cranioplasty is associated with increased reoperation rate: a systematic review and meta-analysis. World Neurosurg 116:60–68. https://doi.org/10.1016/j.wneu.2018.05.009

    Article  PubMed  Google Scholar 

  35. Malcolm JG, Rindler RS, Chu JK, Chokshi F et al (2018) Early cranioplasty is associated with greater neurological improvement: a systematic review and meta-analysis. Neurosurg 82:278–288. https://doi.org/10.1093/neuros/nyx182

    Article  Google Scholar 

  36. Malcolm JG, Rindler RS, Chu JK, Grossberg JA et al (2016) Complications following cranioplasty and relationship to timing: a systematic review and meta-analysis. J Clin Neurosci 33:39–51. https://doi.org/10.1016/j.jocn.2016.04.017

    Article  PubMed  Google Scholar 

  37. Martin KD, Franz B, Kirsch M, Polanski W et al (2014) Autologous bone flap cranioplasty following decompressive craniectomy is combined with a high complication rate in pediatric traumatic brain injury patients. Acta Neurochir (Wien) 156:813–824. https://doi.org/10.1007/s00701-014-2021-0

    Article  Google Scholar 

  38. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6:e1000097. https://doi.org/10.1371/journal.pmed.1000097

    Article  PubMed  PubMed Central  Google Scholar 

  39. Morina A, Kelmendi F, Morina Q, Dragusha S et al (2011) Cranioplasty with subcutaneously preserved autologous bone grafts in abdominal wall-experience with 75 cases in a post-war country Kosova. Surg Neurol Int 2:72. https://doi.org/10.4103/2152-7806.81735

    Article  PubMed  PubMed Central  Google Scholar 

  40. Movassaghi K, Ver Halen J, Ganchi P, Amin-Hanjani S et al (2006) Cranioplasty with subcutaneously preserved autologous bone grafts. Plast Reconstr Surg 117:202–206. https://doi.org/10.1097/01.prs.0000187152.48402.17

    Article  CAS  PubMed  Google Scholar 

  41. Mustroph CM, Malcolm JG, Rindler RS, Chu JK et al (2017) Cranioplasty infection and resorption are associated with the presence of a ventriculoperitoneal shunt: a systematic review and meta-analysis. World Neurosurg 103:686–693. https://doi.org/10.1016/j.wneu.2017.04.066

    Article  PubMed  Google Scholar 

  42. Piedra MP, Thompson EM, Selden NR, Ragel BT et al (2012) Optimal timing of autologous cranioplasty after decompressive craniectomy in children. J Neurosurg Pediatr 10:268–272. https://doi.org/10.3171/2012.6.PEDS1268

    Article  PubMed  Google Scholar 

  43. Polin RS, Shaffrey ME, Bogaev CA, Tisdale N et al (1997) Decompressive bifrontal craniectomy in the treatment of severe refractory posttraumatic cerebral edema. Neurosurg 41:84–94. https://doi.org/10.1097/00006123-199707000-00018

    Article  CAS  Google Scholar 

  44. Qiu W, Guo C, Shen H, Chen K et al (2009) Effects of unilateral decompressive craniectomy on patients with unilateral acute post-traumatic brain swelling after severe traumatic brain injury. Crit Care 13:R185. https://doi.org/10.1186/cc8178

    Article  PubMed  PubMed Central  Google Scholar 

  45. Rashidi A, Sandalcioglu IE, Luchtmann M (2020) Aseptic bone-flap resorption after cranioplasty - incidence and risk factors. PLoS ONE 15:e0228009. https://doi.org/10.1371/journal.pone.0228009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schoekler B, Trummer M (2014) Prediction parameters of bone flap resorption following cranioplasty with autologous bone. Clin Neurol Neurosurg 120:64–67. https://doi.org/10.1016/j.clineuro.2014.02.014

    Article  PubMed  Google Scholar 

  47. Schuss P, Vatter H, Oszvald Á, Marquardt G et al (2013) Bone flap resorption: risk factors for the development of a long-term complication following cranioplasty after decompressive craniectomy. J Neurotrauma 30:91–95. https://doi.org/10.1089/neu.2012.2542

    Article  PubMed  Google Scholar 

  48. Schütz A, Murek M, Stieglitz LH, Bernasconi C et al (2019) ACE-inhibitors: a preventive measure for bone flap resorption after autologous cranioplasty? J Neurosurg 131:1607–1614. https://doi.org/10.3171/2018.6.JNS172605

    Article  Google Scholar 

  49. Shepetovsky D, Mezzini G, Magrassi L (2021) Complications of cranioplasty in relationship to traumatic brain injury: a systematic review and meta-analysis. Neurosurg Rev. https://doi.org/10.1007/s10143-021-01511-7

    Article  PubMed  PubMed Central  Google Scholar 

  50. Singleton Q, Vaibhav K, Braun M, Patel C et al (2019) Bone marrow derived extracellular vesicles activate osteoclast differentiation in traumatic brain injury induced bone loss. Cells 8:63. https://doi.org/10.3390/cells8010063

    Article  CAS  PubMed Central  Google Scholar 

  51. Stevenson S, Li XQ, Davy DT, Klein L et al (1997) Critical biological determinants of incorporation of non-vascularized cortical bone grafts. J Bone Jt Surg 79-A:1–16

    Article  Google Scholar 

  52. van de Vijfeijken SECM, Groot C, Ubbink DT, Vandertop WP et al (2019) Factors related to failure of autologous cranial reconstructions after decompressive craniectomy. J Cranio-Maxillofacial Surg 47:1420–1425. https://doi.org/10.1016/j.jcms.2019.02.007

    Article  Google Scholar 

  53. von der Brelie C, Stojanovski I, Meier U, Lemcke J (2015) Open traumatic brain injury is a strong predictor for aseptic bone necrosis after cranioplasty surgery: a retrospective analysis of 219 patients. J Neurol Surg Part A Cent Eur Neurosurg 77:019–024. https://doi.org/10.1055/s-0035-1558410

    Article  Google Scholar 

  54. Wen L, Lou H-Y, Xu J, Wang H et al (2015) The impact of cranioplasty on cerebral blood perfusion in patients treated with decompressive craniectomy for severe traumatic brain injury. Brain Inj 29:1654–1660. https://doi.org/10.3109/02699052.2015.1075248

    Article  PubMed  Google Scholar 

  55. Yadla S, Campbell PG, Chitale R, Maltenfort MG et al (2011) Effect of early surgery, material, and method of flap preservation on cranioplasty infections: a systematic review. Neurosurg 68:1124–1130. https://doi.org/10.1227/NEU.0b013e31820a5470

    Article  Google Scholar 

  56. Yeap M-C, Tu P-H, Liu Z-H, Hsieh P-C et al (2019) Long-term complications of cranioplasty using stored autologous bone graft, three-dimensional polymethyl methacrylate, or titanium mesh after decompressive craniectomy: a single-center experience after 596 procedures. World Neurosurg 128:e841–e850. https://doi.org/10.1016/j.wneu.2019.05.005

    Article  PubMed  Google Scholar 

  57. Zhang J, Peng F, Liu Z, Luan J et al (2017) Cranioplasty with autogenous bone flaps cryopreserved in povidone iodine: a long-term follow-up study. J Neurosurg 127:1449–1456. https://doi.org/10.3171/2016.8.JNS16204

    Article  PubMed  Google Scholar 

  58. Zhang Q, Yuan Y, Li X, Sun T et al (2018) A large multicenter retrospective research on embedded cranioplasty and covered cranioplasty. World Neurosurg 112:e645–e651. https://doi.org/10.1016/j.wneu.2018.01.114

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Data collection was performed by Martina Giordano, Valerio Maria Caccavella, and Francesco Signorelli. Data analysis was performed by Francesco Signorelli, Nicola Montano, and Valerio Maria Caccavella. The first draft of the manuscript was written by Nicola Montano, Alessandro Olivi, and Anselmo Caricato. Camilla Gelormini, Eleonora Ioannoni, Alessandro Olivi, and Nicola Montano supervised the work. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Valerio Maria Caccavella.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8212 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Signorelli, F., Giordano, M., Caccavella, V.M. et al. A systematic review and meta-analysis of factors involved in bone flap resorption after decompressive craniectomy. Neurosurg Rev 45, 1915–1922 (2022). https://doi.org/10.1007/s10143-022-01737-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-022-01737-z

Keywords

Navigation