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Abstract
Meningioma is the most common benign intracranial tumor and is believed to arise from arachnoid cap cells of arachnoid 
granulations. We sought to develop a population-based atlas from pre-treatment MRIs to explore the distribution of intracra-
nial meningiomas and to explore risk factors for development of intracranial meningiomas in different locations. All adults 
(≥ 18 years old) diagnosed with intracranial meningiomas and referred to the department of neurosurgery from a defined 
catchment region between 2006 and 2015 were eligible for inclusion. Pre-treatment T1 contrast-enhanced MRI-weighted 
brain scans were used for semi-automated tumor segmentation to develop the meningioma atlas. Patient variables used in 
the statistical analyses included age, gender, tumor locations, WHO grade and tumor volume. A total of 602 patients with 
intracranial meningiomas were identified for the development of the brain tumor atlas from a wide and defined catchment 
region. The spatial distribution of meningioma within the brain is not uniform, and there were more tumors in the frontal 
region, especially parasagittally, along the anterior part of the falx, and on the skull base of the frontal and middle cranial 
fossa. More than 2/3 meningioma patients were females (p < 0.001) who also were more likely to have multiple meningiomas 
(p < 0.01), while men more often have supratentorial meningiomas (p < 0.01). Tumor location was not associated with age 
or WHO grade. The distribution of meningioma exhibits an anterior to posterior gradient in the brain. Distribution of men-
ingiomas in the general population is not dependent on histopathological WHO grade, but may be gender-related.

Keywords Brain tumor · Meningioma · Tumor location · Predilection site · Tumor atlas

Introduction

Meningiomas account for approximately 1/3rd of all CNS 
tumors with an age-adjusted incidence rate of 8.58 per 
100,000 [30]. According to the World Health Organization 

classification of CNS tumors, meningiomas are classified 
into grades I, II, and III based on histopathological features 
such as cellularity, cell architecture, necrosis, and invasive-
ness of the tumor [22]. Meningiomas are believed to arise 
from arachnoid cap cells in the arachnoid granulations due to 
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the histological similarities between meningioma cells and 
arachnoid villi cells [36, 45]. The arachnoid granulations 
are unevenly distributed throughout the brain and across the 
venous system [3]. However, it is not known if the distribu-
tion of arachnoid granulations can be linked to the anatomi-
cal distribution of meningioma.

Meningiomas are clinically and radiologically often 
classified according to their location and several different 
anatomical classifications are in use. However, distribution 
of meningiomas has not been systematically studied from 
a population-based angle, and it is therefore not known 
whether meningiomas have special predilection sites with 
respect to different patient characteristics. Even so, different 
outcomes have been associated to different tumor locations 
[4], but relation between for instance WHO grade and tumor 
location, age and tumor location, sex and tumor location, or 
tumor volumes at diagnoses and tumor location has not been 
coherently investigated.

In the present population-based study, we sought to 
explore the anatomical distribution of meningioma with 
a map-based topographical approach to assess if there are 
predilection sites of meningioma and if so, explore different 
factors that are associated with tumor location.

Methods and materials

Study population

Adult patients, 18 years or older, with radiologically or 
histopathologically confirmed meningioma referred to the 
Department of Neurosurgery, St. Olavs University Hospi-
tal, from 2006 through 2015 were eligible for inclusion. 
Except for two patients who had emigrated from Norway, 
no patients were lost to follow-up. St. Olavs University 
Hospital serves exclusively as the neurosurgical center in a 
geographically defined catchment region with approximately 
750,000 inhabitants.

The diagnostic ICD-10 (International Classification of 
Diseases) codes D32 and R90 were used to screen potential 
eligibles for inclusion. In patients who had undergone sur-
gery, final histological diagnosis of meningioma was verified 
by review of pathology reports. Meningiomas were classi-
fied based on the 2007 WHO classification [21]. For patients 
who did not require early treatment, but were followed as 
outpatients with a wait-and-scan approach, either by the neu-
rosurgery department or at a local hospital, inclusion was 
based on a confirmed radiological diagnosis of meningioma, 
typically showing homogenous contrast enhancement and 
“dural tails” on T1-weighted MR images [7, 39].

Meningioma patients who previously had signed written 
informed consents to participation in a prospective, local 
brain tumor registry were all included. Additionally, patients 

who were dead (and who earlier had not declined participa-
tion in the registry) were also included. Moreover, patients 
who were not included in the tumor registry (mainly patients 
who had not undergone surgery but were followed as outpa-
tients) received a letter with information about the study and 
were given an opportunity to withdraw from the study with 
an active decline by returning a prepaid envelope. Exclu-
sion criteria were patients with active decline from study 
participation, patients where diagnostic MRIs were missing, 
patients who had undergone head CTs only (due to con-
traindications such as to pacemakers, pregnancy, and claus-
trophobia), and patients who had emigrated from Norway. 
Patients without earlier consent in the prospective registry 
who were not able to sign informed consents due to severe 
functional or cognitive deficits including severe psychiatric 
disorders were not asked to participate in the study. A flow 
chart of the inclusion/exclusion process is shown in Fig. 1.

Data collection

Demographic data was retrieved from our prospectively 
maintained surgical tumor registry at St. Olavs University 
Hospital, and the data were reviewed retrospectively. For 
non-operated patients and patients who were not included 
in the registry, retrospective reviews of electronical medical 

Fig. 1  Flowchart demonstrating number of patients with meningi-
omas included in developing the brain tumor atlas
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records (from St. Olavs University Hospital and seven local 
hospitals in our catchment region) were carried out. This 
included patients who were seen as outpatients only and/or 
those where referrals had been managed by letters giving 
advice on follow-up locally after diagnostic MRI scans were 
reviewed by the neurosurgical department.

The following data were retrieved: age, gender, WHO 
grade (I, II, or III) as verified by histopathology, radiological 
diagnosis, gross tumor location (supratentorial/infratento-
rial/both supra- and infratentorial tumor location), specific 
tumor location adapted from Youmans Neurological Surgery 
[44] with slight modification (Table 1), and tumor multi-
plicity (defined as tumors in separate locations in the same 
patient). Diagnostic/pre-treatment MRI scans were retrieved 
for segmentation of tumor volume  (cm3/ml). To determine 
whether the distribution of meningiomas was associated 
with menopausal status, female sex was dichotomized 
to < and ≥ 50 years old.

Development of brain tumor atlas

Preoperative contrast-enhanced T1-weighted MRI sequences 
acquired on 1.5- or 3-T scanners were retrospectively 
obtained from the hospital’s radiology database for patients 
who had undergone surgery. The first MRI sequence with 
radiologically confirmed meningioma was retrieved from 
the radiology database for patients that were followed up 
conservatively.

In each case, DICOM (Digital Imaging and Commu-
nications in Medicine) format images were anonymized 
and imported to 3D Slicer software version 4.5.0 (www. 
slicer. org) for semi-automatic tumor segmentation, and the 
T1-weighted gadolinium-enhanced MRI sequence volumes 
(axial, sagittal, or coronal axis view) with maximum number 
of image-slices per volume were uploaded to the workspace. 
For both solitary and multiple meningiomas, the entire path-
ological contrast-enhanced region of the tumor(s), includ-
ing the “dural tail,” was delineated and segmented with the 
competitive region-based segmentation “GrowCutEffect” 
module of the software [6]. Subsequently, if regions out-
side the tumor borders were automatically segmented by the 
software, the non-contrast-enhanced regions were manually 
adjusted to produce the final segmented tumor.

After completion of tumor segmentations, all the MR 
images and corresponding segmentations were spatially 
aligned with a pre-defined brain template from the Mon-
treal Neurological Institute (MNI—ICBM-152 average 
brain), which is used as standardized reference frame. Spe-
cifically, the ICBM2009a Nonlinear Symmetric was utilized, 
which is constructed from 152 healthy adult volunteers [9]. 
In particular, by utilizing the Advanced Normalization 
Tools (ANTs) framework [2] the segmented images were 
spatially aligned with the average brain by intensity-based 

registration. Initially, each of the images were pre-processed 
and skull-stripped to exclude non-brain structures using a 
neural network model pre-trained with over 300 samples. 
The architecture used is a regular 3D U-Net [38], and the 
implementation has been done using Keras and Tensorflow. 
The symmetric diffeomorphic technique from ANTs (named 
SyN) was used to register each of the image volumes to the 
template. Then, the resulting transformation was applied to 
the individual tumor segmentations in order to merge all 

Table 1  Patients and meningioma characteristics

a Adapted from Youmans Neurological surgery with slight modifica-
tions
b Pre-registration median volume  (cm3/ml)
c This constitutes only those who had surgery (n total = 261) with 
pathological reports. Non-surgical patients (n total = 341) had radio-
logically confirmed meningioma verified by neuroradiologists
d Overall tumor volume of all meningiomas

N %

Age—median (range) 62.4 (18.2–92.7) -
Sex

  Male 170 28.2
  Female 432 71.8
    Females < 50 years 83 19.2

Location
  Supratentorial 508 84.4
  Infratentorial 93 15.4
  Supra- and infratentorial 1 0.2
  Right/left/midline 277/252/73 46.0/41.9/12.1
  Multiple locations 60 10.0

Tumor location (specific)a

  Convexity 149 24.7
  Parasagittal 99 16.4
  Falx 46 7.6
  Tentorium 25 4.2
  Olfactory groove 47 7.8
  Sphenoid wing and clinoid 96 15.9
  Tuberculum sellae 23 3.8
  Cavernous sinus 13 2.2
  Cerebellum convexity 31 5.2
  CP angle 36 6.0
  Clival and petroclival 15 2.5
  Foramen magnum 6 1.0
  Optic n. and orbital 13 2.2
  Intraventricular 1 0.2
  Pure intraosseus 2 0.3

Tumor volume (range)b 6.2 (0.1–168.0)d

  Surgical treatment 18.8 (0.7–168.0) -
  Conservative management 2.9 (0.1–74.1) -

WHO grade (I/II/III)c 198/61/2 75.8/23.4/0.8
Total 602 100

1545Neurosurgical Review (2022) 45:1543–1552

http://www.slicer.org
http://www.slicer.org


1 3

the tumors into their common space, yielding the final atlas 
of meningiomas. Tumor volumes were registered onto the 
“common brain” to produce the final meningioma atlas with 
a strong positive and significant correlation between the pre- 
and post-registration tumor volumes (R2 adjusted = 0.97, 
p < 0.001).

Statistics

Standard descriptive and quantitative statistical analyses 
were conducted with JMP 9.0 software (SAS Inc.). Chi-
square (X2) and Fisher’s exact test were used for compari-
son between categorical variables as appropriate. Analysis 
of variance (ANOVA) and Student’s t test were used for 
continuous variables. Statistical significance was set at 
p < 0.05. Risk stratification of different variables was con-
ducted where applicable.

Results

Patient population

A total of 689 adult patients with meningiomas were identi-
fied. After the exclusion process (Fig. 1), the images of 602 
patients were included in the final analyses and registration 
onto common brain to produce the brain tumor atlas (Figs. 2 
and 3). During the study period, 261 underwent surgery, 
while 341 were followed as outpatients with conservative 
management.

Meningioma distributions

Meningiomas were located supratentorially in 508 patients 
(84.4%), infratentorially in 93 patients (15.4%), while one 
patient (0.2%) had both a supra- and infratentorially located 
meningioma. There were 277 meningiomas (46%) located 
in the right hemisphere, 252 were left sided (41.9%), while 
73 meningiomas (12.1%) were located strictly in the mid-
line. A total of 60 patients (10%) had multiple meningi-
omas (Table 1). With respect to specific tumor locations, 
the largest entity was convexity tumors (24.7%). In contrast, 
only one patient (0.2%) had an intraventricular meningioma 
(Table 1). As illustrated in Figs. 2 and 3, meningiomas are 
more frequently located in the anterior part of the brain 
along the convexity, falx, and parasagittally as depicted 
by the heat map. There are also more meningiomas on the 
anterior skull base region with gradual decline towards the 
posterior cranial vault and foramen magnum region. The 
distribution of meningioma is compared to the distribution 
of larger cerebral veins in Fig. 2c.

Age

Median overall age for all patients was 62 years (range 
18–92), where the median age of patients who underwent 
surgery or were followed conservatively was 58 years (range 
18–86) and 64 years (range 18–92), respectively (Table 1). 
There were no significant associations between age and 
supratentorial, infratentorial, or both tumor locations 
(p = 0.59), right, left, or midline tumor location (p = 0.30), 
multiple tumor locations (p = 0.40), or specific tumor loca-
tions (p = 0.60).

Gender

There were 170 (28.2%) male patients and 432 (71.8%) 
females of which 83 females were < 50 years old (Table 1). 
Overall, more women had meningiomas than men 
(p < 0.001) (Fig. 2). Females were also more likely to have 
multiple meningiomas in univariate analysis (OR 2.8, CI 
[1.3–6.0], p < 0.01), while men had higher risk of having 
meningiomas in the supratentorial compartment (OR 2.5, CI 
[1.4–4.5], p < 0.01). There were no significant associations 
between gender and right, left, or midline tumor locations 
(p = 0.28), or specific tumor locations (p = 0.06).

There were no significant differences in distributions 
of meningiomas between females < and ≥ 50 years old in 
supratentorial, infratentorial, or both locations (p = 0.99), 
multiple locations (p = 0.43), right, left, or midline locations 
(p = 0.36) or specific locations (p = 0.07). Females < 50 years 
old had significantly higher risk of having multiple menin-
giomas compared to males (OR 3.5, CI [1.4–9.2], p < 0.01), 
but not to females ≥ 50 years. No statistical significance was 
detected with respect to females < 50 years old and males in 
right, left, or midline locations (p = 0.36) or specific loca-
tions (p = 0.07).

WHO grade

Among patients who underwent surgery, there were 198 
WHO grade I meningiomas, 61 WHO grade II meningi-
omas, and 2 WHO grade III meningiomas (Table 1). There 
were no significant associations between WHO grades I vs. 
II/III and supratentorial or infratentorial locations (p = 0.20), 
right, left, or midline location (p = 0.06), multiple meningi-
omas (p = 0.29), or specific tumor locations (p = 0.34).

Tumor volume

Median overall tumor volume was 6.2  cm3 (range 0.1–168) 
(Table 1). At diagnosis, tumor volumes were significantly 
larger in the supratentorial compartment compared to 
infratentorially (median 6.4  cm3 vs. 3.9  cm3 respectively, 
p < 0.001), but were not significantly associated with 
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right, left, or midline tumor location (p = 0.44), multi-
ple meningiomas (p = 0.36), or specific tumor locations 
(p = 0.10) (Table 2). Stratified analysis of tumor volume 
with respect to age, gender, and females < or ≥ 50 years 
old revealed that males have significantly larger tumor vol-
umes than females overall (p < 0.01). There were no statis-
tically significant associations between tumor volume and 
age (p = 0.62) or associations between tumor volumes in 
females < or ≥ 50 years old (p = 0.07).

Discussion

In this population-based study, we developed a volumetric 
brain tumor atlas of all intracranial meningiomas from a total 
of 602 patients referred from a well-defined geographical 
catchment region. We also explored different patient char-
acteristics to determine whether there are risk factors for 
developing meningiomas related to various intracranial sites. 
The segmented tumor volumes were registered and merged 

Fig. 2  Distribution of intrac-
ranial meningiomas. Percent-
ages of tumors are shown of 
all patients in yellow-orange-
red color (A) with baseline 
T1-weighted MRI of normal 
brain in top row and in blue 
color for women and men in 
(B). Scalar bars for each volume 
is shown on the right. Meningi-
oma locations shown in relation 
to venous drainage system is 
illustrated in (C). The image 
plane coordinates are depicted 
as z coordinate and x coordinate 
for the axial images and sagittal 
planes in standard MNI space, 
respectively
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by aligning them onto a standardized “common brain” to 
develop the atlas of meningiomas. With respect to distribu-
tion of intracranial tumors, meningiomas were often located 
in the frontal convexity region and parasagittally, along the 
falx anteriorly and on the skull base region of the frontal 
and middle cranial fossa, with gradual decline in frequencies 
posteriorly towards the posterior fossa and foramen magnum 
region. Thus, although clinically useful, the common neuro-
anatomical classifications of meningiomas into specific and 
traditional anatomical locations may be seen as arbitrary and 
does not directly reflect predilection sites.

The meninx, which is the primordium for the meninges, 
the skull, and the scalp, is formed by differentiation of a 
mesoderm- and neural crest–derived layer that stem from 

mesenchymal cells completely encasing the brain and spi-
nal cord during embryological development [29]. Meningi-
omas are believed to arise from the arachnoid cap cells of 
the arachnoid granulations, which protrude into the venous 
sinuses and form “portals” essential for absorption of cer-
ebrospinal fluid (CSF). Although arachnoid granulations 
are more numerous along the intracranial venous sinuses 
and in particular along the parasagittal plane adjacent to the 
superior sagittal sinus [20], our atlas of meningiomas also 
demonstrate that the distribution of meningiomas does not 
follow the distribution of major veins or venous sinuses. In 
a study by Hirayama et al. of patients with meningiomas, 
they speculated that anatomical locations with high propor-
tions of arachnoid cells are more frequently prone to harbor 

Fig. 3  Meningioma distribution 
map based on central point of 
tumor mass (centroids). Orange/
yellow color of centroids 
indicates locations with higher 
frequencies. Dark blue color 
of centroids depicts areas with 
lower number of meningiomas

Table 2  Relative associations of different variables with tumor  locationsa

a Percentages (%) calculated vertically
b Including one patient (0.2%) with both supratentorial and infratentorial tumor location

Age Sex (N, %) WHO grade (N, %) Tumor volume  (cm3)

Median (range) Female Male I II III Median (range)

Supratentorial
Infratentorial

62.4 (18.2–92.7)
62.4 (28.5–86.0)

352 (81.5)
80b (18.5)

156 (91.8)
14 (8.2)

450 (83.5)
89b (16.5)

57 (93.4)
4 (6.6)

1 (50)
1 (50)

6.4 (0.1–168.0)
3.9 (0.1–112.0)

Right
Left
Midline

63.8 (21.6–89.3)
61.0 (18.2–92.7)
64.0 (18.2–85.1)

205 (47.4)
180 (41.7)
47 (10.9)

72 (42.4)
72 (42.4)
26 (15.2)

240 (44.5)
231 (42.9)
68 (12.6)

35 (57.4)
21 (34.4)
5 (8.2)

2 (100) 6.6 (0.1–168.0)
5.5 (0.1–165.4)
6.3 (0.5–83.3)

Multiple locations 61.3 (18.9–88.7) 52 (12.0) 8 (4.7) 53 (9.8) 6 (9.8) 1 (50) 7.9 (0.5–165.4)

1548 Neurosurgical Review (2022) 45:1543–1552



1 3

meningeal neoplasms [13]. However, their study concen-
trated on lesions on one side of the brain only in selected 
patients, whereas our population-based study included all 
patients with meningiomas who underwent surgery and/or 
were treated conservatively. Imaging studies of arachnoid 
granulations located along the main intracranial venous 
sinuses have been reported [10, 19], but distribution maps of 
arachnoid granulations within the meningeal layers covering 
the entire brain exploring predilection sites for development 
of meningiomas are scarce. Nevertheless, there is no known 
anterior- to posterior gradient of arachnoid granulations in 
the brain [10], suggesting that there is not a perfect asso-
ciation between the density of arachnoid granulations and 
meningiomas. Also, CSF efflux along the parasagittal dura 
is greater in the middle to posterior segments of the supe-
rior sagittal sinus [37], which could indicate more numerous 
arachnoid granulations in these regions, rather than anteri-
orly. However, more meningiomas are located anteriorly in 
the brain according to our study. Interestingly, even though 
the falx cerebri is shorter/narrower in its anterior portion 
while the posterior portion is broader and attaches to the 
tentorium cerebelli [35], meningiomas were most abundant 
along the convexity and anterior cranial vault compared with 
the posterior region. Molecular stem cell marker positive 
cells associated with meningiomas have been reported in 
which some histological tumor types are more frequently 
located in non-skull base regions [1, 18] suggesting that 
potential stem cells may be widely spread among different 
regions of the brain. In the early embryonic and early postna-
tal development, a prostaglandin D2 synthase (PGDS)–posi-
tive meningeal precursor has been indicated to play a role in 
meningioma formation. This also accounts for the different 
meningioma subtypes when the biallelic NF2 gene is inacti-
vated [17]. Also, PDGS-positive meningeal cells have been 
identified as a common precursor to both the dural border 
cells and arachnoid border cells [46]. Vascular supply might 
also play a role in predilection of tumor and tumor growth as 
meningiomas. The vascular construction forms a more com-
plex network in the cranial base than over the convexity. The 
dural territories often have overlapping vascularization from 
several sources such as in the parasellar dura, tentorium, and 
falx [24]. Furthermore, dural anatomy such as the single-
layered dura of the medial wall of the cavernous sinus [47] 
may also play a role in growth of meningiomas in different 
intracranial regions.

The locations of meningiomas in the present study were 
comparatively similar overall to published series on both 
conservatively managed and/or surgically treated men-
ingiomas [15, 25, 28, 31, 34], depending on how tumor 
locations are categorized. Also, meningiomas were more 
often seen in women (male to female ratio 1:2.5), a find-
ing consistent with a population-based cancer registry 
report [14], and most meningiomas were convexity tumors 

representing approximately one-quarter of all tumors, in 
line with previous reports [15, 16, 28, 31, 34]. We did not 
find any significant associations between age and tumor 
locations, in contrast to a study by Sun et al. where frontal 
and occipital structures were more frequently associated 
with older patients, males, and high-grade meningiomas 
[43]. However, their study was restricted to surgical cases 
only. Some reports have dichotomized meningioma loca-
tions to skull base and non-skull base regions where the 
ratio of females was significantly higher in the skull base 
region [25, 26, 41, 42]. In comparison, we found that men 
are more likely to have meningiomas located supraten-
torially compared to females. Thus, hormonal factors 
may play a role in tumor distribution. Females younger 
than 50 years old were also more likely to have multiple 
meningiomas than men in our study, but not compared to 
females ≥ 50 years old. Meningiomas can be associated 
with progesterone and estrogen receptor activity [33], and 
hormone replacement therapy (HRT) has been associated 
with higher risk of meningiomas in females 26–55 years of 
age compared to controls [5]. However, in a large nation-
wide population-based study of women 15–57 years old, 
pregnancy was shown to rather decrease the risk of menin-
gioma during pregnancy and during follow-up after child-
birth compared to nulliparous women [32]. Nevertheless, 
no specific predilection sites were detected for meningi-
omas in females less than 50 years old in our study.

In contrast to some studies where high-grade menin-
giomas more frequently were found over the convexity 
[11, 23, 34, 43] and non-skull base regions [18, 40], we 
found no such association between WHO grade and tumor 
locations. In our population-based selection, the overall 
median tumor volume was 6.1  cm3 (mean 16.8  cm3), which 
is somewhat larger than in reports of incidentally discov-
ered and surgically treated meningiomas [8, 12, 23, 27]. 
However, these studies are restricted to certain tumor loca-
tions only and warrant further studies as comparison to our 
study was difficult due to lack of reports in the literature 
where similar risk factors are explored. Meningiomas were 
significantly larger in the supratentorial compartment and 
in males in our study, but we did not find any significant 
association between tumor volume and tumor locations. In 
a study by Magill et al. of 1113 meningioma patients, male 
patients with tumors > 3 cm were identified as high-risk 
group for WHO grade II meningioma [23]. However, their 
study of surgically resected cases only did not account 
for volume with respect to tumor location and volumetric 
analysis of tumor was not performed (only tumor diameter 
was used as proxy), whereas our study was comprised of 
volumetric tumor segmentation of all included patients 
with meningiomas from a large well-defined geographical 
catchment region.

1549Neurosurgical Review (2022) 45:1543–1552



1 3

Strengths and limitations

The centralized neurosurgical tertiary health care center at 
St. Olavs University Hospital has a population-based refer-
ral of patients from a wide catchment area. To the best of 
our knowledge, our study is the first to report an intracranial 
atlas of meningioma distribution from a well-defined geo-
graphical region, thus reducing risk of referral bias. This 
centralization of neurosurgical services minimizes possible 
confounding effects of differences in access to health care 
services. Hence, we have avoided the selection bias inher-
ently present in large multicenter studies, as there is only 
one unit performing neurosurgical procedures for meningi-
omas. By adhering to the WHO classification of tumors, we 
have confirmed histological verification of meningiomas for 
those who underwent surgical intervention, thus improving 
the external validity of our results. Whereas some similar 
reports have studied meningioma distributions in selected 
patients and/or tumor locations, our study is population-
based including both patients who did and did not undergo 
surgical intervention for meningioma in which patient char-
acteristics were explored as risk factors for predilection 
sites of intracranial meningiomas. All tumor segmentations 
was performed manually and assessed in a 3D map-based 
approach, thereby minimizing the risk of classification bias. 
Finally, as only two patients emigrated abroad, we have 
effectively no loss of follow-up of patients in our study.

Possible limitations of the study include a potential dis-
crepancy between histologically and radiologically diagno-
sis of meningiomas where the former is established as the 
gold standard. Even though it is commonplace and routine 
practice within the Norwegian Health Care system to refer 
most patients with meningiomas to the neurosurgical treat-
ment center for treatment or recommendations concerning 
follow-up, there is still a possibility of underrepresenta-
tion of patients with tumors of small sizes and/or the old-
est age group harboring meningiomas who might have not 
have been referred, but rather managed locally (depending 
on their comorbidities/circumstances). We also did not 
account for patients with respect to pregnancy, as this might 
influence the occurrence of meningiomas due to hormonal 
changes during pregnancy and after childbirth.

Conclusion

In this large population-based study, we developed an atlas 
of intracranial meningioma distribution. As illustrated, men-
ingiomas are more often located in the frontal region in the 
convexity and parasagittally, along the falx anteriorly, and 
on the skull base of the frontal and middle cranial fossa, with 
gradual decline in frequency posteriorly towards the poste-
rior fossa and foramen magnum region. Women had higher 

risks of having multiple meningiomas, while supratentorial 
location is more common in men. Age and histopathological 
WHO grade were not linked to tumor location.
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