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Abstract
Neuroimaging is crucial in moyamoya disease (MMD) for neurosurgeons, during pre-surgical planning and intraopera-
tive navigation not only to maximize the success rate of surgery, but also to minimize postsurgical neurological deficits in 
patients. This is a review of recent literatures which updates the clinical use of imaging methods in the morphological and 
hemodynamic assessment of surgical revascularization in patients with MMD. We aimed to assist surgeons in assessing the 
status of moyamoya vessels, selecting bypass arteries, and monitoring postoperative cerebral perfusion through the latest 
imaging technology.
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Abbreviations
MMD  Moyamoya disease
MMVs  Moyamoya vessels
IAS  Atherosclerotic stenosis
CHS  Cerebral hyper-perfusion syndrome
ICA  Internal carotid artery
ECA  External carotid artery
STA  Superficial temporal artery
MCA  Middle cerebral artery

PCA  Posterior cerebral artery
EC-IC  Extracranial-intracranial
CBF  Cerebral blood flow
CBV  Cerebral blood volume
MTT  Mean transit time
TTP  Time to peak
PSV  Peak-systolic velocity
EDV  End-diastolic velocity
MFV  Mean flow volume
RI  Resistance index
CVR  Cerebrovascular reserve
CVRC  Cerebrovascular reserve capacity
OEF  Oxygen extraction fraction
CMRO2  Cerebral metabolic rate of oxygen
IVWI  Intracranial vessel wall imaging
DSC-MRI  Dynamic susceptibility contrast MRI
ASL-MRI  Arterial spin labeling MRI
BOLD-fMRI  Blood oxygen level-dependent functional 

MRI
FLAIR-MRI  Fluid-attenuated inversion-recovery MR 

imaging
SPECT  Single-photon emission computed 

tomography
PET  Positron emission tomography
ICG-VAG  Indocyanine green video-angiography
TCCS  Transcranial color-coded duplex 

sonography
TCD  Transcranial Doppler
CEUS  Contrast-enhanced ultrasound
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Introduction

Moyamoya disease (MMD) is an uncommon cerebrovas-
cular disease characterized by progressive stenosis of the 
terminal portion of the internal carotid artery (ICA) and 
its main branches [37]. The disease is associated with the 
development of dilated, fragile collateral vessels, termed as 
moyamoya vessels (MMVs). The hemorrhagic and ischemic 
types are the two main clinical manifestations. The diagnosis 
of MMD mainly depends on neurological symptoms and 
imaging findings. Neurosurgical revascularization is con-
sidered the mainstay treatment in symptomatic patients to 
increase intracranial cerebral blood flow (CBF) and cerebro-
vascular reserve (CVR) [40]. The stenotic degree of the ICA, 
the compensatory ability of the collateral circulation, the 
selection of bypass area and the matching of bypass vessels, 
and the monitoring of postoperative cerebral perfusion are 
the key points that surgeons care about, which cannot be sep-
arated from the support of neuroimaging. In recent years, the 
concepts of “flow-controlled bypass” and “precised bypass” 
have been put forward, aiming to improve the cerebral perfu-
sion in preoperatively ischemic areas, reduce the ineffective 
bypass, and reduce the cerebral hyper-perfusion syndrome 
(CHS) caused by excessive bypass.

In this review, we will provide an update on the mor-
phological and hemodynamic assessment of common neu-
roimaging techniques used in surgical revascularization in 
MMD and introduce other emerging imaging methods, such 
as indocyanine green video-angiography and ultrasonogra-
phy, which are simple and practical for intraoperative assess-
ment. This review compares the benefits and drawbacks of 
various imaging techniques in the perioperative period of 
MMD from different perspectives, so as to provide a refer-
ence for the selection of surgeons, in order to provide the 
success rate of revascularization and obtain satisfactory 
long-term outcomes.

Method

The PubMed, Ovid, Embase, and Cochrane databases 
were searched over a 20-year period between 2001 to 2021 
using the Boolean search term (“moyamoya disease” OR 
“moyamoya syndrome” OR “MMD”) AND (“revasculari-
zation” OR “bypass surgery” OR “STA-MCA bypass” OR 
“direct surgery” OR “indirect surgery”) AND (“imaging” 
OR “Computed tomography” OR “Digital subtraction angi-
ography” OR “Magnetic resonance imaging” OR “Single-
photon emission computed tomography” OR “Positron 
emission tomography” OR “Fluorescence imaging” OR 
“Ultrasonography”). References of each manuscript were 
checked for papers that were of potential relevance to our 

review. Two authors (D.L.X. and Y.F.) independently identi-
fied articles using the above search criteria. Relevant articles 
on the application of imaging technologies in moyamoya 
disease in the past decade were mainly included. For the 
decade 2001–2011, high-quality articles highly relevant to 
the content of this review were mainly included. The full text 
of each selected article was obtained and analyzed.

Digital subtraction angiography (DSA)

DSA is considered the gold standard in diagnosing MMD 
[44]. Owing to its high spatial and temporal resolution, this 
method plays an irreplaceable role in assessing the steno-
occlusion of the terminal ICA, and the patency of anas-
tomosis. Moreover, DSA is the best choice to observe the 
establishment of collateral circulation, which is crucial for 
the decision of treatment strategies and the evaluation of the 
neo-angiogenesis status after surgery [14, 15, 43]. Compared 
with other imaging modalities, DSA has superior diagnostic 
value for detecting concomitant diseases such as intracranial 
aneurysm (Fig. 1), arteriovenous malformation, and suba-
rachnoid hemorrhage in patients with MMD [4, 42, 50].

Quantitative color-coded parametric DSA (QDSA, Syngo 
iFlow) is an emerging DSA technique which provides objec-
tive perfusion parameters like time-to-peak (TTP), mean 
transit time (MTT), and ratios of area under the curve (AUC 
ratio) to assess hemodynamic changes of a certain artery 
after bypass surgery. Although it does not provide informa-
tion on cerebral parenchyma perfusion, it is useful for meas-
uring blood supply from the internal and external carotid 
artery systems [8, 9].

However, DSA is not recommended for pediatric patients 
or patients in poor conditions, due to its invasiveness, time 
consumption, and need for anesthesia.

Computed tomography

Computed tomography angiography (CTA)

CTA can clearly show the circle of the Willis, as well as the 
anterior, middle, and posterior cerebral arteries and their 
main branches, providing an important diagnostic basis for 
occlusive vascular lesions. Because of its short acquisition 
time and fast image postprocessing, CTA is the first choice 
in emergency cases. In MMD, ischemic stroke can be diag-
nosed as early as 2 h after onset. Cortical surface imaging 
with CTA can be used to depict the number and distribution 
of MCA cortical arteries (M4) which are the main recipi-
ent arteries in STA-MCA bypass surgery [66]. Compared 
with MRA, CTA has the advantage to display the vascular 
status of the extracranial segment of STA (Fig. 2a–d) [35]. 
However, CTA has limitations in showing MMVs with small 
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Fig. 1  A 40-year-old MMD patient with severe explosive headache 
was found to have a saccular aneurysm by DSA. The aneurysm was 
occluded by coil embolization immediately after DSA. Right STA-
MCA bypass combined with EDMS was performed 1  month after 
SAH ictus. a CT scan revealed SAH in the longitudinal fissure, Syl-
vian fissure, and quadrigeminal cistern. b and c Bilateral ICA angi-

ography studies showing MMD with Suzuki Stage III. d Vertebral 
angiography study showing a saccular aneurysm at the P1/P2 junction 
of the right PCA. e and f Follow-up vertebral angiography studies 
showing complete obliteration of the aneurysm. g and h ECA angiog-
raphy studies showing Matsushima Grade A collateral compensation 
supplied by the anastomosis [50]

Fig. 2  A 55-year-old patient underwent right-side STA-MCA bypass 
surgery. a Preoperative CTA and e preoperative MRA show the 
occlusion of the right MCA (arrowheads). b, c, d Postoperative CTA 
show that the right STA (black arrows) entered the cranium through 

the bone defect area of the temporal region. f and g Postoperative 
MRA clearly showed the anastomosis (circled area) and the dis-
tal branch of the MCA (white arrow). Image courtesy of Dr. Hanyu 
Jiang, Department of Radiology, West China Hospital
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calibers (< 3 mm) and its resolution is lower than that of 
DSA. CTA may also be interfered by motion artifacts.

Dynamic 3D- and 4D-CTA can simultaneously display 
subtle angio-architectural features and vascular flow pat-
terns, providing information on ongoing vascular changes 
as well as accurate spatial delineation of cerebrovascular 
pathologies [3]. However, the clinical practice of 4D-CTA 
is restricted by its high total radiation dose.

Computed tomography perfusion (CTP)

CTP has the advantages of short acquisition time and 
high spatial resolution, so it is generally the first choice 
to measure the changes of cerebral hemodynamics after 
surgery. Among the parameters extracted from the time 
intensity curve, the changes of TTP and MTT are the 
most sensitive ones in the early postoperative period 
[7], followed by CBF, which is also the matter of great 
concern to surgeons. CBF is closely related to bypass 
patency and can directly reflect the degree of blood sup-
ply recovery. The change in CBV is complicated, affected 
by the ability of different automatic regulation processes 
involving arterial, capillary, venous, and parenchymal 
components [10]. Previous studies have shown that in 
patients with ischemic MMD treated either with STA-
MCA bypass surgery or surgery involving multiple burr 
holes, the postoperative MMT and TTP values are signifi-
cantly shortened, CBF is significantly increased, while 

CBV might increase or decrease (Fig. 3) [7, 10, 65]. In 
a recent retrospective clinical study of 57 patients with 
hemorrhagic MMD, the CBV appeared to decrease and be 
relatively stable in the chronic phase after revasculariza-
tion with varying degrees of MTT and TTP shortening, 
and no significant change in CBF [29]. Bypass surgery 
is of great value in the treatment of ischemic MMD, but 
it is still controversial in hemorrhagic MMD. Therefore, 
a larger sample size, multicenter prospective study with 
longer follow-up time is needed to confirm the difference 
in hemodynamic changes between the two stroke subtypes 
after bypass surgery.

Magnetic resonance imaging

Magnetic resonance angiography (MRA)

MRA provides a noninvasive, radiation-free alternative to 
DSA and CTA for evaluating bypass patency and can be 
used to measure arterial caliber to predict the development 
of surgical collaterals [68]. Among MRA techniques, 3D 
TOF-MRA is the most commonly used technique for cer-
ebral artery imaging with high spatial resolution and signal-
to-noise ratio (SNR), as well as very thin slice thickness. In 
terms of showing the intracranial segment of the STA and 
EC-IC bypass anastomosis, TOF-MRA is at least as good as 
CTA or even better than CTA (Fig. 2e–f). However, as TOF-
MRA is velocity-dependent, the turbulent flow at stenosis 

Fig. 3  Hemodynamic changes of a 23-year-old female underwent 
STA-MCA bypass revascularization in the right hemisphere. Preop-
erative CTP (the upper row) shows that in the right MCA area, CBF 
was significantly decreased; MTT and TTP were significantly pro-

longed, while CBV was slightly increased. Six months after surgery, 
postoperative CTP (the bottom row) shows increased CBF, reduced 
CBV, shortened MTT and TTP in the same region. Image courtesy of 
Dr. Hanyu Jiang, Department of Radiology, West China Hospital
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may cause phase dispersion and signal loss. It was shown 
that TOF-MRA is inferior to CTA in revealing trepanation 
bypass segments and overestimates focal pseudo-occlusive 
lesions in this area [6]. TOF-MRA also tends to overestimate 
ICA stenosis compared with contrast-enhanced MRA [71].

Intracranial vessel wall imaging (IVWI)

IVWI is an adjunct to conventional MRA and has great 
potential in morphological assessment of MMD revascu-
larization. Based on high-resolution MRI (HR-MRI), IVWI 
has been proved to be effective to differentiate MMD from 
intracranial atherosclerotic stenosis (Fig. 4) [60, 73, 82]. 
On IVWI images, MMD tends to have homogeneous sig-
nal intensity enhancement and concentric vessel wall thick-
ening, while intravascular atherosclerotic stenosis (IAS) 
shows eccentric and heterogeneous vessel wall thickening. 
Compared with IAS, the outer diameters of stenotic ICA 
and MCA are smaller in patients with MMD. High-grade 
arterial wall enhancement on IVWI may associate with 

the progression of angiopathy and a high risk of ischemic 
infarction [30, 58]. However, the difference in vessel wall 
enhancement between early and late angiographic stages of 
MMD remains to be further investigated [47]. More research 
is also needed to evaluate the value of IVWI in differentiat-
ing ischemic or hemorrhagic strokes caused by moyamoya 
disease.

Ultrahigh field intensity magnetic resonance

Although 1.5-T and 3.0-T MRI are commonly used, ultra-
high field (7.0-T) MRI is a promising neuroimaging tech-
nique for the evaluating of MMD especially the risk of 
hemorrhage. The advantages of TOF at 7.0-T include the 
increased SNR, longer T1 relaxation times augmenting the 
vessel-tissue contrast, and inherently hyperintense arterial 
vasculature at higher field strengths [34, 62, 63]. There was 
no significant difference between 3.0-T MRI and 7.0-T MRI 
in depicting the main intracranial arteries, but 7.0-T MRI 
could excellently delineate the collateral network pathways 

Fig. 4  Pathological mechanism and IVWI manifestations of moy-
amoya disease and atherosclerosis. a, d Pathologic and IVWI findings 
of normal arterial lumens. b, e Compared with normal arterial wall, 
the affected artery wall in MMD is characterized by the thickness of 
intima and the atrophy of media, with homogeneous signal intensity 

and concentric vessel wall thickening on IVWI. c, f In atherosclero-
sis, the main etiology of arterial stenosis is the build-up of athero-
sclerotic plaque and the lipid deposition under the endothelium, with 
eccentric and heterogeneous vessel wall thickening on IVWI [73]
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in MMD and is better correlated with Suzuki’s stage [12]. 
Susceptibility-weighted imaging (SWI) and TOF-MRA 
fusion images in 7.0-T MRI help to improve the detection of 
bleeding points in hemorrhagic MMD, and screening these 
patients will help to better assess the risk of intracranial 
hemorrhage [63]. At present, 7.0-T MRI has not been widely 
used in clinic, and more studies are needed to confirm its 
value in surgical reconstruction of hemorrhagic MMD.

Fluid‑attenuated inversion‑recovery MR imaging 
(FLAIR‑MRI)

The “Ivy sign,” leptomeningeal high signal intensity, is an 
MMD-specific feature on fluid-attenuated inversion-recov-
ery MR imaging, indicating slow flow of engorged pial 
vasculature toward leptomeningeal collaterals and “misery 
perfusion” areas. Studies showed that the decrease of the 
“ivy sign” on FLAIR-MRI after surgery is related to the 
improvement of cerebral hemodynamics and clinical symp-
toms, while de novo “ivy sign” may predict early postopera-
tive CHS [22, 28, 31].

Dynamic susceptibility contrast MRI (DSC‑MRI)

DSC-MRI is currently one of the most used MR perfu-
sion imaging techniques to quantify cerebral hemodynamic 
changes by neurosurgeons. DSC-MRI can help to select 
candidates for MMD intervention and predict the outcome 
and risk of surgery. In the studies of Ishii et al. [24, 25], the 
MTT measured by DSC-MRI may depict the small amelio-
ration of arterio-genesis as early as 2–4 weeks after indirect 
bypass surgery, far earlier than other imaging modalities. 
The degree of MTT delay shortening was positively cor-
related with the surgical effect. However, the disadvantages 
of DSC-MRI are the need for a contrast agent, insufficient 
quantitative reliability, and long resolution time [55].

Arterial spin labeling MRI (ASL‑MRI)

ASL-MRI uses magnetically labeled inflowing blood as an 
endogenous tracer to estimate brain perfusion at the tissue 
level [72, 83], especially suitable for pediatric patients with 
MMD [5, 18, 56]. Pulsed arterial spin labeling (PASL), 
continuous arterial spin labeling (CASL), and pseudo-con-
tinuous arterial spin labeling (pCASL) are three labeling 
methods, among which pCASL is the most superior based 
on high labeling efficacy and signal to noise. Recent studies 
suggest that ASL-MRI is well correlated with DSC-MRI, 
CTP, PET, and SPECT in mapping CVR and CBF [16, 17, 
51, 52, 70, 83]. Studies have demonstrated the clinical sig-
nificance of ASL-MRI in evaluation postoperative hemo-
dynamic dysfunction [18, 49]. Compared with preopera-
tive cerebral perfusion, there was no significant increase in 

ASL signal in the bypass area, suggesting that there was 
still hypoperfusion. When ASL signal increases more than 
100%, researchers should be alert to the risk of CHS (Fig. 5).

However, ASL-MRI has an inherent deficiency, caused 
by its imaging mechanism. For instance, the measured 
CBF could be underestimated due to the long arterial 
transit times (ATTs) in steno-occlusive arterial segments 
and collateral pathways. Under these circumstances, the 
use of multi-delay or long-label-long-delay algorithms in 
ASL-MRI could help improve the accuracy of CBF assess-
ments with satisfactory SNR [13, 70]. Interestingly, high-
intensity signals of arterial transit artifacts (ATA) caused 
by ATTs could be in turn, used to depict the collateral flow 
in morphology [39, 84]. Overall, ASL-MRI is a promising 
noninvasive alternative for evaluating the hemodynamics 
of MMD when nuclear medical imaging methods are not 
available, but its limitations such as weak signal intensity, 
low image resolution, and poor repeatability limit it from 
becoming a standalone imaging method for clinical cer-
ebral perfusion assessments.

Blood oxygen level‑dependent functional MRI (BOLD‑fMRI)

BOLD-fMRI is a brain mapping technique using deoxy-
hemoglobin in the blood vessels as an endogenous con-
trast agent to produce functional activation maps. BOLD-
fMRI is widely used to monitor CVR and neurovascular 
coupling changes and assess surgical efficacy following 
revascularization [59, 61]. Previous BOLD-fMRI studies 
often change the concentration of end-expiratory carbon 
dioxide to map CVR with breath-holding or  CO2 inhala-
tion techniques [11, 20]. Liu et al. [41] proposed using 
resting-state BOLD data to map CVR, which can avoid 
gas inhalation or breath-holding. The global BOLD signal 
in the frequency range of 0.02–0.04 Hz provides the best 
estimation of the spontaneous fluctuation of blood  CO2 
concentration, relative to that in other frequency bands. 
BOLD-fMRI holds future potential in becoming a routine 
examination in the pre- and post-operative evaluation of 
MMD patients especially for pediatric patients. However, 
how to improve the stability and repeatability of BOLD 
imaging is a major concern in clinical practice.

Nuclear medical imaging techniques

Single‑photon emission computed tomography (SPECT)

SPECT is considered the reference standard technique for 
CBF perfusion assessments [16, 64]. As radioactive trac-
ers, 99mTc-ECD, 99mTc-HMPAO, and 123I-IMP can enter 
into brain cells through the normal blood–brain barrier 
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and can be used to assess the regional brain function. A 
hypo-responsive CVR on postoperative basal or acetazola-
mide-challenged SPECT in patients with MMD suggests 
a poor prognosis such as remaining neurological deficits 
and ischemic attacks during follow-up [65]. Association 
of cognitive dysfunction with improvement with CBF 
changes measured by SPECT has been explored both in 
adult and pediatric patients with MMD [32, 69].

Yanagihara et al. [74] recently found that CHS in the 
acute stage after bypass surgery impairs cognitive function 
and that an increase in CBF in the chronic stage improves 
cognitive function in adult patients with symptomatic 
ischemic MMD and misery perfusion.

Positron emission tomography (PET)

PET is considered the standard functional imaging method 
for quantifying metabolic processes that are relevant to 
MMD vascular functionalities after bypass surgery.  H2

15O, 
15O2, and  C15O2 are commonly used as tracers in PET for 
cerebral hemodynamic assessments. The oxygen extrac-
tion fraction (OEF) and cerebral metabolic rate of oxygen 
 (CMRO2) are important parameters for making treatment 
decisions in MMD and are closely related to CVRC, hemo-
dynamic stress distribution, and characteristic features of 
collateralization [23].  H2

15O PET enabled detection of 
impaired CVRC in a large number of symptomatic MMD 
patients who had negative findings on 99mTc-HMPAO 
SPECT in Acker’s study [1]. Kaku et al. [27] revealed that 
symptomatic CHS in patients with MMD could be char-
acterized by temporary increases in CBF > 100% over 

Fig. 5  Arterial spin-labeled MRI in moyamoya disease. a Blood pro-
ton from the ICA was labeled once (labeled) and twice (controlled) 
by 180° radiofrequency pulse, respectively. After T1 delay, the pro-
tons arrived at the signal acquisition area, and the labeled image and 
control image were obtained respectively. After subtraction of these 
two images, a difference image with intensity proportional to cerebral 
blood flow (CBF) was obtained, i.e., cerebral perfusion image. b, c 
ASL sequences of a moyamoya patient with good recovery after bilat-
eral bypass surgery. The preoperative ASL (b) signal (arrows) war 
dark, indicating markedly reduced perfusion to bilateral MCA ter-
ritories. The postoperative image (c) shows increased ASL signal in 
the bilateral MCA territories (arrows). d, e ASL sequences of a moy-
amoya patient with poor recovery after left bypass surgery. Preopera-

tive ASL images (d) show decreased perfusion (arrows) and arterial 
transit artifact (ATA) signals in left distal ICA territories (arrow-
heads) indicating late-arriving flow via collateral pathways. After 
left MCA–STA bypass surgery, postoperative ASL images (e) still 
show impaired perfusion and ATA signals in left MCA territory and 
prominent ATA signal in MCA–STA anastomosis site ( ∗) indicating 
flow stagnation in anastomosis site. f, g Color-coded ASL perfusion 
images of a moyamoya patient who had moderate to severe headache 
with seizures at the second postoperative day, and was clinically sus-
pected as hyperperfusion syndrome. There was a significantly raised 
perfusion (more than 100% increase in CBF values) in the left occipi-
tal regions (yellow arrows) between preoperative (f) and postopera-
tive (g) [39, 49, 56, 72]
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the preoperative values, and among the preoperative PET 
parameters, increased OEF was the only significant risk fac-
tor for CHS. Recently,  H2

15O PET has been used for the 
preoperative assessment of neuropsychological impairment 
by measuring territorial CVR, and 15O PET has been used to 
investigate the improvement in cognitive decline by measur-
ing changes in OEF and  CMRO2 following indirect bypass 
surgery [19, 57]. These advances will be more conducive to 
obtaining more accurate information through PET imaging 
to select MMD patients who can benefit the most from sur-
gery. However, PET is limited by its general clinical unavail-
ability, high cost, and lengthy measurement time.

Fluorescence imaging

Indocyanine green and sodium fluorescein are commonly 
used imaging agents for intraoperative fluorescence imag-
ing. With the help of Flow Insight software® (Carl Zeiss, 
Co.) or Flow 800 software, the direction of blood flow can 
be “visualized.” The direction of blood flow after bypass 
is related to the pressure difference between donor and 
recipient vessels, and the watershed migration can occur, 
suggesting the dysfunction of the cortical cerebral hemo-
dynamics. Intraoperative fluorescence imaging provides 

semiquantitative regional hemodynamic alterations and 
can be used to identify patients at high risk of transient 
neurological events; thus, the perioperative treatment can 
be adjusted (Fig. 6) [69, 75, 76]. Horie et al. [21] found 
that the mismatch ratio of donor STA/recipient MCA and 
poor run-off or stagnation of blood flow from the STA 
might contribute to postoperative CHS in patients with 
MMD.

Another similar optical imaging technique is micro-
scopic cortical venous redness (venous reddening). This 
digital photographic method is based on intraoperative 
measurement of venous oxygen saturation by venous R 
intensity, which can indirectly represent tissue oxygen 
metabolism and CBF impairment, and is of great value in 
detection of CHS immediately after anastomosis [45, 46].

Ultrasonography (US)

Transcranial color‑coded duplex sonography (TCCS)

TCCS can provide in real-time quantitative information 
on donor and recipient arteries, which is an ideal imaging 
tool to monitor graft flow postoperatively [77, 79]. Quan-
titative parameters such as peak-systolic velocity (PSV), 

Fig. 6  Morphological visualization and quantitative assessment of 
STA-MCA bypass in MMD by ICG with FLOW 800 software. a 
Microvascular transit time (MVTT) was calculated as venous  T1/2 
peak–arterial  T1/2 from ICG time intensity curve. b The “time to 
half-value of peak”  (T1/2 peak) was used instead of “time to peak,” 

because the “time to peak” was difficult to define. c Analysis of the 
ICG time intensity curve was performed on the same ROIs in arte-
rial phase (asterisk) and venous phase (cross) respectively before and 
after bypass surgery [75]
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end-diastolic velocity (EDV), mean flow volume (MFV), 
pulsatility index (PI), and resistance index (RI) are usually 
measured through the trans-temporal, trans-orbital, and 
trans-foraminal windows [2]. The increases of PSV and EDV 
or the decreases of RI and PI of the STA indicate that there 
is blood supply in an extracranial-to-intracranial direction. 
In addition, the changes in EDV in the STA or ECA were 
well correlated with Matsushima grading system of MMD 
[78]. The imbalance between the graft flow and the MCA 
network may result in postoperative cerebral hyper-perfusion 
(CHS). At our hospital, CHS was detected by TCCS in a 
male patient who underwent STA-MCA bypass on postop-
erative day 10 during follow-up. The US findings showed 
more than 3 folds of increase in PSV, and a significantly 
decreased of RI in the STA (Fig. 7).

Intraoperative US (IVUS)

For intraoperative IVUS, a perivascular flow probe can be 
precisely positioned over the freely dissected target ves-
sel without attenuation of the acoustic beam, which allows 
quickly detecting graft patency and revising problematic 
grafts, thus greatly improving the success rate of the opera-
tion [38, 80, 81]. Compared with ICG-VAG, micro-Doppler 

imaging can not only help to effectively identify recipient 
artery before anastomosis effectively, but also help to check 
the flow velocity and direction of blood flow after bypass 
surgery, characterizing hemodynamic status [48, 53].

Transcranial Doppler (TCD)

TCD is a commonly used clinical tool for monitoring intrac-
ranial ischemic diseases in neurology department because of 
its characteristics of non-invasive, quick, bedside, and cheap. 
Cerebral vasomotor reactivity (VMR) measured by TCD can 
reflect cerebrovascular reserve, providing an important ref-
erence for preoperative hemodynamic assessment [26]. In 
cases of stenosis of terminal ICA, TCD showed abnormally 
elevated blood flow velocity and increased PI at the steno-
sis site, presenting eddy current spectrum. When an artery 
occlusion occurs, the flow velocity is slow and the spectrum 
changes into a wavy pattern. In the late stage of moyamoya 
disease, the blood flow velocity of ECA and its branches 
increased significantly, and the morphology of intracranial 
blood flow spectrum changed accordingly.

Fig. 7  A 44-year-old male MMD patient underwent right-side STA-
MCA bypass surgery. One week after, the patient was found CHS 
manifesting with headache, vomiting, and consciousness disturbance. 
Emergency CT showed a large hematoma in the right frontotemporal 
insular lobe, complicated with basal ganglia hemorrhage and cerebral 
hernia (the left column). On TCCS, PSV at the proximal end of STA 

increased sharply more than 4 folds, RI decreased by half (the middle 
column), and the flow velocity of ECA slightly increased (the right 
column). H indicates hematoma; CHS, cerebral hyper-perfusion syn-
drome. Image courtesy of Dr. Chenyun Zhou, Department of Ultra-
sound, West China Hospital
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Table 1  Comparison of imaging modalities used in revascularization of moyamoya disease

DSA, digital subtraction angiography; CT, computed tomography; MRI, magnetic resonance imaging, ICG-VAG, indocyanine green video-angi-
ography; US, ultrasonography; SPECT, single-photon emission computed tomography; PET, positron emission tomography; TCCS, transcranial 
color-coded duplex sonography; TCD, transcranial Doppler; CEUS, contrast-enhanced ultrasound. Pre-op, preoperative; Intra-op, intraopera-
tive; Post-op, postoperative; AUC , area under the curve; CVR, cerebral vascular reserve; CVRC, cerebrovascular reserve capacity; OEF, oxygen 
extraction fraction; CMRO2, cerebral metabolic rate of oxygen; MTT, mean transit time; TTP, time to peak; AUC , area under the curve; PSV, 
peak-systolic velocity; EDV, end-diastolic velocity; PI, pulsatility index; RI, resistance index
“ +  +  + ” highly recommended; “ +  + ” recommended; “ + ” moderately recommended; “-” less recommended

Imaging modality Main roles in MMD revascu-
larization

Hemodynamic evaluation 
(Quantitative parameters)

Applicable scenario Contrast materials and Tracers

Pre-op Intra-op Post-op

DSA •Gold standard for MMD 
diagnosis and grading [44]

•Proof of patency of EC-IC 
bypass [15]

•Presentation of the collat-
eral circulation [14, 43]

•Identification of concomi-
tant diseases [4, 42, 50]

MTT, TTP, AUC  +  +  +  +  +  + Iodinated contrast agents

CT • Emergency situations
•Visualization of abnormal 

basal vascular network and 
MCA cortical arteries [66]

•Evaluation of postoperative 
cerebral perfusion recov-
ery [7, 10, 29, 65]

CBV, CBF, MTT, TTP  +  +  +  +  +  +  + Iodinated contrast agents

MRI •Monitoring of intracra-
nial artery stenosis and 
ischemic changes [27]

•Intracranial vessel wall 
imaging [60, 73, 82]

•Better display of MMVs 
on ultrahigh field intensity 
MRI [12, 34, 62, 63]

•Evaluation of postoperative 
hemodynamic recovery 
or dysfunction [18, 24, 
25, 49]

•Assessment of surgical 
efficacy and prediction of 
patients’ prognosis [59, 61]

CBV, CBF, MTT, TTP, CVR  +  +  +  +  +  +  + Exogenous material: Gado-
linium chelate (DSC-MRI);

Endogenous material: Arterial 
water proton (ASL-MRI), 
Deoxyhemoglobin (BOLD-
fMRI)

SPECT •The reference standard for 
cerebral perfusion [16, 64]

CBF, CBV, CVR  +  + -  +  + 99mTc-HMPAO,
99mTc-ECD, 123I-IMP

PET •Metabolic assessment of 
brain tissue [23]

•Assessment of neuropsy-
chological impairment and 
recovery [19, 57]

CBV, CBF, OEF,  CMRO2, 
CVRC

 +  + -  +  + 15O2,  C15O2,  H2
15O

Fluorescence imaging •Real-time imaging of 
bypass, and direct monitor-
ing of blood flow [69, 75, 
76]

MTT, TTP, AUC -  +  +  + - Indocyanine green,
Sodium fluorescein

US •Quantification of blood 
flow of donor, recipient, 
and bypass arteries [2, 
77–79]

•Intraoperative navigation 
[48, 53]

•Cerebral vasomotor reac-
tivity assessment [26]

•Mapping of cerebral vascu-
lar circulation [54]

PSV, EDV, PI, RI  +  +  +  +  +  +  +  + None (TCCS, TCD)
Microbubbles(CEUS)
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Contrast‑enhanced ultrasound (CEUS)

CEUS is a promising imaging technique for visualizing 
microvascular circulation and brain perfusion with quali-
tative and semi-quantitative information. CEUS has been 
used to assess neurosurgical conditions such as intracranial 
tumors, arteriovenous malformations, and aneurysms [33, 
36]. The application of CEUS in evaluating MMD revascu-
larization is not well known to neurosurgeons. In a recent 
rat model of MCA occlusion, transcranial CEUS revealed 
striking decreases in cortical and striatal blood volume, flow 
velocity, and cerebral perfusion during ischemic stroke. 
After vessel recanalization, blood volume and perfusion 
increased twofold above the baseline value, which is indica-
tive of acute CHS [54]. This study mimics the mechanism 
of surgical bypass of MMD, which lays a foundation for the 
future intraoperative CEUS evaluations in human MMD.

Discussion

Moyamoya disease is a potential risk factor for stroke. Com-
plex vascular remodeling, whether due to disease progression 
or surgical intervention, leads to changes in cerebral morphol-
ogy, hemodynamics, and clinical improvements or complica-
tions. Early detection of these changes and their concomi-
tant effects is the key to the treatment of moyamoya disease. 
Table 1 compares and discusses the main roles and applica-
ble scenarios of each imaging modality in revascularization 
of moyamoya disease. In pre-operative period, DSA is still 
considered the gold standard for diagnosis and grading up to 
now; however, in pediatric patients or patients with generally 
poor conditions, MRA or CTA may be an alternative. In intra-
operative period, fluorescence imaging and IVUS are superior 
in real-time monitoring of blood flow in a certain artery. It 
is recommended that regular hemodynamic assessment by 
TCCS examination should be performed regularly at 1 week, 
1 month, 3 months, 6 months, and 1 year after surgery, and 
CTP examination should be carried out half a year after the 
operation. Patients with unilateral moyamoya disease should 
undergo CTA or MRA once a year to evaluate disease progres-
sion. DSA could be carried out if there are new neurologi-
cal symptoms. SPECT and PET are not currently necessary 
because they are expensive but can be used conditionally.

Summary

Neuroimaging can assist surgeons to optimize matching selec-
tion of donor-recipient arteries, prevent the occurrence of post-
operative perfusion disorders, and improve the accuracy of 
bypass as much as possible. In recent years, the rapid develop-
ment of imaging technology, such as MRI and ultrasound, with 
their advantages of radiation-free, fast, and low cost, plays an 

increasingly important role in the diagnosis and treatment of 
moyamoya disease, especially in pediatrics.
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