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Abstract
The vasodilatory calcitonin gene-related peptide (CGRP) is excessively released after spontaneous subarachnoid hemorrhage
(sSAH) and modulates psycho-behavioral function. In this pilot study, we prospectively analyzed the treatment-specific differ-
ences in the secretion of endogenous CGRP into cerebrospinal fluid (CSF) during the acute stage after good-grade sSAH and its
impact on self-reported health-related quality of life (hrQoL). Twenty-six consecutive patients (f:m = 13:8; mean age 50.6 years)
with good-grade sSAH were enrolled (drop out 19% (n = 5)): 35% (n = 9) underwent endovascular aneurysm occlusion, 23%
(n = 6) microsurgery, and 23% (n = 6) of the patients with perimesencephalic SAH received standardized intensive medical care.
An external ventricular drain was inserted within 72 h after the onset of bleeding. CSF was drawn daily from day 1–10. CGRP
levels were determined via competitive enzyme immunoassay and calculated as “area under the curve” (AUC). All patients
underwent a hrQoL self-report assessment (36-Item Short Form Health Survey (SF-36), ICD-10-Symptom-Rating questionnaire
(ISR)) after the onset of sSAH (t1: day 11–35) and at the 6-month follow-up (t2). AUC CGRP (total mean ± SD, 5.7 ± 1.8 ng/ml/
24 h) was excessively released into CSF after sSAH. AUC CGRP levels did not differ significantly when dichotomizing the
aSAH (5.63 ± 1.77) and pSAH group (5.68 ± 2.08). aSAH patients revealed a higher symptom burden in the ISR supplementary
item score (p = 0.021). Multiple logistic regression analyses corroborated increased mean levels of AUCCGRP in CSF at t1 as an
independent prognostic factor for a significantly higher symptom burden in most ISR scores (compulsive-obsessive syndrome
(OR 5.741, p = 0.018), anxiety (OR 7.748, p = 0.021), depression (OR 2.740, p = 0.005), the supplementary items (OR 2.392,
p = 0.004)) and for a poorer performance in the SF-36 physical component summary score (OR 0.177, p = 0.001). In contrast, at
t2, CSF AUC CGRP concentrations no longer correlated with hrQoL. To the best of our knowledge, this study is the first to
correlate the levels of endogenous CSF CGRP with hrQoL outcome in good-grade sSAH patients. Excessive CGRP release into
CSF may have a negative short-term impact on hrQoL and emotional health like anxiety and depression. While subacutely after
sSAH, higher CSF levels of the vasodilator CGRP are supposed to be protective against vasospasm-associated cerebral ischemia,
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from a psychopathological point of view, our results suggest an involvement of CSF CGRP in the dysregulation of higher
integrated behavior.

Keywords Calcitonin gene-related peptide . CGRP . Health-related quality of life . Impairment . Neuropsychological outcome .

Spontaneous subarachnoid hemorrhage

Introduction

Spontaneous subarachnoid hemorrhage (sSAH) represents a
complex and still devastating neurovascular disease, associat-
ed with substantial morbidity and mortality. Over the past
30 years, advances in neurovascular treatment strategies and
specialized neurocritical care have led to decreasing case fa-
tality rates [1, 2] with an absolute annual reduction in 30-day
mortality of 0.9% over the past decades [1]. However, the
mortality in sSAH patients is still as high as 50% [3]. The
in-hospital mortality is estimated 18% [4]. About 85% of the
non-traumatic spontaneous events comprise aneurysmal sub-
arachnoid hemorrhages (aSAH) and 10% are non-aneurysmal
perimesencephalic subarachnoid hemorrhages (pSAH) [5].
Epidemiologically, aSAH and pSAH are two diseases with
different evolutions [6]. Compared with aSAH, pSAH repre-
sents a subarachnoid hemorrhage (SAH) entity with a very
distinct and usually more benign clinical course [6–8]. The
survivors harbor serious risks of neurological dysfunction,
functional disability, and cognitive impairment [9, 10], even
months to years after ictus [11, 12]. There is a marked dispar-
ity between reattained functional independence in up to 70%
[13] of the sSAH patients and considerable long-term neuro-
psychological deficits [9, 10, 14] in up to 94.6% [15] with a
reduced health-related quality of life (hrQoL) in 35% of the
patients 1 year after sSAH [12, 16], anxiety (in up to 54%) [11,
17], depression (approaching 61.7%) [17, 18], and, in up to
two-thirds [9, 19], the inability to reassume one’s previous
occupation [19, 20] [9, 14].

The underlying pathomechanisms are poorly understood
and deemed to be multifactorially mediated [9, 21, 22]. A
combination of focal and diffuse brain injury is assumed,
probably due to the primary insult, determined by the severity
of the bleeding, or subsequent profound secondary complica-
tions, most notably the arterial cerebral vasospasm (CV) and
the delayed cerebral ischemia [23]. In light of this, the early
identification of reliable predictive outcome parameters in
sSAH is as tempting as challenging. When evaluating the
potential pathophysiological role of vasoactive endogenous
neuropeptides in sSAH-related cerebral hemodynamic chang-
es, CV-induced cerebral ischemia, and outcome after sSAH,
neuropeptide Y (NPY) [24–27] and calcitonin gene-related
peptide (CGRP) [28–33] have gained paramount interest.

The 37-amino acid neuropeptide CGRP, firstly described
in 1982 [34], is a highly potent microvascular vasodilator [35]

and neuromodulator [36], which is widely expressed and
stored in the central and peripheral nervous system [37]. In
the cerebral circulation, CGRP is released from presynaptic
vesicles in sensory perivascular fibers that almost exclusively
or ig inate f rom the gasser ian gangl ion [38, 39] .
Physiologically, together with other neuropeptides, CGRP re-
stores the cerebrovascular tone in response to vasoconstriction
via a remarkable relaxation of the smooth muscle layer, here-
by dilating the arteries and, consecutively, increasing the ce-
rebral blood flow (CBF) [29]. Through this dynamic reflex,
termed the “trigemino-vascular response”, CGRP opposes ex-
cessive vasoconstriction [39]. In aSAH, CGRP has been dem-
onstrated to be excessively released into cerebrospinal fluid
(CSF) [31, 33] with a potential neuroprotective effect by
preventing CV and cerebral ischemia [33].

Besides its eminent vasoactive role, peptidergic psychoac-
tive implications of CGRP have been repeatedly described in
humans and, translationally, in various animal models, with a
crucial involvement in multifaceted neurobehavioral process-
es [40] such as depression [41–47], anxiety [48], learning and
memory [49], possibly in dementia [50], in the pathophysiol-
ogy of inflammatory and neuropathic pain [51–53], and, by
unalterable cerebral vasodilation, in migraine [54–56]. To
date, the behavioral profile of the action of supraspinal
CGRP has insufficiently been elucidated, though.

To the best of our knowledge, no data are yet available on
the relevance of CGRP in supratentorial CSF on hrQoL out-
come after sSAH in humans. We hypothesize that the exces-
sive release of endogenous CGRP in the subacute phase after
sSAH might impact quality of life, even in good-grade
patients.

Patients and methods

Ethical approval

All procedures performed in studies involving human partic-
ipants (i.e. the clinical database, the prospective liquid
biobanking, and the study protocol) were in accordance with
the ethical standards of the institutional research committee
(Ethikkommission des Universitätsklinikums Regensburg,
Ethikvotum 06-179) and with the 1964 Helsinki declaration
and its later amendments or comparable ethical standards.
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Patient population

The cohort has been reported previously [21, 24]. Twenty-six
consecutive patients with acute non-traumatic, angiographic-
ally confirmed aneurysmal or non-aneurysmal sSAH in
prognostically favorable neurological condition were prospec-
tively enrolled in this single-center trial at our University
Medical Center between February 2013 and May 2016.

Study selection criteria

After obtaining written informed consent, we selectively in-
cluded native German speakers, aged 18 to 75 years, with
non-traumatic sSAH. The patients either underwent microsur-
gical aneurysm occlusion (MS group) or endovascular aneu-
rysm occlusion (EV group) for an intracranial aneurysm in the
anterior or posterior circulation (aSAH). Patients with a non-
aneurysmal pSAH received standardized treatment in the in-
tensive care unit (ICU) (pSAH group). Each patient had been
admitted to hospital within 48 h of ictus in prognostically
favorable, good to moderate neurological condition, that
means with a Hunt and Hess (HH) score [57] of 1 to 4 or a
World Federation of Neurosurgical Societies (WFNS) score
[58] of 1 to 4 and an initial GlasgowComa Scale (GCS) of ≥ 9.
Within the first 72 h after the onset of sSAH, all patients
received an external ventricular drain because of a radiologi-
cally confirmed acute occlusive hydrocephalus. Exclusion
criteria were (1) preceding neurosurgical or neurovascular
procedures, (2) a previous history of intracranial disorders,
(3) a previous history of psychiatric or neurodegenerative dis-
eases, (4) severe autoimmune or systemic diseases, (5) (giant)
aneurysm causing mass effect, and (6) severe postprocedural
complications, such as intracranial bleeding after treatment of
aneurysm or clinically symptomatic cerebral ischemia.

The clinical database comprised all demographic, neuro-
logical, and radiological variables, comorbidities, non-/inva-
sive procedures, complications, outcome grading (Glasgow
Outcome Scale [GOS] [59] and modified Ranking Scale
[mRS] [60]), and comprehensive pharmacological screening
(at discharge and at the 6-month FU). All patients were exam-
ined by means of cerebral computed tomography (CT) and
digital subtraction angiography (DSA) and treated according
to our ICU standard operating protocol [61]. Transcranial
Doppler ultrasound examinations [62] were conducted daily.
Our neuroradiologists individually decided on the timing and
number of DSA controls on a patient-to-patient basis, depend-
ing on the initial DSA findings.

Therapeutic procedures

For the aSAH patients, neurosurgeons and neuroradiologists
decided on the treatment modality after interdisciplinary

consent. Our standardized surgical and endovascular proce-
dure protocols have been described elsewhere [63].

Self-reported assessment of hrQoL and mental health

Outcome evaluation was conducted in a single session in a
noisefree setting by having the participants complete both
surveys, as an inpatient at t1 and as an outpatient at t2, respec-
tively. No effects of fatigue were apparent. FU assessment
additionally comprised a neurological examination and a
non-standardized semi-structured interview, including the pa-
tient’s subjective health status, the current medication, and the
employment status. All patients completed the German ver-
sion of the 36-Item Short Form Health Survey (SF-36) [64] (a
performance score) and the ICD-10-Symptom-Rating ques-
tionnaire (ISR) [65] (a score for symptom burden) in the sub-
acute phase after the onset of bleeding (between day 11 and 35
after sSAH; t1) and in the short term (chronic phase) at the 6-
month FU (t2).

ISR The ISR aims at a comprehensive evaluation of the se-
verity of psychological disorders. The ISR 2.0 comprises 29
items and six syndrome scales: depression, anxiety,
obsessive/compulsive disorders, somatoform disorders,
eating disorders, and a supplementary scale, which covers
a variety of syndromes (including concentrat ion,
suicidality, sleep, appetite, obliviousness, flash backs, prob-
lems with activities of daily living, feelings of displacement
and alienation, non-organic sexual dysfunction), as well as a
total score. Each syndrome scale ranges from a minimum of
0 (best performance) to a maximum of 4 points with higher
scores indicating a more severe symptom burden. Cutoff
values for each syndrome scale grade the degree of severity
of symptoms in “suspected”, “mild”, “moderate”, and “se-
vere” [65].

SF-36 The SF-36 is a 36-item generic general health ques-
tionnaire that yields scores on eight health subscales relat-
ing to physical health (physical functioning (Pfi), role lim-
itations due to physical health problems (Rolph), bodily
pain (Pain), general health perceptions (Ghp)) and psycho-
logical health (vitality (Vital), social functioning (Social),
role limitations because of emotional problems (Rolem),
and general mental health (Mhi)). These eight subscales
can be summarized in a corresponding physical component
summary (PCS) and a mental component summary (MCS).
The SF-36 also includes a single item that provides an indi-
cation of perceived change in health (health transition item,
Rawhtran). Each item is scored on a 0 to 100 range and a
high score defines a more favorable health state. Items in the
same scale are averaged together to create the 8 scale scores
[64, 66].
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Laboratory procedures

CSF was drawn directly from the external ventricular drain
and collected daily over the 10-day period after the onset of
sSAH. Immediately after sampling, the samples were centri-
fuged at 1200 rpm for 10 min, and the supernatants were
aliquoted and stored at − 80 °C until further use. The samples
were thawed, aliquoted (1 ml), evaporated on a vacuum con-
centrator (Christ RVC 2-25 CD plus; Osterode am Harz,
Germany), and dissolved in 250 μl of buffer resulting in a
fourfold concentration. CGRP levels were measured in dupli-
cate CSF samples using competitive enzyme immunoassay
(EIA; Phoenix Pharmaceuticals Inc., Burlingame, CA).
According to pharmacological studies, cerebral exposure to
the released endogenous CSF CGRP over time was measured
as area under the curve (AUC) and expressed as ng/ml × 24 h.

Statistical analysis

Continuous data and test results on hrQoL and mental health
are presented as mean ± standard deviation (SD) and range
(minimum to maximum) and categorical data as frequency
counts.

hrQoL assessment: Changes over time within each group
were analyzed with a paired t test. Differences between groups
at postinterventional assessment were analyzed with an anal-
ysis of variance (ANOVA) followed by Fisher’s LSD post hoc
pairwise comparisons.

Correlation of CGRP with hrQoL assessment: Univariate
and multiple logistic regression analyses were conducted for
correlations of AUC CGRP with hrQoL test scores and/or
clinical variables. Changes over time within each group were
analyzed with a paired t test. Intragroup variances (correla-
tions between hrQoL test scores and clinical variables) were
analyzed using an analysis of variance (Bartlett’s test for equal
variances). Statistical analysis was conducted according to
Stata procedures (Stata Version 14.2; Stata Corp. College
Station, TX, USA).

A p value of < 0.05 was considered statistically significant.

Results

Demographics and descriptive statistics

During February 2013 and May 2016, a total of 160 sSAH
patients of all HH grades was admitted and treated in our me-
dium volume neurovascular center. Among these, 109 patients
presented with an acute hydrocephalus requiring CSF drainage
via external ventricular drain. Applying our strictly defined se-
lection criteria, only 26 good-grade sSAH patients could initial-
ly be enrolled. Another five patients had to be excluded from
analysis during FU (lost to FU: n = 3; incompletely answered

questionnaires: n = 1; postsurgical bihemispheric chronic sub-
dural hematoma requiring revision and epilepsy: n = 1).
Accordingly, 21 consecutive patients with good-grade sSAH
(8 men, 13 women) were included as depicted in the flowchart
(see Fig. 1). Mean age was 50.6 years (range 27 to 72 years).
Our cohort encompassed three patients (14%) with HH grade
III and even one patient (5%) with HH grade IV. As all of these
four aSAH patients neurologically improved immediately after
insertion of an external ventricular drain following hospital ad-
mission (i.e., HH I or HH II), the poorer HH score was obvi-
ously related to acute occlusive hydrocephalus. With this qual-
ification, we consider the term “good-grade” sSAH patients as
appropriate for our cohort. Surprisingly, our good-grade sSAH
population exclusively encompassed patients with severe

Fig. 1 Flowchart: Study selection criteria, reasons for exclusion of
potentially eligible patients, and study design in terms of liquid
biobanking and health-related quality of life assessment
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radiological grades of sSAH (Fisher score 3 or 4) with concom-
itant hydrocephalus. Consecutively, the presented cohort is im-
balanced in terms of the overestimation of the true hydroceph-
alus rate after sSAH. Statistical intergroup comparisons yielded
no significant differences except for a higher number of middle
cerebral artery aneurysms in the MS group (n = 3, EV n = 0,
pSAH n = 1 (unruptured aneurysm); p = 0.022), a higher intake
of antiplatelets in the EV group (n = 5, MS and pSAH n = 0
each; p = 0.016) at t1, an unsurprisingly longer duration (mean
± SD) of MS vs. EV (MS 242.33 ± 24.75 min (range 205–279)
vs. EV 136.67 ± 46.87 min (range 55–200); p = 0.004), and a
longer mean time (mean ± SD) spent on mechanical ventilatory
support in the EV group than in the pSAH group (EV 117.99 ±
264.14 h (range 6.92–808.83); pSAH 5.82 ± 6.34 h (range 0–
14.83); MS 116.03 ± 244.14 h (range 2.17–613.63); EV vs.
pSAH p = 0.0496; EV vs. MS p = 0.864, MS vs. pSAH p =
0.065). The baseline data including the aneurysm site, GCS,
HH, WFNS and Fisher score, procedure variables, medication,
and outcome grading has previously been reported [21, 24].

Neuropsychological assessment

The self-reported performance in hrQoL andmental health has
been reported previously [21, 24]. We conducted intragroup
comparisons and variance analyses: (1) Within 6 months
(from t1 to t2), sSAH patients had significantly improved with
regard to depression, anxiety, Pfi, Pain, Ghp, Social, and in the
PCS. (2) When dichotomizing aSAH versus pSAH patients,
no significant differences in terms of SF-36 and ISR scores
were detected either except for a significantly higher symptom
burden for aSAH patients in the ISR supplementary items
score (p = 0.021). (3) Poor self-reported hrQoL performance
(ISR scores: total, depression, compulsive-obsessive; physical
SF-36 items: Rolph, Pain, Ghp) in the subacute phase corre-
lated with worse outcome on the GOS at discharge. (4)
Neurological status at hospital admission in terms of the HH
score correlated positively with all psychological SF-36 item
scores at t1 (Vital, Social, Rolem, Mhi, MCS). Univariate
regression analysis did not yield any significant correlations
between cognitive outcome and further clinical variables such
as GCS, WFNS, and the Fisher score. However, multivariate
analysis revealed various significant correlations between the
respective hrQoL domains and clinical variables (compulsive-
obsessive syndrome vs. treatment modality (p = 0.008); anxi-
ety vs. Fisher score (p = 0.040), anxiety vs. age (p = 0.045),
anxiety vs. gender (p = 0.031); depression vs. WFNS grade
(p = 0.027), depression vs. GCS (p = 0.009), depression vs.
treatment modality (p = 0.023), depression vs. TCD-based
CV (p = 0.011); supplementary items vs. treatment modality
(p = 0.026); Ghp vs. treatment modality (p = 0.003), Ghp vs.
TCD-based CV (p = 0.008); PCS vs. HH grade (p = 0.017),
PCS vs. Fisher grade (p = 0.038), PCS vs. GCS (p = 0.042),
PCS vs. age (p = 0.026), and PCS vs. gender (p = 0.007)).

Pearson’s correlation analysis revealed significant correla-
tions between all hrQoL domains except for (1) somatoform
syndrome vs. depression, (2) nutrition disorder vs. depression,
(3) nutrition disorder vs. compulsive/obsessive syndrome, (4)
nutrition disorder vs. somatoform syndrome, and (5) supple-
mentary items score vs. nutrition disorder.

Correlation of neuropsychological performance with
CGRP exposure in CSF

AUC CGRP (total 5.7 ± 1.8 ng/ml/24 h) was excessively re-
leased into CSF after sSAH. Mean CGRP levels ranged
highest in the EV group (6.1 ± 2.1 ng/ml/24 h) followed by
the pSAH group (5.7 ± 2.1 ng/ml/24 h), and the MS group
(5.0 ± 1.1 ng/ml/24 h). The mean total AUC CGRP level in
CSF averaged 5.7 ± 1.8 ng/ml/24 h. The AUC CGRP levels
were separately calculated for aSAH (5.63 ± 1.77 ng/ml/24 h)
and pSAH (5.68 ± 2.08 ng/ml/24 h) and did not differ signif-
icantly (p = 0.521). The analysis of the distinct AUC curves
over the first 10 days revealed a highly interindividual pattern
without consistency of the AUC dynamics.

Since AUC CGRP concentrations did not significantly dif-
fer between the subgroups, subsequent analyses were con-
ducted for the whole study cohort (mean CSF CGRP AUC
level 5.65 ± 1.81 ng/ml × 24 h; range 3.07 to 8.81 ng/ml ×
24 h) without differentiation between the sSAH groups. The
analysis of cognitive test performances and correlation with
the AUC CGRP levels in CSF are summarized in Table 1.
Increased mean values of AUC CGRP in CSF at t1 signifi-
cantly correlated with a higher symptom burden in most ISR
scores (compulsive-obsessive syndrome, anxiety, depression,
somatoform syndrome, and in the supplementary items score)
and with poorer performance in two physical SF-36 items
(Ghp and the PCS). The respective regression analyses are
depicted by means of scatterplots in Figs. 2a and b and 3a
and b. In contrast, at the 6-month FU, CSF AUC CGRP con-
centrations over the first 10 days no longer showed any sig-
nificant correlations with hrQoL test performance.

Regression analyses did not reveal any significant correla-
tion betweenAUCCGRP levels and patient variables like age,
gender, treatment modality (MS vs. EV vs. pSAH), site of the
aneurysm, HH grade, WFNS grade, Fisher grade, initial GCS,
GOS at follow-up, and CV.

After having detected significant correlations between in-
creased AUC CGRP levels and various hrQoL domains in the
univariate analysis, we developed a multivariate model in-
cluding AUC CGRP, age, gender, treatment modality (MS
vs. EV vs. pSAH), site of the aneurysm, HH grade, WFNS
grade, Fisher grade, initial GCS, and CV to analyze their im-
pact on the respective hrQoL domains. As for the ISR, all
factors that significantly correlated with the AUC CGRP in
the univariate analysis were also found to be significant in the
multivariate model except for somatoform syndrome (OR
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83.991, p = 0.084). As for the SF-36, the PCS remained sta-
tistically significant, whereas the Ghp (OR 0.759, p = 0.282)
were not (cf. Table 2). Conclusively, multiple logistic regres-
sion analyses corroborated AUC CGRP as an independent
prognostic factor for outcome in terms of compulsive-
obsessive syndrome (OR 5.741, p = 0.018), anxiety (OR
7.748, p = 0.021), depression (OR 2.740, p = 0.005), the sup-
plementary items (OR 2.392, p = 0.004), and the PCS score
(OR 0.177, p = 0.001).

Discussion

Our prospective study advocated an association of increased
CSF CGRP concentrations in the acute phase of sSAH with
unfavorable short-term hrQoL.

For the past few decades, in sSAH research, neuroscientists
and clinicians have increasingly focused on targeting novel mo-
lecular genetic, vascular, inflammatory, oxidative stress and pro-
tein biomarkers, especially in the CSF, to reliably predict function-
al, cognitive, and hrQoL outcomes for individualized treatment
strategies [27, 67, 68]. Only one previous study [67] has addressed
neurodegenerative ventricular CSF biomarkers in the context of
poor hrQoL outcome after aSAH. Our research group [24, 27, 33]
and others [31, 32, 68] have corroborated the predictive capacity
of endogenous neuropeptides after sSAH, in particular, the vaso-
and psychoactive CGRP.

Calcitonin gene-related peptide propaedeutics

The multifunctional neuropeptide CGRP is an evolutionary,
highly conserved 37 amino acid peptide that was firstly

Table 1 Health-related quality of life and emotional health of the cohort (n = 21) and correlationwith the calcitonin gene-related peptide concentrations
in supratentorial cerebrospinal fluid in the subacute interval after the onset of spontaneous subarachnoid hemorrhage (t1) and at 6-month follow-up (t2)

Neuropsychological
assessment

Test scores (mean ± SD) Difference t1 vs. t2
(mean ± SD)

Paired t test t1 vs. t2
(p value)

AUC CGRP (p value)

t1 t2 t1 t2

ISR scores

Depression 1.5 ± 1.2 1.1 ± 0.9 0.4 ± 1.1 0.046* 0.011* 0.431

Anxiety 1.3 ± 1.1 0.7 ± 0.9 0.7 ± 0.3 0.019* 0.035* 0.668

Compulsive-obsessive 0.8 ± 1.0 0.8 ± 1.0 0.0 ± 1.4 0.480 0.022* 0.678

Somatoform 0.6 ± 0.7 0.4 ± 0.6 0.1 ± 1.0 0.252 0.013* 0.438

Nutrition disorder 0.6 ± 1.0 0.6 ± 0.7 − 0.0 ± 1.2 0.523 0.421 0.898

Supplementary items 0.7 ± 0.5 0.5 ± 0.6 0.2 ± 0.6 0.064 0.015* 0.114

Total 0.9 ± 0.7 0.7 ± 0.6 0.2 ± 0.8 0.098 0.086 0.737

SF-36 scores

Physical items

Rawhtran 4.5 ± 0.6 2.9 ± 1.4 1.6 ± 1.4 1.000 0.066 0.499

Pfi 19.5 ± 28.9 72.4 ± 26.3 − 52.8 ± 35.5 0.001* 0.057 0.080

Rolph 39.3 ± 43.7 47.6 ± 45.3 − 8.3 ± 64.4 0.280 0.090 0.166

Pain 48.5 ± 34.6 67.2 ± 29.9 − 18.7 ± 37.9 0.018* 0.251 0.229

Ghp 56.3 ± 16.8 74.1 ± 18.2 − 17.8 ± 19.0 0.001* 0.043* 0.283

Psychological items

Vital 51.0 ± 19.7 51.2 ± 20.3 − 0.2 ± 24.4 0.482 0.536 0.162

Social 66.1 ± 26.0 80.4 ± 25.2 − 014.3 ± 28.6 0.017* 0.453 0.653

Rolem 61.7 ± 46.2 61.7 ± 45.0 − 0.0 ± 58.8 0.500 0.835 0.102

Mhi 61.1 ± 20.6 68.2 ± 21.7 − 7.0 ± 28.6 0.137 0.621 0.808

PCS 31.0 ± 11.0 46.0 ± 10.0 − 13.3 ± 12.7 0.001* 0.006* 0.083

MCS 49.1 ± 12.5 47.5 ± 10.7 1.4 ± 12.9 0.677 0.582 0.549

SD, standard deviation; test t1, test in the subacute phase after the onset of bleeding (between day 11 to 35 after subarachnoid hemorrhage); test t2, test in
the short-term (chronic phase) after treatment at 6-month follow-up; AUC, area under the curve; CGRP, calcitonin gene-related peptide; ISR, ICD-10-
Symptom-Rating questionnaire; SF-36, German version of the 36-Item Short Form Health Survey; Rawhtran, health transition item; Pfi, physical
functioning; Rolph, role limitations because of physical health problems; Pain, bodily pain;Ghp, general health perceptions; Vital, vitality; Social, social
functioning; Rolem, role limitations because of emotional problems; Mhi, general mental health; PCS, physical component summary; MCS, mental
component summary

*Statistical significance p < 0.05
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isolated from thyroid tissue in 1982 [34] and is derived from
the calcitonin gene. CGRP exists in two isoforms, αCGRP
and βCGRP. αCGRP, which is synthesized by alternative

splicing of the calcitonin gene, represents the predominant
form of CGRP within the body and is mainly expressed in
the central and peripheral nervous system [34]. CGRP

Fig. 2 Correlation of elevated area under the curve (AUC) values of
calcitonin gene-related peptide (CGRP) in cerebrospinal fluid (CSF) with
a higher symptom burden in the ICD-10-Symptom-Rating questionnaire
(ISR) scores within the first 10 days after the onset of spontaneous sub-
arachnoid hemorrhage. Area under the curve (AUC) values of endoge-
nous calcitonin gene-related peptide (CGRP) in supratentorial cerebrospi-
nal fluid (CSF) within the first 10 days after the onset of spontaneous
subarachnoid hemorrhage plotted versus the ICD-10-Symptom-Rating

questionnaire (ISR) scores [65] in a depression and b anxiety. The ISR
with 29 items and 6 syndrome scales aims at comprehensively evaluating
the severity of psychological disorders. Each syndrome scale ranges from
aminimum of 0 (best performance) to a maximum of 4 points with higher
scores indicating a more severe symptom burden. Each dot represents the
mean level of CSF CGRP in [ng/ml × 240 h] for each patient, indicating a
significant linear correlation (compare regression line) with a higher
symptom burden. *p < 0.05

Fig. 3 Correlation of the area under the curve (AUC) values of calcitonin
gene-related peptide (CGRP) in cerebrospinal fluid (CSF) with reduced
general health perception and an impaired physical component summary
score in the 36-Item Short Form Health Survey (SF-36) within the first
10 days after the onset of spontaneous subarachnoid hemorrhage. Area
under the curve (AUC) values of endogenous calcitonin gene-related
peptide (CGRP) in supratentorial cerebrospinal fluid (CSF) within the
first 10 days after the onset of spontaneous subarachnoid hemorrhage
plotted versus the 36-Item Short Form Health Survey (SF-36) [64] scores
in a the physical component summary score (PCS) and in b general health

perceptions (Ghp). The SF-36 is a 36-item generic general health ques-
tionnaire yielding scores on 8 health subscales relating to physical and
psychological health. These 8 subscales can be summarized in a corre-
sponding physical component summary and anMCS. Each item is scored
in the range 0 to 100, and a high score defines a more favorable state of
health. Items in the same scale are averaged together to create the 8 scale
scores. Each dot represents the mean level of CSF CGRP in [ng/ml ×
240 h] for each patient, indicating a significant linear correlation (com-
pare regression line) with poorer performance in hrQoL and emotional
health. *p < 0.05
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constitutes one of the most potent endogenous vasodilators in
humans [32, 38]. In the cerebral circulation, CGRP is primar-
ily stored in presynaptic vesicles of sensory fibers that are
closely associated with blood vessels [69] and that almost
exclusively arise from the trigeminal ganglia [39]. In response
to the intrinsic release of vasoconstrictive neuropeptides,
CGRP physiologically restores the vascular tone mediating
the “trigeminovascular reflex” [29]. Beyond, literature has
repeatedly highlighted the abundantly expressed CGRP as a
crucial psychoactive mediator in a variety of neurobehavioral
and psycho-affective conditions [40]. Thus, establishing the
contribution of endogenous CSF CGRP to neuropsychologi-
cal outcome and hrQoL in sSAH is rather promising.

Excessive release of CGRP after sSAH in a
neurobehavioral context

Our study proves an excessive hypersecretion of CGRP into
CSF (mean level of 0.6 ng/ml) within the first 10 days after
sSAH. A historic population [33] of 29 non-neurosurgical
patients (15 women and 14 men; mean age 52.8 years) has
provided insight into normal reference values of CSF CGRP.
From these 29 patients, spinal CSF with a remarkably lower
CGRP concentration (mean CGRP 0.09 ng/ml) was drawn
during spinal anesthesia for minor orthopedic or urologic sur-
gery [33]. In accordance with the psycho-behavioral literature,
our study postulates a detrimental effect of CSF CGRP on
psychological and physical health: Increased CSF AUC
CGRP levels were significantly positively correlated to de-
pression, anxiety, compulsive-obsessive syndrome, and the
supplementary ISR items (which imply a variety of concom-
itant syndromes including problems with activities of daily
living, sleep, concentration, flash backs, obliviousness, feel-
ings of displacement and alienation, suicidality, appetite, and
non-organic sexual dysfunction). A significantly negative

correlation was established between high CSF AUC CGRP
concentrations and the PCS score (covering Pfi, Rolph, Pain,
and Ghp). At the supraspinal level, CGRP is broadly distrib-
uted like, for example, in the sensory and the trigeminal gan-
glia, the striatum, amygdala, pituitary gland, hypothalamus,
medulla oblongata, and in the cortex [34, 37, 40]. The wide-
spread presence of CGRP and its binding sites in the brain,
eminently in limbic structures, indicates its potential involve-
ment in a plethora of neurophysiological and neurobehavioral
functions [40], like in depression [41, 42, 44], possibly in
dementia [50], and in the pathophysiology of inflammatory
and neuropathic pain [51–53]. Mathé and collaborators de-
fined CGRP in lumbar CSF as a trait marker of major depres-
sion [44]. When administered intracerebroventricularly, intra-
cerebrally, or intravenously in animal models, exogenous
CGRP was found to potentiate fear-related behaviors [48],
and it was attested a pivotal role in learning and consolidation
of memory in passive avoidance tests [49], in locomotion,
nociception, depression-like behaviors [43, 45–47], in anorex-
ia [70], and in addiction [71–73]. Our multiple logistic regres-
sion analysis indicates a contribution of further clinical vari-
ables and, in addition, an interaction of the restrictions in most
hrQoL domains.

Anxiety and depression [11, 17, 18] are among the most
investigated realms of patient outcome after aSAH with a
stable prevalence over the 18-month period after aSAH and
an estimated frequency ranging from 27 to 54% and from 5 to
50% in aSAH survivors, respectively [9]. Likewise,
somatoform disorders, especially pain syndromes like
cephalgia, are a commonly reported and oftentimes a long-
lasting symptom burden after sSAH, plausibly affecting
Ghp, poorer performance in several cognitive domains, and
reduced hrQoL after sSAH [9, 74]. In this context, the cerebral
exposure to CGRP might reveal advanced insight and a po-
tential therapeutic target in the future.

Table 2 Multiple logistic
regression analysis of health-
related quality of life domains
significantly correlated in the
univariate analysis versus calcito-
nin gene-related peptide concen-
tration in supratentorial cerebro-
spinal fluid in the subacute inter-
val after the onset of spontaneous
subarachnoid hemorrhage (t1)

hrQoL domains Odds ratio 95% CI p value

ISR

Compulsive-obsessive syndrome 5.741 1.341 24.581 0.018*

Anxiety 7.748 1.366 43.959 0.021*

Depression 2.740 1.360 5.519 0.005*

Somatoform syndrome 83.991 .548 12,865.310 0.084

Supplementary items 2.392 1.328 4.310 0.004*

SF-36

General health perceptions (Ghp) 0.759 0.459 1.255 0.282

Physical component summary (PCS) 0.177 0.065 0.481 0.001*

hrQoL, health-related quality of life; test t1, test in the subacute phase after the onset of bleeding (between day 11
to 35 after subarachnoid hemorrhage); ISR, ICD-10-Symptom-Rating questionnaire; SF-36, German version of
the 36-Item Short Form Health Survey

*Statistical significance p < 0.05
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Release of CGRP after sSAH

The vasodilatatory CGRP [35] has been demonstrated to be
excessively released into CSF [31, 33] and, to an even greater
extent, into serum [31, 75] during the first 10 days [33, 75]
after SAH. Endogenous CSF CGRP (upregulated on days 1 to
4 after sSAH) [33] and exogenously administered CGRP are
postulated to be cerebroprotective and, thus, beneficial for
functional outcome by preventing sSAH-induced CV and ce-
rebral ischemia, respectively [28, 29]. The substantiated ef-
fects of CGRP on hemodynamics and, consecutively, on neu-
rological outcome after sSAH contrast with the current find-
ings, suggesting at least a contribution of CGRP to
psychobehavioral dysregulation and reduced hrQoL.

The neuroanatomical circuitry involved in CGRP transmis-
sion and modulation remains to be clarified. Early observa-
tional studies on the cerebral circulation after experimental
SAH and post mortem analyses after SAH confirmed a
marked decrease in CGRP immunoreactivity in the
perivascular nerve fibers (cf. references in [40]).
Pathophysiologically, the neurotransmitter CGRP is supposed
to be released from the perivascular nerve terminals, either
induced by the blood in the subarachnoid space [76] or, pos-
sibly, caused by the direct affection or disruption of the
neuropeptide-containing nerve fibers at the moment of aneu-
rysm rupture and the subsequent inhibition of neuropeptide
reuptake at the nerve-ending terminals. We propose that
CSF CGRP may be dispersed with the circulating CSF from
the basal cis terns into the vent r ic les where the
neuropeptidergic concentrations are amenable to measure-
ment. It is questionable whether CGRP in ventricular CSF
reflects the proposed pathophysiological processes or whether
it is rather mirroring other processes associated with critical
illness.

It might further be speculated that the increase of endoge-
nous CSF CGRP might be a consequence of altered CGRP
synthesis and metabolism in certain brain regions and in CSF,
respectively, anatomical localization of the ruptured aneu-
rysm, or aneurysm treatment-induced mechanical manipula-
tion of the parent vessel. In serum, peak concentrations of
CGRP have been measured after rupture of aneurysms of the
middle cerebral artery (MCA) [31, 75] and—regarding cere-
brovascular manipulation—after endoluminal aneurysm treat-
ment via coiling [75]. Our sSAH collective comprised a ref-
erence group with pSAH patients, characterized by conserva-
tive ICU management, to further illuminate the implication of
the aneurysm-securing procedure on CGRP release and
hrQoL outcome. Mean CGRP levels ranged lowest in the
MS group. In line with subgroup analyses, MS patients dem-
onstrated better short-term Pfi, experienced less pain, and
more improvement in nutrition disorders than EV patients.
As previously described, however, the treatment modality
(MS vs. EV vs. pSAH) did not significantly affect CSF

AUC CGRP levels, and overall hrQoL outcome did not differ
between the MS and the EV group [21], either. We caveat the
statement with the note that the small sample size of the cur-
rent study is not capable for detecting any differences. Since
2002, the treatment modality-dependent outcome is contro-
versially discussed [77]. The majority of authors disproved
the hypothesis that clipped and coiled patients differ with re-
spect to cognitive outcome, hrQoL, return to work, depres-
sion, anxiety, and sleep disturbances (cf. [9, 78] and references
within), though.

It has to be highlighted that—in many ways—pSAH has to
be considered a different disease than aSAH. Short-term com-
plications are rare, and long-term outcome is excellent with
respect to disability and death [6, 8]. aSAH implies a more
aggressive clinical presentation, a more diffuse distribution of
subarachnoid blood, a higher probability of complications,
and a longer inpatient period with higher economical costs
for health care systems. Yet, both, aSAH and pSAH patients,
suffer from neuropsychological deficits and hrQoL restric-
tions after ictus [7, 9, 79]. Contrary to former assumptions,
which attested pSAH patients a favorable prognosis [80, 81],
more recent findings [7, 82, 83] indicated that pSAH might
not be as benign as previously believed.On average 39months
after pSAH, survivors continued suffering from cephalgia,
dizziness, fatigue, irritability, depression, obliviousness, mild
cognitive deficits, and incapacity to resume their previous
occupations [82, 83]. Long-term studies on potential cognitive
and hrQoL sequelae after pSAH are demanded [8] and should
separately address the CGRP effect on outcomes for pSAH
and aSAH.

Investigations into the temporary dynamics of sSAH-
induced CGRP secretion are scarce and limited to the short-
term [84]. As our sSAH patients significantly improved in
multiple physical and emotional hrQoL itemswithin 6months,
it might be reasoned that CGRP concentrations decrease or
even normalize over time. Hypothetically, extra- and
intraluminal CGRP receptors may finally be saturated non-
competitively with the peptide, and CSF levels decrease due
to the depletion of the releasing terminal nerve endings. In
turn, lower CSF CGRP concentrations or reuptake of ventric-
ular CGRP may be beneficial to hrQoL and mental health. In
2013, our research group detected peak concentrations of CSF
CGRP during the first 4 days after onset of sSAH, followed by
a gradual decrease [33]. Nozaki et al. [85] found the most
marked suppression of CGRP immunoreactivity during the
7th to 14th day with a recovery to normal levels by the 42nd
day after artificial SAH. Congruently, our results suggest that
at least within the first 10 days after sSAH, elevated CSF
CGRP levels account for the sSAH-related psychological
traumatization and reduced hrQoL. At the 6-month FU, self-
reported hrQoL did no longer correlate with the initial CGRP
values. Neuropsychological deficits, predominantly in hrQoL,
cognition, depression, anxiety, mood, and fatigue [9–11, 17,
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18, 86], are—consistently with our findings—most common
within the first 3 months [87] but may persist as long as
24.5 years after ictus or even longer [60, 71, 18, 55, 1].

The pathophysiology of impaired neurobehavioral process-
ing following sSAH remains elusive because of its complex,
multifactorial character [22]. Various predictors of unfavor-
able neuropsychological outcome after aSAH (like the HH
score and the GOS in our results section) have been proposed
[5, 21]. In cognitively impaired good-grade sSAH patients
without morphological changes in neuroimaging, it seems
conceivable that the initial insult of the bleeding may result
in a widespread derangement of peptide neurotransmitter se-
cretion in the brain [68]. We caveat our findings with the note
that our experimental, hypotheses-generating pilot study was
not designed to conclusively establish whether pathologically
increased neurotransmitter secretion, in particular excessively
elevated CGRP levels in supratentorial CSF, induce restric-
tions in hrQoL and emotional health. However, a contribution
seems feasible, given the fact that such associations exist in a
myriad of psychiatric and neurobehavioral disorders. Thus,
we argue that, in sSAH, CGRP acts as an elementary psycho-
active mediator in higher integrated behavior.

Methodological considerations

Bounded by our strict selection criteria and our institutional
neurovascular volume, our pilot study is notably limited by
the small sample size. It may be speculated that the five ex-
cluded patients were incapable to complete the hrQoL assess-
ment due to severe neuropsychological impairment, resulting
in an underestimation of the true impairment rate. Then, the
inclusion of pSAH patients as a control group implicates a
certain collective heterogeneity because pSAH and aSAH
have a different pathogenesis, clinical course, different rates
of CV and delayed ischemic neurological deficits, and also
different neuropsychological and hrQoL outcomes. Though
pSAH patients are deemed equally burdened by neuropsycho-
logical deficits and reduced hrQoL [9], the outcome of aSAH
patients is considered even worse. Therefore, future studies
should separately address the CGRP effect on outcomes in
both entities. Additionally, our study is severely biased by
(1) the typical [78] overrepresentation of prognostically favor-
able good-grade sSAH patients, (2) the predominance of
MCA aneurysms, whichmight have a significant confounding
effect on outcomes, given very different potential perforator
injuries and the extent of dissection required, and (3) the se-
lection of patients with radiologically confirmed hydrocepha-
lus. By nature, non-hydrocephalus patients are not amenable
to CSF biomarker sampling. As a consequence, our data is not
applicable to sSAH patients in general.

Multiple previous SAH investigations have used the SF-
36, even in poor-grade SAH, showing an impact on all tested
items of the SF-36 (cf. references in [12]). Both of our utilized

measurement tools, the SF-36 and the ISR, were completed
within 10 to 20 min and no effects of fatigue were apparent
during the testing, neither at t1 nor at t2. However, we stress
that in patients with a central nervous system disease, a con-
founding influence of fatigue [86] and/or cognitive impair-
ment [88] cannot conclusively be excluded. Further research
is necessary to develop assessments sensitive for the specific
pattern of deficits in patients with intracranial aneurysms [5,
89]. Since statistically relevant correlations only occurred in
the short term, a false-positive result has to be considered.
Experiencing a traumatic and life-threatening event like the
acute phase of an sSAH with consecutive ICU treatment ex-
pectedly bears the risk of low psychological and hrQoL
scores. In concert with the supposed widespread derangement
of neurotransmitters, CGRP, being part of an acute neurobio-
logical response, is unsurprisingly high during this period.
Conclusively, the established positive correlations have to be
interpreted with caution. Our observational, correlative clini-
cal pilot study prevents drawing final conclusions, establish-
ing clear associations or implying causality.

Yet, our prospective, controlled study provides academi-
cally valuable data that offer new insight into the plausible
interactions between CGRP in supratentorial CSF and psy-
chopathology after good-grade sSAH as well as into the (to
date still underreported) time course of hrQoL performance in
the early stages of recovery. Standardized self-reported out-
come measures are an important facet of a comprehensive
hrQoL outcome assessment, the more since cognitive domain
deficits are further complicated by reduced hrQoL, depres-
sion, anxiety, and sleep disturbances.

Conclusion

Our study reveals the first insight into the potential capacity of
endogenous CGRP as a predictive psychoactive biomarker in the
ventricular CSF subacutely after the onset of sSAH and its po-
tential contribution to neurobehavioral impairment and reduced
hrQoL. In line with preclinical data and the psychiatric literature,
the present data suggests that, after sSAH, increased CSF CGRP
concentrations significantly adversely affect short-term psycho-
logical and physical health with respect to depression, anxiety,
somatoform syndrome, compulsive-obsessive syndrome, the
supplementary ISR items, general health perceptions, and the
SF-36 physical component summary score. Of special note is
the potential therapeutic dilemma as, on the one hand, it is highly
conceivable that the psycho- and vasoactive neuropeptide CGRP
is—at least in part—involved in the pathogenesis of reduced
hrQoL after good-grade sSAH, whereas on the other hand,
CGRP was certified a cerebroprotective role by counteracting
sSAH-induced vasoconstriction and CV-related cerebral ische-
mia. Our interesting results justify further research on endoge-
nous CGRP in CSF and plasma with a focus on the influencing
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factors of its release, the temporary dynamics, and the pathophys-
iological interactions with higher integrated neurobehavior.
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Highlights
• Impairment in health-related quality of life (hrQoL) after treatment

of spontaneous subarachnoid hemorrhage (sSAH) is common but
underreported.

• Calcitonin gene-related peptide (CGRP) is a potent cerebroprotective
vasodilator and psychoactive mediator.

• This study is the first to correlate endogenous CGRP with hrQoL
outcome in good-grade sSAH.

• Excessive CGRP release into cerebrospinal fluid (CSF) may have a
negative impact on hrQoL, anxiety, and depression.

• CSF CGRP is suggested to be involved in the pathogenesis of
impaired higher integrated behavior after sSAH.
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