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Abstract
Risks and survival times of ventriculoperitoneal (VP) shunts implanted due to hydrocephalus after craniotomies for brain 
tumors are largely unknown. The purpose of this study was to determine the overall timing of VP shunting and its failure 
after craniotomy for brain tumors in adults. The authors also wished to explore risk factors for early VP shunt failure (within 
90 days). A population-based consecutive patient cohort of all craniotomies for intracranial tumors leading to VP shunt 
dependency in adults (> 18 years) from 2004 to 2013 was studied. Patients with pre-existing VP shunts prior to craniotomy 
were excluded. The survival time of VP shunts, i.e., the shunt longevity, was calculated from the day of shunt insertion post-
craniotomy for a brain tumor until the day of shunt revision requiring replacement or removal of the shunt system. Out of 
4774 craniotomies, 85 patients became VP shunt-dependent (1.8% of craniotomies). Median time from craniotomy to VP 
shunting was 1.9 months. Patients with hydrocephalus prior to tumor resection (N = 39) had significantly shorter time to shunt 
insertion than those without (N = 46) (p < 0.001), but there was no significant difference with respect to early shunt failure. 
Median time from shunt insertion to shunt failure was 20 days (range 1–35). At 90 days, 17 patients (20%) had confirmed 
shunt failure. Patient age, sex, tumor location, primary/secondary craniotomy, extra-axial/intra-axial tumor, ventricular entry, 
post-craniotomy bleeding, and infection did not show statistical significance. The risk of early shunt failure (within 90 days) 
of shunts after craniotomies for brain tumors was 20%. This study can serve as benchmark for future studies.
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Introduction

Craniotomies for removal of brain tumors form the core 
treatment of these potentially deadly diseases and have 
been proven to prolong life [31, 39] and improve quality of 

life and overall survival [20, 33]. Nonetheless, infections 
[24, 26, 27], bleeding [13, 27], surgical morbidity/mortal-
ity including neurological sequelae [2, 27], and CSF distur-
bances [16–18, 26] are potential risks of surgery.

Hydrocephalus has been extensively studied with abun-
dant evidence for its treatment with procedures such as 
external ventricular drainage (EVD), endoscopic third ven-
triculostomy (ETV), and ventriculoperitoneal (VP) shunts 
[14, 16, 21, 30]. Although the main objective of treating 
hydrocephalus with VP shunts is to establish a permanent 
CSF diversion, achieving maximum VP shunt survival, 
defined as time from implantation to its malfunction, still 
remains challenging. Numerous studies have been published 
on postoperative shunting and shunt-survival rates with 
respect to the pediatric population [16], hemorrhage-related 
hydrocephalus [28, 34], infections [4, 8, 24, 25], shunting 
related to specific tumor types [3, 19], and vascular brain 
malformations [15]. However, studies on shunt-survival 
rates and risks leading to shunt failure with respect to brain 
tumors remain scarce.
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In this study, we wished to determine timing of VP shunt-
ing and its longevity, and also to determine the risk of early 
shunt failure (within 90 days) implanted due to hydrocepha-
lus after craniotomies for brain tumors in adults.

Materials and methods

Collection of data

A population-based consecutive patient cohort of all adult 
patients operated at a single regional health care center 
between 2004 and 2013 was reviewed using our prospec-
tive database. The following data were recorded: age at time 
of craniotomy for brain tumor, VP shunt surgery and at time 
of first shunt failure, sex, status of hydrocephalus before 
and after craniotomy (yes/no), tumor location (supratento-
rial/infratentorial), extra-axial or intra-axial tumor (based 
on tumor histology and imaging reported by neuroradi-
ologists), primary/secondary (repeated) tumor resection, 
histology, treatment modality for hydrocephalus before 
and after craniotomy (EVD/ETV/EVD and tumor surgery 
simultaneously), ventricular entry during craniotomy (yes/
no), post-craniotomy bleeding (yes/no), and post-craniotomy 
infection/meningitis (yes/no). The first/index craniotomy in a 
specific location was defined as primary craniotomy and all 
subsequent craniotomies in the same location were defined 
as secondary. Therefore, a patient could have had more than 
one primary craniotomy, if operated on multiple/different 
locations. Secondary/repeated craniotomy for brain tumor 
was also designated for those who had craniotomies before 
the study period (2004), but later craniotomies within the 
study period. No patients were lost to follow-up.

To identify patients who underwent EVD, ETV, and 
VP shunting before and/or after brain tumor surgery, our 
tumor database was cross-linked with our surgical procedure 
codes database using the Nordic Medico-Statistical Com-
mittee Classification of Surgical Procedures (NCSP) codes 
for CSF-related procedures (operation codes AAF). ICD-
10 codes (G91) were subsequently reviewed to verify each 
case. Biopsy cases were not included in this study. Patients 
with pre-existing VP shunts prior to their craniotomies were 
excluded from the study.

The time from craniotomy for brain tumor to shunt inser-
tion and the time from shunt insertion to shunt failure were 
recorded. VP shunt failure was suspected based on clinical 
signs and symptoms of altered intracranial pressure and radi-
ological signs of ventricular enlargement, such as prominent 
temporal horns, increased transverse diameter of third ven-
tricle > 5 mm, ballooning of frontal horn with periventricular 
changes on CT, or T2-weighted/FLAIR images. For patients 
with shunt dependency, we recorded whether there was any 
significant association between ventricular entry during 

craniotomy and shunt longevity. We also recorded post-cra-
niotomy bleeding (intraparenchymal and/or intraventricular 
hemorrhage) and infection (positive CSF and device cultures 
including CSF pleiocytosis with clinical picture of infec-
tion requiring shunt removal) for analysis of shunt longevity. 
All patients underwent either MRI or CT head imaging at 
time of suspected shunt failure. Shunt failure was defined as 
a shunt revision procedure resulting in replacement of the 
whole shunt or in part by its individual components such as 
catheter replacement as a result of blockage and/or change 
or replacement of shunt valve.

The survival time of VP shunts, i.e., the shunt longevity, 
was calculated from the day of shunt insertion post-crani-
otomy until the day of shunt revision requiring replacement 
or removal of the shunt system. Analysis of risk factors 
associated with early shunt failure was performed to within 
90 days after shunt insertion. Censoring at the 90th day post-
shunting was chosen in order to determine whether the shunt 
failure was associated with the brain tumor surgery rather 
than adjuvant therapies. In order to avoid having multiple 
counts of the same patients in our analyses and to account 
for multiple procedures in the same patient, patient-to-cra-
niotomy ratio was ensured to be 1:1 in the final analyses for 
shunt longevity and its associated risks by excluding dupli-
cate patient identification numbers (IDs). Hence, a patient 
could have multiple craniotomies, but all patient IDs were 
unique in the final analyses.

Statistical analysis

Kaplan–Meier method was used to construct survival curves 
for shunt-free period, i.e., time from craniotomy to shunt 
insertion and from first day of VP shunt insertion to date of 
first revision. For detecting shunt failure with respect to the 
Kaplan–Meier analysis method, log rank test was applied 
to determine statistical significance of different risk factors 
for shunt failure. Cox proportional hazard regression mod-
els were used to identify multiple potential predictor vari-
ables with respect to time to shunt insertion and to shunt 
failure. Chi-square (X2) and Fisher’s exact test were used 
for comparison between categorical variables. Analysis of 
variance (ANOVA) and Student’s t test were used for con-
tinuous variables. Statistical significance was set at p < 0.05 
and for all analyses, the statistical software JMP (version 
9.03) was used.

Results

Demographic data

A total of 4815 craniotomies for brain tumors were per-
formed on 4204 adult patients. After exclusion of patients 
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with pre-existing VP shunts (30 patients), a total of 4774 
cases underwent further analyses (Fig. 1).

Three hundred seventy-three patients had pre-crani-
otomy hydrocephalus, of which 39 patients had persist-
ing hydrocephalus and became shunt-dependent. Four 
thousand four hundred and one craniotomy cases had 
no pre-craniotomy hydrocephalus, but 46 had de novo 

hydrocephalus and became shunt-dependent (Fig.  1). 
Thus, out of the 4774 craniotomies, a total of 85 patients 
(2% of patients, 1.8% of craniotomies) became shunt-
dependent (Fig. 1). There were 44 males (48.2%) and 41 
females (51.8%) (Table 1). Sixty-eight patients (80.0%) 
had supratentorial tumors, while 17 patients (20.0%) had 
an infratentorial tumor location (Table 1). The median 
patient age at time of shunt insertion was 61.9 years (range 
23.5–81.6 years) (Table 2).

Fig. 1  Flowchart illustrating all cases leading to VP shunt dependency after craniotomy for intracranial tumors. VP shunt – ventriculoperitoneal 
shunt. a: EVD insertion and craniotomy for brain tumor simultaneously. b: 2.0% of patients
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Time to shunt insertion after craniotomy for brain 
tumor

The median time from craniotomy to VP shunt insertion 
was 1.9 months (range 0.4–12.5 months) (Table 2). Patients 
with hydrocephalus before craniotomy had a significantly 
higher risk of earlier VP shunt dependency than those with-
out preoperative hydrocephalus (Fig. 2) in both univariate 
(HR 2.7, CI [1.7–4.3], p < 0.001) and multivariate (HR 3.7, 
CI [2.1–6.5], p < 0.001) analyses (Table 3).

Patient age, sex, tumor location, primary/secondary cra-
niotomy, extra-axial/intra-axial tumor, hydrocephalus treat-
ment modality before/after craniotomy, ventricular entry 
during craniotomy, post-craniotomy bleeding, and post-
craniotomy infection did not show statistical significance in 
neither univariate nor multivariate analysis (Table 3).

Risk of shunt failure

At time of censoring (90 days), 17 patients (20.0%) had 
undergone revision procedures with confirmed shunt fail-
ure (median 20 days, range 1–35) (Table 2). There were 
4 patients with and 13 patients without hydrocephalus 
before craniotomy with median shunt longevity of 4.5 and 
20 days, respectively. Median age at time of shunt fail-
ure was 61.1 years. There was no statistically significant 
association between those with and without hydrocephalus 
prior to craniotomy and reduced shunt longevity within 
90 days (Table 3).

Table 1  Overview characteristics of patients who underwent craniotomy for brain tumor and required permanent CSF diversion

EVD external ventricular drainage; ETV endoscopic third ventriculostomy; VP ventriculoperitoneal

Persisting hydrocephalus and 
VP shunt dependency (N/%)

De novo post-craniotomy hydrocepha-
lus and VP shunt dependency (N/%)

Total VP shunt depend-
ency after craniotomy 
(N/%)

Total 39 46 85
Age (median yrs) 54.8 62.0 61.9
Sex

  Male
  Female

19 (48.8)
20 (51.2)

25 (54.3)
21 (45.7)

44 (51.8)
41 (48.2)

Tumor location
  Supratentorial
  Infratentorial

24 (61.5)
15 (38.5)

44 (95.6)
2 (4.4)

68 (80.0)
17 (20.0)

  Extra-axial tumor
  Intra-axial tumor

17 (43.6)
22 (56.4)

16 (34.8)
30 (65.2)

33 (38.8)
52 (61.2)

Surgery
  Primary
  Secondary

30 (77.0)
9 (23.0)

34 (73.9)
12 (26.1)

64 (75.3)
21 (24.7)

Histology
  HGG
  Meningioma
  Metastasis
  Other tumors
  Ependymoma
  Craniopharyngioma
  Schwannoma
  Choroid plexus tumor
  Pituitary adenoma
  LGG

10 (25.6)
9 (23.0)
5 (12.8)
4 (10.3)
4 (10.3)
2 (5.1)
1 (2.6)
1 (2.6)
1 (2.6)
2 (5.1)

11 (23.9)
12 (26.1)
13 (28.3)
4 (8.7)
0
2 (4.3)
2 (4.3)
1 (2.2)
1 (2.2)
0

21 (24.7)
21 (24.7)
18 (21.2)
8 (9.5)
4 (4.7)
4 (4.7)
3 (3.6)
2 (2.3)
2 (2.3)
2 (2.3)

Pre-craniotomy and post-craniotomy treatment for hydrocephalus
  Pre-craniotomy EVD
  Pre-craniotomy ETV
  EVD + craniotomy simult
  Post-craniotomy EVD
  Post-craniotomy ETV

2 (5.1)
2 (5.1)
7 (17.9)
11 (28.2)
1 (2.6)

0
0
0
3 (6.5)
0

2 (2.3)
2 (2.3)
7 (8.2)
14 (16.5)
1 (1.2)

  Ventricular entry during craniotomy 2 (5.1) 7 (15.2) 9 (10.6)
  Post-craniotomy bleeding 4 (10.3) 4 (8.7) 8 (9.4)
  Post-craniotomy infection 2 (5.1) 2 (4.3) 4 (4.7)
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Table 2  Time frame of different 
variables with respect to 
shunting after craniotomy for 
brain tumor

HC hydrocephalus, VP ventriculoperitoneal
a Times given as median unless otherwise specified
b Cases with persisting postoperative HC (after craniotomy) requiring VP shunting
c Cases with de novo (new onset) postoperative HC requiring VP shunting

Days from craniotomy to VP 
shunting (range)a

Days from VP shunting to fail-
ure—shunt longevity (range)a

VP shunt 
failure 
within 
90 days 
(N/%)

Age (median) 61.0 years (range 33.3–74.6) 61.1 years (range 33.4–74.6) 61.1 years 
(range 
33.4–74.6)

Sex
  Male
  Female

87 (13–194)
48.5 (17–376)

20 (1–35)
19.5 (3–24)

9 (52.9)
8 (47.1)

HC prior to craniotomy
   Yesb

   Noc
16 (13–22)
87 (26–376)

4.5 (1–24)
20 (2–35)

4 (23.5)
13 (76.5)

Tumor location
  Supratentorial
  Infratentorial

50.5 (13–376)
56 (-)

19.5 (1–35)
21 (-)

16 (94.2)
1 (5.8)

  Intra-axial
  Extra-axial

40 (24–92)
41 (26–66)

20 (1–30)
19 (2–23)

9 (52.9)
8 (47.1)

Surgery
  Primary
  Secondary

56 (13–376)
67 (15–194)

20 (1–24)
18 (3–35)

13 (76.5)
4 (23.5)

Fig. 2  Kaplan–Meier curves 
demonstrating the overall 
time from craniotomy to shunt 
insertion (shunt-free period). 
Red continuous and blue-dotted 
curves represent those with and 
without hydrocephalus prior to 
craniotomy, respectively
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Age and sex

Median age at time of shunt failure was 61.1 years (range 
33.4–74.6). Age at craniotomy, VP shunting, and at time 
of shunt failure was not significantly associated with 
shunt longevity neither in univariate nor in multivariate 
analysis (Table 3).

Of the 85 patients who became shunt-dependent, 44 
patients (51.8%) were male and 41 patients (48.2%) were 
female (Table 1). Sex was not significantly associated 
with overall shunt longevity neither in univariate nor in 
multivariate proportional hazards analyses (Table 3).

Tumor location

Sixty-eight patients (80.0%) had supratentorial tumor 
location at time of craniotomy for brain tumor, while 
17 patients (20.0%) had infratentorial tumor location 
(Table 1). Tumor location was not significantly associated 
with shunt longevity neither in univariate nor in multivari-
ate proportional hazards analyses (Table 3).

Table 3  Survival and risk analysis of shunting with univariate and multivariate proportional hazards ratio model

EVD external ventricular drain, ETV endoscopic third ventriculostomy, HR hazard ratio, CI confidence interval, VP ventriculoperitoneal
a p < .001
b Variable parameters insufficient to determine HR for shunt longevity as there were too few patients who had early shunt failure to reveal statisti-
cal significance

  Time to VP shunting (risk of VP shunt implanta-
tion)

Shunt longevity (risk of early failure from 
shunting)

Univariate (HR, CI [95%]) Multivariate (HR, 
CI [95%])

Univariate (HR, CI [95%]) Multivari-
ate (HR, CI 
[95%])

Age (median)
  Craniotomy for brain tumor
  Shunt insertion
  Shunt failure

1.0 [1.0–1.1]
1.0 [1.0–1.1]
N/A

1.0 [1.0–1.1]
1.0 [1.0–1.1]
N/A

1.0 [0.9–1.1]
1.0 [0.9–1.1]
1.0 [0.9–1.1]

1.0 [0.9–1.1]
1.0 [0.9–1.1]
1.0 [0.9–1.1]

Sex
  Male
  Female

1
1.0 [0.6–1.5]

1
0.9 [0.6–1.6]

1
0.8 [0.4–1.5]

1
0.9 [0.2–3.9]

Pre-craniotomy hydrocephalus
  No
  Yes

1
2.7a [1.7–4.3]

1
3.7a [2.1–6.5]

1
1.2 [0.5–5.7]

1
2.0 [0.3–11.1]

Tumor location
  Supratentorial
  Infratentorial

1
0.9 [0.5–1.6]

1
1.3 [0.6–2.6]

1
0.6 [0.4–1.1]

1
1.1 [0.1–9.8]

  Extra-axial tumor
  Intra-axial tumor

1
0.9 [0.6–1.5]

1
1.1 [0.6–1.9]

1
0.7 [0.2–1.9]

1
0.9 [0.2–3.2]

Surgery
  Primary
  Secondary

1
0.7 [0.4–1.1]

1
0.6 [0.3–1.1]

1
1.7 [0.9–3.2]

1
0.1 [0.1–2.2]

Hydrocephalus treatment modality perioperatively (craniotomy)
  Pre-craniotomy EVD
  Pre-craniotomy ETV
  EVD + craniotomy simultaneously
  Post-craniotomy EVD
  Post-craniotomy ETV

4.1 [0.7–12.3]
4.7 [0.7–16.5]
1.7 [0.7–3.6]
1.1 [0.5–1.8]
1.3 [0.1–6.2]

–b

2.4 [0.3–11.7]
–b

2.1 [0.9–4.9]
1.8 [0.4–29.8]

–b

–b

0.9 [0.3–4.1]
5.8 [0.8–29.4]
–b

–b

–b

1.0 [0.1–83.1]
1.0 [0.3–71.2]
–b

  Post-craniotomy bleeding 1.1 [0.5–2.4] 2.2 [0.8–5.6] 1.2 [0.5–2.4] –b

  Ventricular entry (craniotomy) 0.9 [0.4–1.7] 1.4 [0.6–2.9] 0.7 [0.1–3.7] 1.4 [0.1–27.3]
  Post-craniotomy infection 1.8 [0.5–4.4] 2.4 [0.6–7.1] 1.2 [0.2–4.5] 6.2 [0.6–48.8]
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Extra‑axial and Intra‑axial tumors

There were a total of 33 out of 85 patients (38.8%) whom 
had extra-axial tumors of which 17 patients (43.6%) had 
pre-craniotomy hydrocephalus, while the remaining 52 
patients (61.2%) had intra-axial tumors (Table 1). No sta-
tistical significant differences were detected between those 
with extra-axial/intra-axial tumors and time to neither VP 
shunting (p = 0.9) nor shunt longevity (p = 0.5) in nei-
ther univariate nor multivariate analysis (Table 3). Strati-
fied risk analysis with respect to pre-craniotomy status of 
hydrocephalus revealed no statistical significant difference 
between these two patient groups in time to VP shunting 
(with pre-craniotomy hydrocephalus: HR 0.8, CI [0.4–1.5], 
p = 0.4; without pre-craniotomy hydrocephalus: HR 1.1, CI 
[0.6–1.9], p = 0.8) and early shunt failure within 90 days 
(with pre-craniotomy hydrocephalus: HR 2.1, CI [0.9–1.1], 
p = 0.06; without pre-craniotomy hydrocephalus: HR 2.2, 
CI [0.6–7.8], p = 0.2).

Primary/secondary surgery for brain tumor

Primary craniotomies were performed in 64 patients (75.3%) 
and secondary in 21 patients (24.7%) (Table 1). Primary/
secondary craniotomy for brain tumor was not significantly 
associated with shunt longevity neither in univariate nor in 
multivariate proportional hazards analyses (Table 3).

Pre‑craniotomy and post‑craniotomy treatment 
for hydrocephalus

Out of the 373 patients with pre-craniotomy hydrocephalus, 
23 underwent EVD insertion, 19 had ETV, while 41 had 
EVD and craniotomy concomitantly (Fig. 1). From these, 
334 patients (89.5%) did not need any further treatment for 
hydrocephalus. Of the remaining 39 patients with persist-
ing post-craniotomy hydrocephalus, 11 had EVD insertion 
and one underwent ETV in an attempt to avoid shunting. 
Ultimately, all 39 patients with persisting post-craniotomy 
hydrocephalus required VP shunt insertion (Table 1). From 
the 39 patients with VP shunt dependency, two had pre-
craniotomy EVD and two had ETV, while seven patients had 
EVD and tumor resection simultaneously (Table 1). Except 
one patient, there was no overlap of treatment modalities for 
hydrocephalus in the pre-craniotomy and post-craniotomy 
stage before VP shunt implantation (Fig. 1).

From those without pre-craniotomy hydrocephalus, 3 out 
46 patients had EVD insertion after tumor surgery due to de 
novo hydrocephalus, but all 46 patients required VP shunt 
insertion eventually (Table 1).

Of the total of 85 patients with shunt dependency, none 
had craniotomies between initial shunt placement and 
first shunt failure. Having a pre-craniotomy treatment for 

hydrocephalus was not significantly associated with reduced 
shunt longevity (Table 3).

Histology

From a total of 85 patients with shunt dependency, the 
tumor histologies were as follows in descending order: 21 
high-grade gliomas (24.7%), 21 meningiomas (24.7%), 18 
metastatic tumors (21.2%), 8 other tumors (9.5%), 4 epend-
ymomas (4.7%), 4 craniopharyngiomas (4.7%), 3 schwan-
nomas (3.6%), 2 choroid plexus tumors (2.3%), 2 pituitary 
adenomas (2.3%), and 2 low-grade gliomas (2.3%) (Table 1).

Ventricular entry during craniotomy

Nine out of 85 patients (10.6%) with shunt dependency had 
ventricular entry during craniotomy (Table 1). Only one 
patient (1.2%) had early shunt failure. Ventricular entry was 
not significantly associated with reduced shunt longevity 
(Table 3).

Post‑craniotomy bleeding

Eight out of 85 patients (9.4%) with shunt dependency had 
post-craniotomy bleeding (Table 1). None of these patients 
had early shunt failure. Post-craniotomy bleeding was 
not significantly associated with reduced shunt longevity 
(Table 3).

Infection

Only 4 out of 85 patients (4.7%) with shunt dependency 
had infection after craniotomy and initial shunt surgery 
(Table 1). From these, 2 patients (2.3%) had early shunt fail-
ure. Infection was not significantly associated with reduced 
shunt longevity (Table 3).

Discussion

Craniotomies for brain tumors carry a risk of causing post-
operative hydrocephalus in need of VP shunts or ETVs for 
permanent CSF diversion [10, 21]. However, VP shunts 
may malfunction and studies on shunt longevity and poten-
tial risks leading to early shunt failures after brain tumor 
surgery remain unexplored. We have previously reported 
the incidence and risk factors of developing postoperative 
hydrocephalus in patients with and without hydrocephalus 
before brain tumor surgery [17, 18]. Therefore, the primary 
end-point of this study was to investigate differences with 
respect to time to VP shunting, in particular between these 
two groups (patients with and without pre-craniotomy 
hydrocephalus). Also, we wished to analyze shunt longevity 
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within the first 90 days after shunting. Our secondary end-
point was to determine risk factors of early VP shunt failure 
that can lead to reduced shunt longevity after craniotomy 
for brain tumors.

A total of 85 patients (1.8% of craniotomy cases, 2% of 
patients) became permanently shunt-dependent after cra-
niotomies for brain tumor (Fig. 1, Table 1). The median 
time to VP shunt insertion after craniotomy was 1.9 months 
(Fig. 2, Table 2). In comparison, studies have reported time 
to shunt placement after surgeries ranging from the day of 
initial biopsy to 15 months postoperatively in adults with 
high-grade gliomas [3, 11, 19, 37]. In a study by Reddy et al. 
on shunting of patients with intracranial tumors, 56 out of 
187 patients (30%) had a shunt placement after tumor sur-
gery [36], but the time to shunt placement after craniotomy 
was not stated. While the abovementioned studies are lim-
ited to particular tumor types and patient populations, our 
study included all adult patients comprising a non-selected 
consecutive cohort with histologically verified intracranial 
tumors, thus strengthening the external validity of our study.

Adult patients without pre-craniotomy hydrocephalus 
who have undergone craniotomy for choroid plexus tumors 
and craniopharyngiomas have been shown to have higher 
risk of post-craniotomy shunt dependency [18]. This has 
also been demonstrated for adults with pre-craniotomy 
hydrocephalus and who have undergone secondary surgery 

[17]. In this study, comparative analysis of these two states 
of with/without preoperative hydrocephalus at time of tumor 
surgery was performed. This revealed that hydrocephalus 
prior to craniotomy was significantly associated with shorter 
time between craniotomy and VP shunting compared to 
those without hydrocephalus before craniotomy regard-
less of preceding treatment for hydrocephalus with EVD or 
ETV prior to definite shunting (Fig. 2, Table 3). A possible 
explanation for this might be that the tumor burden causing 
obstruction of the CSF pathways and overloading venous 
outflow leads to considerable alterations in the overall CSF 
dynamics of the brain [38, 40]. The “stasis” of CSF and the 
effect of the pathophysiologic state may cause cell death 
and axonal damage [5, 6], changes in brain elasticity [22], 
and profound tissue edema in addition to ventriculomegaly, 
which in turn prolongs the hydrocephalic state intracrani-
ally even after tumor resection. As such, those with persis-
tently abnormal intracranial pressures and ventriculomegaly 
post-resection will have earlier post-craniotomy hydro-
cephalus due to persisting hydrocephalus and subsequent 
shunt dependency, an effect which is stronger than in those 
without any changes in CSF dynamics apart from the local 
peritumoral edema within the brain parenchyma with no 
disturbance of CSF pathways. Comparable to our previous 
findings [17, 18], age at craniotomy and shunt placement, 
sex, tumor location, and primary/secondary surgery were 

Fig. 3  Kaplan–Meier curve 
demonstrating overall VP shunt 
survival (within 90 days) after 
brain tumor surgery
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not significant predictors of time to shunt insertion in this 
study (Table 3).

At time of censoring (90 days), 17 patients (20%) had 
confirmed shunt failure with median time of 20 days and 
median age at first shunt failure was 61.1 years (Table 2), 
yielding a 90-day shunt-survival rate of 80% after crani-
otomy for brain tumor (Fig. 3). Notably, only 4 of these 
17 patients had hydrocephalus before craniotomy, while 
the remaining 13 patients presented without hydrocephalus 
before craniotomy for brain tumor (Table 2). In the literature, 
shunt-failure rates range from 16.9 to 28.8% at 3 months [4, 
7, 36] and 9.17–77.3% at 6 months [7, 8, 23–25, 36] with 
median shunt-survival times from 22.5 days up to 5.2 years 
[23, 25, 35]. However, most of these studies have not been 
conducted of brain tumor patients as a separate cohort. We 
found that neither patient age nor hydrocephalus existing 
prior to craniotomy was a significant risk factor for early 
shunt failure (Table 3). Some studies have identified younger 
adults as risk for shunt failure [7, 24], whereas others have 
not [8]. In a study by Anderson et al. [1] of etiologies of 
shunt failures in adults, the hydrocephalus etiology (idi-
opathic, infection, or trauma) was found to be a significant 
risk factor for 30-day shunt failure, whereas age was not. 
Reddy et al. reported a 2% decrease in odds for shunt failure 
with increasing age at shunt placement [36]. Interestingly, 
we found that patients with hydrocephalus before craniotomy 
had significantly higher risk of earlier shunting, but were 
not more likely to have longer shunt longevity compared to 
those without hydrocephalus prior to brain tumor surgery 
(Figs. 2 and 3, Table 3). This might be explained by brain 
tumor debris within the CSF after brain tumor surgery lead-
ing to earlier hydrocephalus and subsequent shunt depend-
ency. Additionally, one could expect that patients with ear-
lier VP shunting would have reduced shunt longevity, even 
though the discrepancy of time to shunting and shunt failure 
between those with and without prior hydrocephalus was 
comparable (Table 2). Although high protein content from 
certain tumor types has been associated with hydrocephalus 
[11, 32], other factors such as hemoventriculi at the time of 
shunt surgery [28], male sex, and benign tumors have been 
associated with shorter shunt survival [36]. Lastly, Reddy 
et al. [36] reported that females had significantly longer 
shunt-survival rates (p < 0.001) compared to males; we could 
not find this association in our study.

With respect to treatment modalities for hydrocephalus 
before and after tumor surgery, EVDs were inserted in 66 
out of 373 cases (17.7%) with pre-craniotomy hydrocephalus 
and in 2 out of 4401 cases (0.1%) without pre-craniotomy 
hydrocephalus (Fig. 1). In total, 334 out of 373 cases (89.5%) 
with pre-craniotomy hydrocephalus and 2 out of 4401 cases 
(0.1%) did not require permanent shunting post-craniotomy. 
EVD placement (both independent of and concomitant with 
craniotomy) or ETVs was not significantly associated with 

time to neither VP shunting nor shunt longevity (Table 3). 
In a study by Won et al., 71% of patients received preopera-
tive and perioperative EVD placements, whereas one patient 
received EVD postoperatively due to hydrocephalus. Preop-
erative hydrocephalus was a significant risk factor for devel-
opment of postoperative hydrocephalus [41], similar to our 
findings but risk of EVD for shunt failure was not analyzed 
in their cohort of patients limited to posterior fossa lesions. 
All patients in their study underwent VP shunting (mean 
interval from surgery in adults was 69.7 ± 109.9 days). 
Korinek et al. reported that previous EVD placements and 
male sex were risk factors for first revision for mechani-
cal shunt dysfunction. The cause of hydrocephalus had no 
impact on risk of shunt dysfunction [25]. Conversely, Lee 
et al. reported that EVD placement at index surgery (defined 
as new shunt or revision for the patient) was not predictive of 
30-day shunt failure [28]. However, both of the abovemen-
tioned studies were not limited to brain tumor patients only. 
Furthermore, their studies have not given detailed specifics 
with regard to the underlying conditions for requirement of 
EVD placements. With regard to ETV for pre-craniotomy 
hydrocephalus treatment, none had persisting post-craniot-
omy (N = 19) hydrocephalus leading to shunt dependency in 
our study. One patient had pre-craniotomy ETV and subse-
quent insertion of EVD which successfully avoided shunt-
ing. Other studies have reported ETV success rates ranging 
from 73 to 98% with miscellaneous etiologies of hydro-
cephalus [14, 21, 30]. Marx et al. reported in their study of 
adults with posterior fossa lesions only that there was no 
significant difference in developing persisting hydrocephalus 
(with subsequent shunting) between those who had tumor 
surgery only and those with additional perioperative ETV 
[30], in keeping with our results. Reddy et al. reported that 
patients who had procedures such as ventriculostomy and 
Ommaya reservoir had significantly lower 3 and 6-month 
shunt-survival rates than those without these procedures 
[36]. As only 3 out of 39 patients in total (7.7%) had ETV 
from those with pre-craniotomy and post-craniotomy hydro-
cephalus, our statistical analyses were non-interpretable with 
respect to shunt longevity. Nonetheless, our higher ETV suc-
cess rate for hydrocephalus treatment may be explained by 
inclusion of adults with brain tumors only.

There were 33 patients (38.8%) out of 85 patients whom 
had extra-axial tumors in this study. Extra-axial tumors 
such as choroid plexus tumors, craniopharyngiomas [18], 
schwannomas [12], and ependymomas [23] are known to 
increase the risk of postoperative hydrocephalus. This might 
lead to requirement of permanent CSF diversion. However, 
when dichotomizing patients into extra-axial and intra-axial 
tumors, our analyses did not reveal any statistical signifi-
cance between these two groups in time to VP shunting nor 
early shunt failure (Table 3). Also, we did not find any sta-
tistically significant difference when further stratifying our 
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analyses into patients with/without pre-craniotomy hydro-
cephalus. This might partially be explained by some extra-
axial tumor types being truly intraventricular ones, whereas 
others are not located in the vicinity of the ventricles and 
do not require ventricular opening during resection, which 
might increase the risk of postoperative hydrocephalus 
development [11, 32]. Nonetheless, our study comprises a 
limited number of patients where contemporary studies are 
lacking with regard to extra-axial and intra-axial tumors and 
postoperative VP shunting and early shunt failure in this 
patient group.

In our study, secondary/repeat surgery was not associated 
with increased risk of early shunt failure within 90 days. The 
median time to shunt failure was similar between those who 
underwent primary and secondary craniotomy (18 days vs. 
20 days, respectively). Secondary/repeat surgery is associ-
ated with postoperative hydrocephalus in patients with 
pre-craniotomy hydrocephalus [17] and in development of 
communicating hydrocephalus in patients with glioblas-
tomas [32], contrary to the pediatric population where no 
statistical significance has been found [16]. Although we 
could not associate secondary/repeat craniotomy for brain 
tumor with shunt longevity, further studies are warranted as 
comparison to our study was difficult due to lack of reports 
in the literature.

High-grade gliomas and meningiomas represented 
approximately half of the cases with shunt dependency 
(Table 1). Postoperative hydrocephalus leading to perma-
nent shunt dependency has been reported with regard to both 
malignant [11, 19, 32] and benign tumors [18]. Moreover, 
malignant brain tumors have been reported to have signifi-
cantly lower shunt revision rates compared to benign tumors 
[36], but no difference compared to control groups (normal 
pressure hydrocephalus) [37]. In a study of adult patients 
with brain tumors and development of hydrocephalus, cra-
niotomy for choroid plexus tumors and craniopharyngio-
mas had higher risk of shunt dependency than other tumor 
types [17]. In the same study, ventricular entry was not sig-
nificantly associated with shunt dependency reflecting our 
current findings in this study, but also with regard to shunt 
longevity (Table 3). We also did not find any significant rela-
tion with post-craniotomy hemorrhage and shunt longevity 
(Table 3), in contrast to other reports where shunt malfunc-
tions were significantly lower in patients with intracranial 
hemorrhages [7, 29]. Nonetheless, Lee et al. reported that 
intraventricular hemorrhage at index surgery was a signifi-
cant risk factor for shunt failure, but this was at time of new 
shunt insertion or first revision and not craniotomy. Our 
results might be explained by that none of the patients with 
post-craniotomy hemorrhage had ventricular entry during 
craniotomy for brain tumor (Table 1).

In our study, only 4 patients in total (4.7%) had post-
craniotomy infection (Table 1). This is in the lower end 

of the scale compared to published reports [1, 24, 25, 36]. 
Korinek et al. also identified that previous EVD placements 
and previous craniotomy have increased risk of shunt revi-
sion due to shunt infection [25]. Ferguson et al. reported that 
post-meningitic hydrocephalus patients (three patients) had 
significantly longer shunt-survival time (28 months) than 
other causes [9]. We did not find any significant association 
between post-craniotomy infection and time to shunting or 
shunt longevity (Table 3). Our lower total incidence rate of 
post-craniotomy infection may be explained by inclusion of 
only adults who underwent surgery for brain tumors.

Strength and limitations of the study

The centralized neurosurgical health care center at Oslo 
University Hospital (Rikshospitalet and Ullevål) has a pop-
ulation-based referral of patients from a well-defined geo-
graphical region of Norway with approximately 2.8 million 
inhabitants. This centralization of neurosurgical services 
reduces possible confounding effects of differences in access 
to health care services. We have avoided the selection bias 
inherently present in large multicenter studies, as there is 
only one unit performing neurosurgical procedures. Our 
study is unique in that we did not find any other large-scale 
studies with focus on analysis of shunt survival and possi-
ble risks associated with shunt failure after craniotomies for 
brain tumors where all patients are included regardless of 
tumor histology. This study comprises histological specters 
which are clinically relevant, thereby improving the exter-
nal validity of our results. There is no selection bias, as all 
consecutive craniotomies from a prospectively collected 
database with histologically verifiable intracranial tumors 
are included. Finally, no patients have been lost to follow-up 
and to the extent of our knowledge, this is the largest study 
with respect to analyzing shunt survival and risks associated 
with shunt failure in patients who become shunt-dependent 
after craniotomy for brain tumors.

The foremost limitation of this study is its retrospective 
design. Potential selection bias might be evident because of 
surgeon’s preferences for treatment with EVD and/or ETV 
as well as timing for shunting due to hydrocephalus. Factors 
such as tumor volume, shunt valve type, and details of the 
mechanical components of the shunt devices such as calcifi-
cation within the tube leading to scarring, exact site of shunt 
blockage, and malpositioning/migration of catheter were not 
included in our analyses. The analysis of images with regard 
to shunt failure was not performed in an automatized man-
ner, due to lack of comparability across the different imag-
ing modalities in absence of age-adjusted normal values. 
Although CT/MRI was available for all patients included 
in the study, the presence or absence of ventriculomegaly 
leading to shunt failure and subsequent revision may have 
been limited by human error. Adjuvant treatments such as 
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radiotherapy, chemotherapy, and coexisting comorbidities 
were not included in the analyses, which may impact the 
risks associated with shunt failures. Although being a large 
study, the number of patients might be so low in the final 
analyses giving statistical type I and II errors, thus failing 
to identify true prognostic factors for shunt failures. Direct 
comparisons to our study were difficult as most published 
reports are biased with limitations to certain patient groups, 
tumor histologies and accounting for overall shunt-failure 
rates, whereas our study was concerned to adults whom had 
brain tumor surgery.

Conclusions

A total of 1.8% of cases with intracranial tumors had per-
manent shunt dependency. Median time from craniotomy 
for brain tumor to VP shunting was 1.9 months. In total, 
89.5% of those with pre-craniotomy hydrocephalus did not 
require a shunt postoperatively. Hydrocephalus prior to cra-
niotomy for brain tumor was significantly associated with 
earlier shunt insertion, but not with early shunt failure within 
90 days. In adult patients who underwent craniotomy for 
brain tumor, only 20% had shunt failure within 90 days.
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