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Abstract
Patients with inflammatory bowel disease (IBD) have a higher risk of developing colorectal cancer (CRC). Glycolysis is 
involved in the development of both IBD and CRC. However, the mechanisms and outcomes of glycolysis shared between 
IBD and CRC remain unclear. This study aimed to explore the glycolytic cross-talk genes between IBD and CRC integrating 
bioinformatics and machine learning. With WGCNA, LASSO, COX, and SVM-RFE algorithms, P4HA1 and PMM2 were 
identified as glycolytic cross-talk genes. The independent risk signature of P4HA1 and PMM2 was constructed to predict 
the overall survival rate of patients with CRC. The risk signature correlated with clinical characteristics, prognosis, tumor 
microenvironment, immune checkpoint, mutants, cancer stemness, and chemotherapeutic drug sensitivity. CRC patients 
with high risk have increased microsatellite instability, tumor mutation burden. The nomogram integrating risk score, tumor 
stage, and age showed high accuracy for predicting overall survival rate. In addition, the diagnostic model for IBD based 
on P4HA1 and PMM2 showed excellent accuracy. Finally, immunohistochemistry results showed that P4HA1 and PMM2 
were significantly upregulated in IBD and CRC. Our study reveals the presence of glycolytic cross-talk genes P4HA1 and 
PMM2 between IBD and CRC. This may prove to be beneficial in advancing research on the mechanism of development of 
IBD-associated CRC.
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Introduction

Inflammatory bowel disease (IBD) is one of the most preva-
lent diseases of the digestive system and includes two major 
subtypes, Crohn’s disease and ulcerative colitis (Hnaty-
szyn et al. 2019, Ng et al. 2017). Long-standing intestinal 
inflammation in patients with IBD disrupts the normal intes-
tinal structure and leads to the dysregulation of the intes-
tinal mucosal immune system (Hnatyszyn, Hryhorowicz, 
Kaczmarek-Rys, Lis, Slomski, Scott and Plawski 2019). 

Colorectal cancer (CRC) is the most common IBD-asso-
ciated cancer. Patients with IBD have a 1.7-fold increased 
risk of developing CRC (Nadeem et al. 2020). CRC is also 
the most commonly diagnosed gastrointestinal cancer and 
ranks third in cancer-related deaths worldwide (Arnold et al. 
2020, Biller and Schrag 2021, Kim et al. 2021). Although 
the incidence of CRC in China is lower than that in Western 
countries, China ranks first in the number of new cases of 
CRC and related deaths in the world owing to its compara-
tively large population (Yang et al. 2020). The association 
between IBD and CRC is unequivocal, but the mechanisms 
involved remain unclear.

Glycolysis is linked to the inflammatory response and 
immunoregulation. Glycolysis is involved in the develop-
ment of several inflammation-related diseases, such as IBD 
(Riffelmacher et al. 2021), Alzheimer’s disease (Hipkiss 
2019), SARS-CoV-2 infection (Duan et al. 2021), and rheu-
matoid arthritis (Abboud et al. 2018). Cancer development 
involves cell metabolic reprogramming, mainly via the War-
burg effect, which is also termed aerobic glycolysis (Mao 
et al. 2022, Warburg 1956).
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In this work, we aim to investigate the effect of glycolysis 
on IBD and CRC to reveal the cross-talk genes between IBD 
and CRC. Transcriptomic data from IBD and CRC patients 
retrieved from Gene Expression Omnibus (GEO) and The 
Cancer Genome Atlas (TCGA) were used to identify the 
glycolytic cross-talk genes. A network of co-regulated tran-
scription factors of the cross-talk genes was constructed. 
We explored the relationship between the cross-talk genes 
and prognosis, tumor microenvironment (TME), mutations, 
and drug sensitivity in CRC. Moreover, a nomogram was 
constructed to predict the prognosis of CRC, and a com-
bined diagnostic model of IBD was identified. Finally, the 
expression of cross-talk genes was validated by immunohis-
tochemistry (IHC).

Results

Identification of differentially expressed 
glycolysis‑related genes

The dataset containing 638 CRC and 49 normal samples 
with clinical information was obtained from TCGA-Colon 
Adenocarcinoma (COAD) Rectum Adenocarcinoma 
(READ). The IBD datasets containing 70 inflamed IBD tis-
sues and 31 healthy controls were obtained from GSE17928. 
We downloaded glycolysis-related gene sets from MsigDB 
and GSEA was performed on the CRC and IBD datasets, 
respectively. As shown in Fig. 1A–D, HALLMARK_GLY-
COLYSIS and REACTOME_GLYCOLYSIS were signifi-
cantly enriched in CRC and IBD samples. The DEGs of 
IBD and CRC were identified via the R package limma. The 
overlap between IBD-DEGs, CRC-DEGs, and GRGs was 
defined as differential expression glycolysis-related genes 
(DE-GRGs) for further analysis (Fig. 1E).

Fig. 1   Glycolysis-related genes in IBD and CRC. A–B Enrichment plots of glycolysis in IBD using GSEA. C–D Enrichment plots of glycolysis 
in CRC using GSEA. E Intersection of GRGs, IBD-DEGs, and CRC-DEGs
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Weighted gene co‑expression network analysis

To explore the relative gene modules of IBD, WCGNA 
was applied in GSE17928 with a soft threshold at 6 (Figure 
S1A). Sixteen gene modules were identified, the lightgreen 
module in Fig. 2A–B, and Figure S1B show strong positive 
correlation with CRC, with module trait correlation = 0.71. 
The intersection of the lightgreen module and the DE-GRGs 
obtained included 48 genes (Fig. 2C).

Screening for prognosis‑related genes

The obtained 48 genes were used to explore prognostic 
markers in CRC via LASSO regression model and seven 
genes (P4HA1, PMM2, ENO1, LDHC, SPAG8, CHPF2, and 
AGRN) were obtained (Fig. 3A–B). SVM-RFE, a machine 

learning algorithm for feature selection, was applied to select 
prognosis-related genes ranking by parameter “Importance” 
(Fig. 3C). The intersection genes of LASSO and SVM-RFE 
were used for next analysis (Fig. 3D). We performed uni-
variate Cox regression analysis. As shown in Fig. 3E, only 
P4HA1, PMM2, and AGRN exhibited significant correlation 
with overall survival (OS), and the transcriptomic expression 
of P4HA1, PMM2, and AGRN was significantly upregu-
lated in tumor tissues (Fig. 3F). Furthermore, we retrieved 
proteomic data and IHC staining from the CPTAC and HPA 
databases to investigate proteomic expression levels of 
P4HA1, PMM2, and AGRN. As shown in Fig. 3G, P4HA1 
and PMM2 were highly expressed, whereas the expression 
level of AGRN was low in CRC tissues. The proteomic 
expression levels of P4HA1, PMM2, and AGRN were fur-
ther confirmed via IHC staining from the HPA database 

Fig. 2   WGCNA. A Resulting gene dendrograms. B Module trait relationships in gene subtype A and B, which contained the corresponding cor-
relation and p value. C Intersection of DE-GRG and lightgreen module
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(Fig. 4A–F). Since proteomic expression levels of P4HA1 
and PMM2 were consistent with transcriptomic expression 
levels, these two genes were identified as glycolytic cross-
talk genes between IBD and CRC.

Prediction of co‑regulated transcription factors

To explore the cross-talk of regulatory networks between 
P4HA1 and PMM2 in both IBD and CRC, the hTFtarget 

Fig. 3   Screening prognostic genes in CRC. A Ten-fold cross-valida-
tion for the coefficients of hub genes in the LASSO model. B The 
selection of optimal parameter (lambda) in LASSO model. C Lol-
lipop chart of importance in SVM-RFE. D Intersection of SVM-

RFE and LASSO. E Forest plot of the multivariable Cox model. F 
Transcriptomic expression levels of AGRN, P4HA1, and PMM2. G 
Proteomic expression levels of AGRN, P4HA1, and PMM2. ***p < 
0.001

Fig. 4   IHC validation in HPA database. A–B IHC of AGRN in normal and CRC, respectively. C–D IHC of P4HA1 in normal and CRC, respec-
tively. E–F IHC of PMM2 in normal and CRC, respectively
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database was used to predict co-regulated TFs of P4HA1 
and PMM2. One hundred twelve co-regulated TFs were 
found, and only four TFs (GRHL3, CEBPB, TCF3, and 
SUPT5H) were significantly upregulated in both IBD and 
CRC (Fig. 5A–B). Therefore, GRHL3, CEBPB, TCF3, and 
SUPT5H were used to construct the co-regulated network of 
P4HA1 and PMM2, which is presented in Fig. 5C.

Construction of prognostic risk signature

To further explore the role of the two cross-talk genes, a 
prognostic signature was established as follows: Risk score 
= (0.3419)*P4HA1 + (−0.7116)*PMM2. Risk scores of 
each patient in the TCGA-COADREAD and GSE17536 
datasets were calculated, and the patients were divided 
into a high risk group and a low risk group based on the 
median risk score. As shown in Fig. 6A, high risk patients 
had relatively low OS than patients with low risk in TCGA-
COADREAD (p = 0.00015). The risk scores, survival status, 
and heatmap of P4HA1 and PMM2 are presented in Fig. 6B. 
The AUC values of TCGA-COADREAD at 1, 3, and 5 years 

were 0.649, 0.646, and 0.650, respectively (Fig. 6C). The 
prognostic signature of the two genes was validated in the 
GSE17536 dataset. Similarly, in the TCGA-COADREAD 
dataset, patients with low risk had relatively higher OS than 
patients in the high risk group (Fig. 6D). The risk scores, 
survival status, and heatmap of P4HA1 and PMM2 are pre-
sented in Fig. 6E. The AUC values of GSE17536 at 1, 3, and 
5 years were 0.654, 0.655, and 0.670, respectively (Fig. 6F).

Clinical correlation analysis

We conducted correlation analysis between clinical charac-
teristics and risk scores to explore the impact of risk scores 
on clinical characteristics. As shown in Fig. 7A, risk scores 
of patients in T stage 3 and 4 were significantly higher than 
those in T stage 1 and 2. In addition, we observed signifi-
cantly higher risk scores for patients in stage II/III/IV rela-
tive to patients in stage I (Fig. 7B). Moreover, risk scores 
in right-side CRC were higher than that in left-side CRC 
(Fig. 7C). However, risk scores were not correlated with 
age and gender (Figure S2A–B). Univariate and multivariate 

Fig. 5   Co-related TF networks in CRC and IBD. A The expression of TCF3, CEBPB, GRHL3, and SUPT5H in CRC. B The expression of 
TCF3, CEBPB, GRHL3, and SUPT5H in IBD. C Co-related TF networks of P4HA1 and PMM2. ***p < 0.001

Page 5 of 15 230



Functional & Integrative Genomics (2023) 23:230	

1 3

Cox regression analyses were performed to estimate prog-
nostic potential of the signatures of the two genes with sev-
eral clinic pathological characteristics, such as age, patho-
logical stage, T stage, M stage, N stage, and gender in CRC. 
As shown in Fig. 7D, the risk scores significantly correlated 
with OS (HR = 3.045, 95% CI = 1.836–5.049, p < 0.001) 
in univariate Cox regression. After correcting for other con-
founding factors, the risk score (HR = 2.716, 95% CI = 
1.549–4.764, p < 0.001), age ≥ 65 (HR = 2.752, 95% CI = 
1.769–4.281, p = 0.008), and M stage (HR = 2.320, 95% CI 
= 1.438–3.741, p < 0.001) still proved to be independent 
predictors for OS in the multivariate Cox regression analysis 
(Fig. 7E). These results demonstrate that risk scores could be 
a potential prognostic indicator for predicting OS in CRC.

Characteristics of tumor microenvironment 
and immune checkpoints

ssGSEA was used to estimate immune cell infiltration in 
CRC patients from TCGA-COADREAD and GSE17536 
datasets. As shown in Fig. 8A and Figure S3A, higher infil-
tration levels were observed in the high risk group relative 
to those in the low risk group in both TCGA-COADREAD 
and GSE17536. To explore tumor microenvironment 
(TME) of CRC, ESTIMATE was applied to calculate the 
immune score, stromal score, and ESTIMATE score in 

TCGA-COADREAD and GSE17536. The immune score, 
stromal score, and ESTIMATE scores were significantly 
higher in the high risk group than in the low risk group 
(Fig. 8B–D and Figure S3B–D). Considering the vital role 
of immune checkpoint molecules (PD-1, PD-L1, and CTLA-
4) in the tumor immune microenvironment, we analyzed the 
expression of PD-1, PD-L1, and CTLA-4 in the two groups. 
As shown in Fig. 8E–G, the expression of all immune check-
point molecules was significantly elevated in the high risk 
group.

Correlation of gene signature with microsatellite 
instability and stemness

A recent study reported that patients with high microsatellite 
instability (MSI-H) were more sensitive to immunotherapy 
(Ganesh et al. 2019). The MSI and microsatellite stable 
(MSS) status of CRC patients were estimated in the TGCA-
CORADREAD dataset. As shown in Fig. 9A–B, high risk 
patients were significantly associated with MSI-H, whereas 
low risk patients were associated with MSS. Furthermore, 
we evaluated cancer stemness by mRNAsi. Correlation anal-
ysis revealed that risk scores were negatively associated with 
mRNAsi, indicating that CRC cells with a lower risk score 
had more distinct stem cell properties and a lower degree of 
cell differentiation (Fig. 9C–D).

Fig. 6   KM survival analysis, risk score assessment, and time-dependent ROC curves in the TCGA and GEO datasets. A–C TGCA-COAD-
READ. D–F GSE17536
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Mutation and drug sensitivity analysis

Increasing evidence suggests that patients with high tumor 
mutational burden (TMB) may benefit from immunother-
apy because they have higher numbers of neoantigens 

(Snyder et al. 2014). Therefore, TMB scores were cal-
culated in CRC. The CRC patients with high risk scores 
had higher TMB scores (Fig. 9E–F). We evaluated the 
variations in the distribution of the somatic mutations in 
the TCGA-COADREAD dataset. As shown in Fig. 9G, 

Fig. 7   The relationship between risk score and clinical feature. A Boxplot of risk score in T stages. B Boxplot of risk score in pathological stage. 
C Boxplot of risk score in tumor location. D Univariate analysis of risk score. E Multivariate analysis of risk score. **p < 0.01, ***p < 0.001
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the ten most frequently mutated genes in the high risk 
group were APC, TTN, TP53, KRAS, MUC16, SYNE1, 
PIK3CA, FAT4, RYR2, and DHAN5. However, patients 
with a low risk had markedly higher frequencies of APC, 
TP53, and KRAS mutations compared to patients with a 

high risk (Fig. 9H). Furthermore, we investigated sensitiv-
ities of CRC patients to the commonly used chemotherapy 
drugs. We found that patients with a high risk score had a 
lower IC50 value for camptothecin, whereas IC50 values 

Fig. 8   Immune characteristics between high and low risk group in 
TCGA dataset. A Infiltration of 23 immune cells using ssGSEA. B–D 
Immune, stromal, and ESTIMATE scores. E–G The expression of 

PD-1, PD-L1, and CTLA-4. *p < 0.05, **p < 0.01, ***p < 0.001, ns 
not significant
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of gemcitabine, paclitaxel, gefitinib, and shikonin were 
significantly higher in high risk group (Fig. 9I–M).

Establishment of a nomogram

To establish a quantitative prediction model, a nomogram 
was constructed (Fig. 10A), including risk score, age, M 
stage, and N stage. Calibration plots indicated that the nomo-
gram and ideal model showed high consistency in TCGA-
COADREAD (Fig. 10B).

Diagnostic values of P4HA1 and PMM2 in IBD

We combined P4HA1 and PMM2 via a logistics model for 
ROC analysis. The results were presented in Fig. 10C–E. 
The AUC values of the combined model were 0.865, 0.743, 
and 0.822 in GSE179285, GSE126124, and GSE75214, 
respectively. This indicates that a combined model of 
P4HA1 and PMM2 performs well for diagnosing IBD.

Validation of P4H1A and PMM2 expression via IHC

To validate the proteomic expression levels of P4HA1 and 
PMM2 in patients with IBD and CRC, we collected twenty 
IBD, one hundred CRC, and fifty normal formalin-fixed, 
paraffin-embedded tissue samples from the Renmin Hos-
pital of Wuhan University and performed IHC. As shown 
in Fig. 11A–H, the proteomic expression levels of P4HA1 
and PMM2 were significantly upregulated in IBD and CRC 
relative to normal tissues. Our results suggest that the glyc-
olysis-related genes P4HA1 and PMM2 are involved in the 
pathogenesis of IBD and CRC.

Discussion

Accumulating evidence suggests that patients with IBD have 
an increased risk of CRC (Beni et al. 2022, Rajamaki et al. 
2021, Wijnands et al. 2021). It may be due to the devel-
opment of dysplastic lesions in the colonic mucosa caused 
by chronic inflammation (Frigerio et al. 2021). Though the 

Fig. 9   Mutant and drug susceptibility analysis. A–B Relationship 
between MSI and risk score. C–D Relationship between mRNAsi 
score and risk score. E–F Relationship between TMB and risk score. 
G–H The waterfall plot of somatic mutation characteristics of CRC 

patients with high and low risk. I–M Relationships between chemo-
therapeutic sensitivity and risk score. **p < 0.01, ***p < 0.001, ns 
not significant
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incidence of IBD-associated CRC is low relative to sporadic 
CRC, patients with IBD have a mortality rate of 10 to 15% 
due to CRC (Eluri et al. 2017). Glycolysis is one of the major 
metabolic pathways essential for providing energy for cel-
lular processes, and it is involved in the regulation of innate 
and adaptive immune cells in the inflammatory response 
(Soto-Heredero et al. 2020). Studies have shown that mac-
rophages regulate glycolysis via the B-cell adapter for PI3K 
to improve experimental colitis (Irizarry-Caro et al. 2020). 
Moreover, N6-methyladenosine modifications of HK2 and 
GLUT1 regulate glycolysis to enhance colorectal cancer pro-
gression (Shen et al. 2020).

IBD and CRC may have overlapping pathogenic pathways 
involving glycolysis. The main purpose of this study was 
to reveal glycolytic cross-talk genes in IBD and CRC. We 
firstly identified 252 cross-talk DE-GRGs between IBD and 
CRC. Further, WGCNA was used to screen for IBD-related 

modules, and the module with high trait correlation was 
intersected with DE-GRGs for the next step in the analy-
sis. Finally, P4HA1 and PMM2 were identified as potential 
prognostic markers in CRC using LASSO, SVM-RFE, and 
Cox regressions. Therefore, we speculated that P4HA1 and 
PMM2 might be two glycolytic cross-talk genes. By fur-
ther verification, we found that four TFs that participate in a 
coordinated manner in the regulation of P4HA1 and PMM2 
were highly expressed in IBD and CRC, including GRHL3, 
CEBPB, TCF3, and SUPT5H.

One of two glycolytic cross-talk genes identified in this 
study, P4HA1, is a key enzyme in collagen synthesis. Upreg-
ulation of P4HA1 contributes to glycolysis by improving the 
stability of HIF1-α in breast cancer and pancreatic cancer 
(Cao et al. 2019, Xiong et al. 2018). Studies have confirmed 
P4HA1 is overexpressed in CRC. Agarwal et al. reported 
that knockdown of P4HA1 decreased CRC cell proliferation, 

Fig. 10   Predict and diagnostic values of signature in CRC and IBD. 
A A nomogram for predicting 1-, 3-, and 5-year OS of CRC patients. 
B Calibration curves of the nomogram for predicting 1-, 3-, and 

5-year OS of CRC patients. C–E ROC of logistics model of P4HA1 
and PMM2 in GSE179285, GSE12624, and GSE75214
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invasion, and migration and inhibited tumor growth as well 
as metastases. P4HA1 inhibitors have been shown to be an 
effective therapeutic strategy for aggressive CRC (Agarwal 
et al. 2020). The other glycolytic cross-talk gene identified 
was PMM2. PMM2 catalyzes the isomerization of mannose 
6-phosphate to mannose 1-phosphate, which is a precursor 
of GDP-mannose necessary for the synthesis of dolichol-P-
oligosaccharides. Mutations of PMM2 result in the PMM2-
congenital disorder of glycosylation, which is an inherited 
condition that affects many parts of the body (Witters et al. 
2019). Studies have indicated that the overexpression of 
PMM2 could promote malignancy of renal cell carcinoma 
(Yamada et al. 2018).

To further explore the role of P4HA1 and PMM2, we 
constructed a risk signature based on P4HA1 and PMM2 in 
CRC. Our results suggest that CRC patients with a high risk 
score have a poor prognosis. Moreover, patients with low 
and high risk scores showed significantly different clinical 
and pathological characteristics, mutations, TMEs, immune 
checkpoints, MSI, cancer stemness, and drug susceptibil-
ity. Finally, a nomogram was constructed by integrating the 
risk score, tumor stage, and age which further facilitated 
the use of risk signature. These findings may improve the 
prognosis stratification of patients with CRC and provide 
new ideas for targeted therapies. Despite recent advances 
in immunotherapy for CRC, different patients still show 
different sensitivity to treatment, highlighting the crucial 
role of TME in CRC tumorigenesis and progression (Chen 
et al. 2021). PD-1/PD-L1 and CTLA-4 blockades have dem-
onstrated their safety and efficacy and have been used to 
treat CRC (Monjazeb et al. 2021, Yaghoubi et al. 2019). 

Our results showed that patients with a high risk score had 
higher infiltration of immune cells and high expression lev-
els of immune checkpoints. Moreover, TMB score and the 
proportion of patients with MSI-H were higher in the high 
risk group. Previous studies have shown that patients with 
a high TMB or MSI-H may be more sensitive to immu-
notherapy (Ganesh, Stadler, Cercek, Mendelsohn, Shia, 
Segal and Diaz 2019, Snyder, Makarov, Merghoub, Yuan, 
Zaretsky, Desrichard, Walsh, Postow, Wong, Ho, Hollmann, 
Bruggeman, Kannan, Li, Elipenahli, Liu, Harbison, Wang, 
Ribas, Wolchok and Chan 2014). This suggests that CRC 
patients with a high risk score are more likely to benefit from 
immunotherapy. Furthermore, we evaluated the diagnostic 
values of P4HA1 and PMM2 in IBD. Our results reveal that 
a combined model based on P4HA and PMM2 had an excel-
lent diagnostic accuracy for IBD.

Nevertheless, this study had several limitations. Firstly, 
although we applied IHC to validate the expression levels of 
P4HA1 and PMM2 in patients with IBD and CRC, it lacks 
some clinical information, such as disease activity, previous 
therapies, and prognosis, which may have affected expres-
sion levels. Secondly, we failed to find an expression profile 
data of IBD-associated CRC to further validate our findings.

Conclusion

Our comprehensive analyses revealed glycolysis may be 
involved in IBD developing CRC. Furthermore, glycolysis-
related genes P4HA1 and PMM2 are potential cross-talk 
genes and biomarkers in IBD and CRC. This study provides 

Fig. 11   IHC validation (magnification ×40). A–C IHC of P4HA in 
normal, CRC, and IBD, respectively. D Immunoreactivity score of 
P4HA1 in normal, CRC, and IBD, respectively. E–G IHC of PMM2 

in normal, CRC, and IBD, respectively. H Immunoreactivity score of 
PMM2 in normal, CRC, and IBD, respectively. **p < 0.01, ***p < 
0.001

Page 11 of 15 230



Functional & Integrative Genomics (2023) 23:230	

1 3

new insights for the further study of the molecular mecha-
nism of IBD-associated CRC.

Method

Sample collection and immunohistochemistry 
analysis

Formalin-fixed, paraffin-embedded tissue samples were 
collected from twenty IBD, one hundred CRC, and fifty 
healthy patients for IHC analysis from the Renmin Hospital 
of Wuhan University from 2020 to 2021. This study was 
approved by the Ethics Committee of Renmin Hospital of 
Wuhan University (WDRY2021-KS066); all methods were 
performed in accordance with the relevant guidelines and 
the Declaration of Helsinki. Immunohistochemical staining 
was performed using a standard EnVision complex method 
(Kammerer et al. 2001). The primary antibodies used were 
P4HA1 (Proteintech, Wuhan, China) and PMM2 (Protein-
tech, Wuhan, China). Five high-power fields (400×) were 
randomly selected, and examination and scoring were per-
formed independently by three experienced pathologists who 
were unaware of the clinical information. The expression of 
P4HA1 and PMM2 was calculated by multiplying the mean 
signal intensity (on a scale of 0–3: 0, no staining; 1, light 
staining; 2, moderate staining; and 3, strong staining) and 
the proportion of positive tumor cells (on a scale of 0–4: 0, 
0%; 1, 1–25%; 2, 26–50%; 3, 51–75%; and 4, 76–100%). The 
final immunoreactive scores were the mean of scores from 
the three pathologists.

Data collection and gene set enrichment analysis

The RNA sequencing data and clinical data of 644 CRC 
patients were downloaded from TCGA. The expression 
array profiles of CRC patients were obtained from GEO, 
namely, GSE161158 (n = 192) and GSE17536 (n = 178). 
The IBD datasets GSE179285 (70 inflamed IBD tissues and 
31 healthy controls), GSE75214 (133 inflamed IBD tissues 
and 22 healthy controls), and GSE126124 (57 inflamed IBD 
tissues and 21 healthy controls) were used. Gene set enrich-
ment analysis (GSEA) was performed via GSEA/MSigDB 
and visualized by the R package ggplot2 (Subramanian et al. 
2005, Wickham 2009). Glycolysis-related pathways from 
GSEA were used to obtain glycolysis-related genes (GRGs).

Differential expression and weighted correlation 
network analysis

Differential expression analyses were performed using 
the R package limma with a false discovery rate of less 
than 0.05 (Ritchie et al. 2015), then genes were defined 

as IBD-differential expression genes (DEGs) and CRC-
DEGs. Weighted correlation network analysis (WGCNA) 
was applied to assess the relative importance and module 
membership of genes (Langfelder and Horvath 2008). The 
minimum number of module genes was set at 30. The hierar-
chical clustering dendrogram summarizes the gene modules 
with different colors.

Construction and evaluation of the prognostic 
model

The least absolute shrinkage and selection operator 
(LASSO) regression and support vector machine recursive 
feature elimination (SVM-RFE) were applied to screen CRC 
prognosis and to construct a prognosis-predicting model 
using the glmne R package (Friedman et al. 2010). The risk 
score was calculated using the following formula: Risk score 
= 
∑n

i=1
coef ∗ id (Chen et al. 2007). The survminer and sur-

vival R packages were used to conduct the Kaplan–Meier 
survival analysis to assess the difference in survival between 
high and low risk score groups. We estimated the perfor-
mance of the gene risk model using the time-dependent 
receiver operating characteristic (ROC) curve estimated by 
the R package survivalROC (Lorent et al. 2014). Then, Cox 
regression analyses were conducted to estimate the inde-
pendent prognostic values of signature and other clinical 
characteristics. The proteomic expression of prognostic 
cross-talk genes was confirmed by the Clinical Proteomic 
Tumor Analysis Consortium (CPTAC) and the Human Pro-
tein Atlas (HPA) databases (Uhlen et al. 2015). To estimate 
survival likelihood, a nomogram was constructed based on 
the risk score and clinical characteristics using the R pack-
age rms, and the prognostic ability of the nomogram was 
assessed using calibration plots.

Prediction of co‑regulated transcription factors

The hTFtarget database was utilized to predict co-regulated 
transcription factors (TFs) (Zhang et al. 2020). hTFtarget is 
an online tool that has a curated and comprehensive database 
of TF-target regulators from large-scale ChIP-Seq data from 
human TFs (7190 experimental samples of 659 TFs), in 569 
conditions (399 types of cell line, 129 classes of tissues or 
cells, and 141 kinds of treatments). The co-regulation net-
work was constructed and visualized via Cytoscape.

Evaluation of immune cell infiltration and tumor 
microenvironment

Single-sample GSEA (ssGSEA) was applied to estimate 
the 23 common immune cell infiltrations (Charoentong 
et al. 2017). The R package estimate was used to predict 
the presence of stromal or immune cells in tumor tissues 
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(Yoshihara et al. 2013). The one-class logistic regression 
algorithm constructed by Malta et al. was used to evalu-
ate cancer stemness based on the mRNA expression-based 
stemness index (mRNAsi) (Malta et al. 2018).

Mutations and drug susceptibility analysis

Files in the mutation annotation format from the TCGA 
database were generated by the R package maftools for 
mutation analysis and the calculation of tumor mutation 
burden (TMB) score (Mayakonda et al. 2018). The semi-
inhibitory concentration (IC50) values of chemotherapeutic 
drugs commonly used to treat CRC were obtained using the 
R package pRRophetic (Geeleher et al. 2014).
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