Skip to main content
Log in

Nrf2 attenuates oxidative stress to mediate the protective effect of ciprofol against cerebral ischemia–reperfusion injury

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Neuroinflammation and oxidative stress damage are involved in the pathogenesis of cerebral ischemia–reperfusion injury (CIRI). Ferroptosis emerged as a new player in the regulation of lipid peroxidation processes. This study aimed at exploring the potential involvement of ciprofol on ferroptosis-associated CIRI and subsequent neurological deficits in the mouse model of transient cerebral ischemia and reperfusion. Cerebral ischemia was built in male C57BL/6 J wild-type (WT) and Nrf2-knockout (Nrf2 KO) mice in the manner of middle cerebral artery occlusion (MCAO) followed by reperfusion. Ciprofol improved autonomic behavior, alleviated reactive oxygen species output and ferroptosis-induced neuronal death by nucleus transportation of NFE2 like BZIP transcription factor 2 (Nrf2) and the promotion of heme oxygenase 1 (Ho-1), solute carrier family 7 member 11 (SLC7A11/xCT), and glutathione peroxidase 4 (GPX4). Additionally, ciprofol improved neurological scores and reduced infarct volume, brain water content, and necrotic neurons. Cerebral blood flow in MCAO-treated mice was also improved. Furthermore, absence of Nrf2 abrogated the neuroprotective actions of ciprofol on antioxidant capacity and sensitized neurons to oxidative stress damage. In vitro, the primary-cultured cortical neurons from mice were pre-treated with oxygen–glucose deprivation/reperfusion (OGD/R), followed by ciprofol administration. Ciprofol effectively reversed OGD/R-induced ferroptosis and accelerated transcription of GPX4 and xCT. In conclusion, we investigated the ciprofol-induced inhibition effect of ferroptosis-sheltered neurons from lipid preoxidation in the pathogenesis of CIRI via Nrf2-xCT-GPX4 signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding authors upon request.

References

  • Alim I et al (2019) Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell 177(5):1262-1279 e25

    Article  CAS  PubMed  Google Scholar 

  • Alvarez SW et al (2017) NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature 551(7682):639–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ast T et al (2019) Hypoxia rescues frataxin loss by restoring iron sulfur cluster biogenesis. Cell 177(6):1507-1521 e16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benjamin EJ et al (2017) Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation 135(10):e146–e603

    Article  PubMed  PubMed Central  Google Scholar 

  • Bersuker K et al (2019) The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575(7784):688–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao C et al (2022) Starvation, ferroptosis, and prodrug therapy synergistically enabled by a cytochrome c oxidase like nanozyme. Adv Mater 34(29):e2203236

    Article  PubMed  Google Scholar 

  • Chen CY et al (2018) Propofol inhibits endogenous formyl peptide-induced neutrophil activation and alleviates lung injury. Free Radic Biol Med 129:372–382

    Article  CAS  PubMed  Google Scholar 

  • Dominguini D et al (2021) The effects of anaesthetics and sedatives on brain inflammation. Neurosci Biobehav Rev 127:504–513

    Article  CAS  PubMed  Google Scholar 

  • Eisenstein A et al (2022) Activation of the transcription factor NRF2 mediates the anti-inflammatory properties of a subset of over-the-counter and prescription NSAIDs. Immunity 55(6):1082-1095 e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan Z et al (2017) Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis. Oncogenesis 6(8):e371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang X et al (2022) The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nat Rev Cardiol 20(1):7–23

    Article  PubMed  PubMed Central  Google Scholar 

  • Freeman J et al (2019) Effect of perioperative lidocaine, propofol and steroids on pulmonary metastasis in a murine model of breast cancer surgery. Cancers (Basel) 11(5):613

    Article  CAS  PubMed  Google Scholar 

  • Friedmann Angeli JP et al (2014) Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol 16(12):1180–1191

    Article  CAS  PubMed  Google Scholar 

  • Hambright WS et al (2017) Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration. Redox Biol 12:8–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han J et al (2022) Propofol via antioxidant property attenuated hypoxia-mediated mitochondrial dynamic imbalance and malfunction in primary rat hippocampal neurons. Oxid Med Cell Longev 2022:6298786

    Article  PubMed  PubMed Central  Google Scholar 

  • Ingold I et al (2018) Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell 172(3):409-422 e21

    Article  CAS  PubMed  Google Scholar 

  • Kang YP et al (2021) Non-canonical glutamate-cysteine ligase activity protects against ferroptosis. Cell Metab 33(1):174-189 e7

    Article  CAS  PubMed  Google Scholar 

  • Kim JJ et al (2020) Shared structural mechanisms of general anaesthetics and benzodiazepines. Nature 585(7824):303–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudo Y et al (2020) PKClambda/iota loss induces autophagy, oxidative phosphorylation, and NRF2 to promote liver cancer progression. Cancer Cell 38(2):247-262 e11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y et al (2019) Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion. Cell Death Differ 26(11):2284–2299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li P et al (2021) Glutathione peroxidase 4-regulated neutrophil ferroptosis induces systemic autoimmunity. Nat Immunol 22(9):1107–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao B et al (2020) Adipocyte fatty acid-binding protein exacerbates cerebral ischaemia injury by disrupting the blood-brain barrier. Eur Heart J 41(33):3169–3180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Q et al (2022) Hypertension in stroke survivors and associations with national premature stroke mortality: data for 2.5 million participants from multinational screening campaigns. Lancet Glob Health 10(8):e1141–e1149

    Article  CAS  PubMed  Google Scholar 

  • Liu Y et al (2022) Safety and of ciprofol vs. propofol for sedation in intensive care unit patients with mechanical ventilation: a multi-center, open label, randomized, phase 2 trial. Chin Med J (Engl) 135(9):1043–1051

    Article  CAS  PubMed  Google Scholar 

  • Loss of LPR8 Reduces GPX4 levels, resulting in ferroptosis sensitivity (2022) Cancer Discov 12(8):1835

  • Lu Y et al (2020) Propofol-induced MiR-20b expression initiates endogenous cellular signal changes mitigating hypoxia/re-oxygenation-induced endothelial autophagy in vitro. Cell Death Dis 11(8):681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Z et al (2022) Propofol upregulates microRNA-30b to inhibit excessive autophagy and apoptosis and attenuates ischemia/reperfusion injury in vitro and in patients. Oxid Med Cell Longev 2022:2109891

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma R et al (2018) A Pck1-directed glycogen metabolic program regulates formation and maintenance of memory CD8(+) T cells. Nat Cell Biol 20(1):21–27

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez AE et al (2019) Serine metabolism supports macrophage IL-1beta production. Cell Metab 29(4):1003-1011 e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sessler DI et al (2019) Recurrence of breast cancer after regional or general anaesthesia: a randomised controlled trial. Lancet 394(10211):1807–1815

    Article  PubMed  Google Scholar 

  • Stockwell BR (2022) Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications. Cell 185(14):2401–2421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stockwell BR et al (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171(2):273–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teng Y et al (2021) Pharmacokinetic and pharmacodynamic properties of ciprofol emulsion in Chinese subjects: a single center, open-label, single-arm dose-escalation phase 1 study. Am J Transl Res 13(12):13791–13802

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tian R et al (2021) Genome-wide CRISPRi/a screens in human neurons link lysosomal failure to ferroptosis. Nat Neurosci 24(7):1020–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuo QZ et al (2022) Thrombin induces ACSL4-dependent ferroptosis during cerebral ischemia/reperfusion. Signal Transduct Target Ther 7(1):59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ubellacker JM et al (2020) Lymph protects metastasizing melanoma cells from ferroptosis. Nature 585(7823):113–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y et al (2022) PRMT4 promotes ferroptosis to aggravate doxorubicin-induced cardiomyopathy via inhibition of the Nrf2/GPX4 pathway. Cell Death Differ 29(10):1982–1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YC et al (2023) Protective effects of combined treatment with ciprofol and mild therapeutic hypothermia during cerebral ischemia-reperfusion injury. World J Clin Cases 11(3):487–492

    Article  PubMed  PubMed Central  Google Scholar 

  • Wenzel SE et al (2017) PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. Cell 171(3):628-641 e26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong Fok Lung T et al (2022) Klebsiella pneumoniae induces host metabolic stress that promotes tolerance to pulmonary infection. Cell Metab 34(5):761-774 e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan R et al (2022) The structure of erastin-bound xCT-4F2hc complex reveals molecular mechanisms underlying erastin-induced ferroptosis. Cell Res 32(7):687–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang WS et al (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156(1–2):317–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong H et al (2018) Propofol inhibits parthanatos via ROS-ER-calcium-mitochondria signal pathway in vivo and vitro. Cell Death Dis 9(10):932

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the reviewers for their helpful comments on this paper.

Funding

This work was supported by the Ningbo Health Technology Project (grant No.2023Y12), and the National Natural Science Foundation of China, China (Grant No. 81704180).

Author information

Authors and Affiliations

Authors

Contributions

J.W. and C.H. are the corresponding authors and they performed study design; X.L., M.R. and A.Z. performed the experiments; X.L. analyzed the data; D.C. provided technical support; C.H revised the manuscript carefully; All authors read and approved the final paper.

Corresponding authors

Correspondence to Changshun Huang or Junlu Wang.

Ethics declarations

Ethics approval and consent to participate

This study was approved and consented to by the ethics committee of the First Affiliated Hospital of Ningbo University.

Consent for publication

All the authors consented to publicize the article in the journal.

Competing interests

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Ren, M., Zhang, A. et al. Nrf2 attenuates oxidative stress to mediate the protective effect of ciprofol against cerebral ischemia–reperfusion injury. Funct Integr Genomics 23, 345 (2023). https://doi.org/10.1007/s10142-023-01273-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10142-023-01273-z

Keywords

Navigation