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Abstract
Ubiquitination-related genes (URGs) exerted a crucial part in a variety of human disease disorders; however, their associa-
tion with pancreatic adenocarcinoma (PAAD) had yet to be clearly described. We aimed to comprehensively characterize 
the contributions of URGs in PAAD through in silico analysis and experimental validation, and then identified a robust 
mRNA-lncRNA-based molecular prognostic panel for patients with PAAD using bulk RNA-sequencing and single-cell RNA-
sequencing data. Initially, we collected the multi-omics data from TCGA platform to depict a comprehensive landscape of 
URGs in pan-cancer. Furthermore, we were accurate to PAAD for in-depth analysis. Significant differences of the activation 
of ubiquitination pathways and the expression of URGs were detected between normal and malignant cells. Unsupervised 
hierarchical clustering determined two PAAD subtypes with distinct clinical outcomes, ubiquitination pathway activities, 
immune microenvironment, and functional annotation characteristics. The expression profiles of ubiquitination-associated 
mRNAs and lncRNAs in the training and validation datasets were utilized to develop and verify a novel ubiquitination-
related mRNA-lncRNA prognostic panel, which had a satisfied prediction efficiency. Our ubiquitination-associated model 
could function as an effective prognostic index and outperformed four other recognized panels in evaluating PAAD patients’ 
survival status. Tumor immune microenvironment, mutation burden, and chemotherapy response were intensively explored 
to demonstrate the underlying mechanism of prognostic difference according to our panel. Our findings also revealed that 
FTI-277, a farnesyltransferase inhibitor, had a better curative effect in high-risk patients, while MK-2206, an Akt allosteric 
inhibitor, had a superior therapeutic effect in low-risk patients. The real-time PCR results uncovered the RNA expression of 
AC005062.1 in all the three PAAD cell lines was elevated several thousandfold. In conclusion, our URGs-based classifica-
tion panel could be triumphantly served as a prediction tool for survival evaluation in patients with PAAD, and the genes in 
this panel could be developed as a potential target in PAAD therapy.
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Introduction

Pancreatic adenocarcinoma (PAAD), as a typical malig-
nant tumor in digestive disease, occurs secretively and 
develops rapidly with poor therapeutic effects and progno-
sis. As the seventh primary death from cancer worldwide, 
PAAD accounts for approximately 459,000 new cases and 
432,000 deaths (Ryan et al. 2014; Bray et al. 2018). Due to 
the fact that it is frequently detected at the terminal stage 
and is resistant to therapy, PAAD is a remarkably deadly 
disease with a lowest 5-year survival rate of roughly 9% 
in all cancers (Siegel et al. 2020). The effective strategies 
of both diagnostic program and prognostic evaluation are 
desperately needed for detecting tumors at an early stage 
and distinguishing risk stratification in patients with PAAD 
(Mizrahi et al. 2020). Consequently, a wide exploration of 
pathogenesis, biomarkers, early stratification, and prognostic 
evaluation has been investigated for the individual manage-
ment of patients with PAAD. Up to the present, plentiful bio-
informatic studies have revealed that microRNA, lncRNA, 
and other biomolecules can affect the progression, metas-
tasis, prognosis, and immunotherapy of pancreatic cancer 
through regulating oxidative stress, immune response, and 
tumor cell proliferation (Liu et al. 2018; Wu et al. 2020a; 
Yu et al. 2021; Altan and Sahin 2022; Huang et al. 2023). 
Although these prognostic signatures of PAAD have been 
developed, most of them are accompanied by unsatisfied 
diagnostic values. More importantly, there is no accordant 
risk delamination for PAAD.

Ubiquitination, as a common and important process in 
cells, is one of the protein post-translational modification 
types, which plays an essential role in modulating substrate 
degradation, serving to regulate the functions of many pro-
teins under various physiological and/or pathological con-
ditions (Shmueli and Oren 2005; Popovic et al. 2014). The 
significant role of ubiquitination in cancer development and 
progression has been demonstrated in multiple reviews, 
which detailly comments the regulating mechanism of 
ubiquitination-related biomolecules on neoplastic diseases 
(Hoeller and Dikic 2009; Kirkin and Dikic 2011; Lipkowitz 
and Weissman 2011; Deng et al. 2020). There have been 
reports that ubiquitination-related regulators are discovered 
to evaluate the prognostic prediction in renal cell carcinoma 
and bladder cancers (Cai et al. 2021; Wu et al. 2021; Zhou 
et al. 2021). Additionally, studies in vivo and vitro display 
that ubiquitination-related regulators, such as COP9 signa-
losome complex subunit 6 (CSN6) and F-box protein 22 
(FBXO22), participate in the progression of PAAD (Ma 
et al. 2020; Chen et al. 2021). Therefore, it is prospective 
to develop a PAAD risk stratification tool based on URGs.

In our study, we firstly depicted the landscape of ubiq-
uitination-related mRNAs in pan-cancers, highlighting 

their significant contributions to multiple human cancers. 
The scRNA-seq data of PAAD samples also verified the 
close association of ubiquitination pathway and PAAD 
progression. Next, we especially focused our attention on 
PAAD. With the help of a series of bioinformatics analy-
ses, we successfully established ubiquitination-related 
mRNA-lncRNA regulation network, and PAAD patients 
were stratified into two subtypes with distinct ubiquitina-
tion activities. We also established a novel ubiquitination-
related prognostic signature (URPS) and verified its ability 
to predict the prognostic risk for PAAD. The real-time 
PCR experiments revealed the expression profiles of ubiq-
uitination-associated mRNA and lncRNAs in URPS. Our 
research could provide new avenues for the clinical deci-
sion and prognostic evaluation in PAAD.

Methods

Pan‑cancer analysis

The pan-cancer transcriptomes about the copy number varia-
tions (CNV), single-nucleotide variant (SNV), mRNA expres-
sion profiles, and clinical outcomes were acquired and inte-
grated based on The Cancer Genome Atlas (TCGA) platform. 
The CNV, SNV, and expression of ubiquitination-related 
mRNAs in pan-cancers were summarized and shown with 
the help of the Perl language and TBtools. The ubiquitination 
score of tumor sample was computed to illuminate the varied 
function of signaling pathways impacted by ubiquitination 
among cancer types using single-sample gene set enrichment 
analysis (ssGSEA) (Fan et al. 2022). Samples that scored in 
the top 30% and the bottom 30% of ubiquitination were picked 
out as two representative groups for in-depth investigation 
about the discrepancies of pathway activities depending on 
gene set enrichment analysis (GSEA) (Guo et al. 2022).

Single‑cell RNA‑seq data collection 
and bioinformatics analysis

The expression profiles and clinical information of 57,530 
cells from 24 PAAD cases were provided by the CRA001160 
dataset from the Genome Sequence Archive (GSA, https:// 
ngdc. cncb. ac. cn/ gsa/) for our analysis. The scRNA data was 
processed using Seurat in the R programme, and the per-
centage of mitochondria and rRNA was determined using 
“PercentageFeatureSet” function. The scRNA-seq data was 
standardized by “LogNormalize” technique. The top 2000 
variable genes identified by FindVariableGenes tool were 
used to run the principal component analysis (PCA) (Pan 
et al. 2023). The t-distributed stochastic neighbor embedding 
(t-SNE) approach was used to do dimensionality reduction 

https://ngdc.cncb.ac.cn/gsa/
https://ngdc.cncb.ac.cn/gsa/
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on the initial 50 PC. The CellCycleScoring tool was uti-
lized to determine the cycle phase-specific alterations of 
cells in distinct samples. The CellCycleScoring program in 
R scored each cell based on the expression of G2/M and S 
phase markers, which were applied to determine cell cycle 
phase (G2/M, S, or G1 phase).

Molecular Signatures Database (MsigDB, https:// www. 
gsea- msigdb. org/ gsea/ msigdb/) was the source for the Hall-
mark gene collection. From the MsigDB of Gene Set Enrich-
ment Analysis (GSEA, http:// www. gsea- msigdb. org/ gsea/ 
index. jsp), 79 ubiquitination-related genes (URGs) were 
retrieved. Normal and malignant cells from 24 PAAD sam-
ples in CRA001160 were analyzed using ssGSEA to identify 
enrichment pathways.

Bulk RNA‑seq data collection and processing

The transcriptome profiling and survival data of nor-
mal and PAAD samples were acquired from Genotype-
Tissue Expression project (GTEx) and International 
Cancer Genome Consortium (ICGC) databases. In total, 
we obtained 178 PAAD and 4 normal pancreas samples 
from TCGA cohort, 167 normal pancreas samples from 
GTEx cohort, and 84 PAAD samples from ICGC cohort. 
After obtaining intersected molecules in all the cohorts, 
batching normalization was conducted for the follow-
ing analysis. Among them, 64 URGs with expression 
data were collected and 15 URGs were excluded due to 
incomplete expression data. Additionally, in order to get 
lncRNAs from genes that overlapped, the human gene 
transfer format (gtf) file was downloaded from Ensembl 
website (http:// www. ensem bl. org/).

Identification of differentially expressed 
ubiquitination‑related mRNAs and lncRNAs 
with prognostic values

Pearson correlation coefficients between 64 ubiquitination-
related mRNAs and all lncRNAs were determined using 
R’s in-built “cor.test” function. We screened ubiquitination-
related lncRNAs in terms of the correlation coefficients and p 
values (|correlation coefficients| > 0.4 and p values < 0.001). 
One hundred seventy-eight PAAD and 4 normal pancreas 
samples from TCGA dataset and 167 normal pancreas sam-
ples from GTEx dataset were combined (i.e., 178 PAAD and 
171 normal samples). Furthermore, the expression matrix of 
ubiquitination-associated mRNAs and lncRNAs that coor-
dinated with clinical information was integrated for further 
analysis in PAAD. The “limma” package in R was employed 
to obtain the differentially expressed ubiquitination-related 
mRNAs and lncRNAs between normal and PAAD samples 
depending on the false discovery rate (FDR) and |log2(fold 
change)| (FDR < 0.01 and |log2(fold change)| > 1). In 

addition, in TCGA cohort, ubiquitination-related mRNAs 
and lncRNAs with prognostic profiles were picked out using 
univariate Cox analysis modulated by Benjamini and Hoch-
berg (BH) method (FDR < 0.05). Ultimately, ubiquitination-
related mRNAs and lncRNAs with both differential expres-
sion and prognostic values were retained for subsequent 
consensus clustering and panel development.

Consensus clustering analysis identifies 
ubiquitination‑related mRNA‑lncRNA‑based 
molecular clusters

Using the “ConsensusClusterPlus” package, 178 PAAD 
specimens from TCGA cohort were segmented into two 
clusters (i.e., C1 and C2) based on the above ubiquitination-
related mRNAs and lncRNAs with both differential expres-
sion and prognostic values. The prognostic discrepancies of 
the clusters were estimated using survival analysis with the 
help of Kaplan-Meier method. We employed four indicators 
to estimate the survival analysis, including overall survival 
(OS), progression-free interval (PFI), disease-specific sur-
vival (DSS), and disease-free interval (DFI). The ubiquit-
ination pathway activities were determined by the ubiquit-
ination pathway scores of patients with PAAD, which were 
computed using “GSVA” package in R. Then, we compared 
the discrepancy of the ubiquitination scores between dis-
tinct ubiquitination-based clusters using the “wilcox.test” 
function in R. We also investigated the discrepancy of clin-
icopathological traits between these two clusters, including 
age, gender, grade, stage, and survival status. To discover 
the functional characteristics of each cluster, the specific 
molecules of them were then determined. The definition of 
specific molecules was as follows: the molecules that were 
significantly upregulated or downregulated in cluster 2 con-
trasted to cluster 1 were rated as the specific molecules. 
Cytoscape plug-in ClueGO, CluePedia, and yFiles Layout 
Algorithms were employed to explore the potential gene 
ontology terms enriched by these specific molecules for 
further investigation of the underlying mechanism of prog-
nostic heterogeneity.

Cluster‑based exploration of the discrepancy 
of tumor immune microenvironment (TIME)

The immune microenvironment of each PAAD sample was 
assessed by means of the “estimate” package in R. After 
that, the “ggpubr” package in R was employed to visualize 
the result of the immune microenvironment. The infiltrat-
ing compositions of 22 immune cells were analyzed using 
CIBERSORT method in PAAD samples. The “wilcox.test” 
function in R was used to further examine the disparity in 
immune cell infiltration (ICI) and immunological checkpoint 
gene (ICG) expression between the two clusters.

https://www.gsea-msigdb.org/gsea/msigdb/
https://www.gsea-msigdb.org/gsea/msigdb/
http://www.gsea-msigdb.org/gsea/index.jsp
http://www.gsea-msigdb.org/gsea/index.jsp
http://www.ensembl.org/
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Identification and verification 
of an ubiquitination‑related mRNA‑lncRNA‑based 
prognostic panel

All PAAD samples (178 PAAD samples obtained from 
TCGA dataset; 84 PAAD samples obtained from ICGC 
dataset) were included for the subsequent research. There 
were three samples (1 sample from TCGA dataset; 2 sam-
ples from ICGC dataset) excluded due to lack of survival 
time. In total, 177 PAAD samples from TCGA dataset and 
82 PAAD samples from ICGC dataset were screened for 
subsequent research. Half of 177 PAAD samples obtained 
from TCGA dataset were randomly distributed in the train 
cohort. All 177 PAAD samples obtained from TCGA dataset 
and 82 PAAD samples from ICGC dataset were allocated to 
test1 and test2 cohorts, respectively. Notably, test1 cohort 
was rated as internal validation group, while test2 cohort 
was set as external validation group.

In the train cohort, the collinear elimination of the 79 
variables and over-fitting prevention of the established 
model were accomplished with the help of least absolute 
shrinkage and selection operator (LASSO) regression (Li 
et al. 2022). Then, multivariate Cox proportional hazards 
regression analysis was further used for the construction of a 
novel URPS. In the train and test cohorts, PAAD specimens 
were divided into low-risk and high-risk subgroups using 
“predict” function in R, with the critical value determined 
by the median risk score.

The following analyses were performed to construct the 
URPS and validate its robustness: (1) Survival analyses 
including OS, PFI, DSS, and DFI were used for the assess-
ment of predictive ability of URPS with the help of Kaplan-
Meier method in the train and test1 cohorts. (2) The receiver 
operating characteristic (ROC) curve was employed to verify 
the diagnostic values of URPS at differential years among 
distinct clinical features using “survivalROC” package in 
R. (3) Four additional prognostic signs of PAAD were ana-
lyzed, and their predictive efficacy was compared to that of 
our URPS (a ferroptosis-related model established by Yu 
et al (Yu et al. 2021), a RNA-binding protein-related prog-
nostic model established by Wen et al (Wen et al. 2021), a 
metastasis-related prognostic model established by Wu et al 
(Wu et al. 2020b), and an immune-related model established 
by Wu et al (Wu et al. 2020a) under the help of “survival,” 
“tidyverse,” and “timeROC” packages in R in the train and 
test1 cohorts. Because of the insufficient clinical informa-
tion in the ICGC database, only the survival analysis of OS 
was performed, and the diagnostic values of URPS at 0.5 
year, 1 year, 2 years, and 3 years were verified without the 
comparison of different clinical features in the test2 cohort. 
Finally, URPS-based risk scores together with other clinico-
pathological indexes were incorporated for the investigation 
of independent prognostic indicators by utilizing variate Cox 

regression analyses in PAAD. Because of the deficiency of 
clinical data in ICGC dataset, variate Cox regression analy-
ses were only conducted depending on the 177 PAAD sam-
ples from the TCGA dataset.

URPS‑based pathway annotation

Recently, it has been confirmed that the genesis and pro-
gression of cancers are influenced by abnormal signaling 
pathways (Pan et al. 2023). One hundred eighty-six classical 
KEGG signaling pathways were collected from the MsigDB 
database. The pathway activities of patients with PAAD 
were computed using ssGSEA in the training, testing1, and 
testing2 cohorts, and “wilcox.test” function in R was then 
employed to compare the pathway activities in low-risk and 
high-risk populations. The differential abundance of path-
ways with statistical discrepancy between low-risk and high-
risk populations was visualized via the “pheatmap” package 
in R. The “ggcor” and “ggplot” packages in R were also 
implemented to compute and draw the correlation between 
risk score and pathway activities. Following these, the venn 
plot was utilized to identify the common pathways among 
the training, testing1, and testing2 cohorts.

URPS‑based characterization of the TIME

Numerous immune deconvolution techniques were modified 
to evaluate the discrepancies of the infiltrating abundances of 
immune cells in low-risk and high-risk populations, which 
included TIMER, QUANTISEQ, CIBERSORT, MCPCOUN-
TER, and XCELL. A heatmap was produced to depict the 
infiltrating overview about immune cells. Furthermore, we 
also explored the discrepancies of expression levels of ICGs 
between low-risk and high-risk populations. Notably, only the 
results that had statistical significance were displayed.

In 2018, there was an article that published in the “Immu-
nity” journal by Thorsson, which detected six immune 
subtypes of more than 10,000 tumors among 33 cancer 
types from TCGA dataset (Thorsson et al. 2018). Thus, we 
then evaluated the differences in immunological subtypes 
between low-risk and high-risk subgroups using the tech-
niques described in the study.

URPS‑based characterization of the tumor mutation 
burden (TMB)

It is greatly evident that high TMB suggests a satisfied 
response to immunotherapy (Sui et al. 2023). In considera-
tion of the clinical significance of TMB, the information 
of tumor mutation in PAAD patients from TCGA dataset 
was downloaded for deep analysis. The quantity of non-syn-
onymous mutations was enumerated using Perl. The entire 
quantity of somatic gene coding errors, base substitutions, 
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gene interposition, or removal errors tested per million bases 
was defined as TMB.

The TMB scores in low-risk and high-risk populations 
were analyzed using the “wilcox” function in R. Spearman 
correlation analysis was performed to explored the associa-
tion between risk scores and TMB scores. Then, we used 
“maftools” R programme to isolate the genes responsible for 
PAAD, and we extended our diagram to include the current 
standing of the top 20 genes in two distinct categories. We 
also explored the clinical outcomes in PAAD patients with 
distinct TMB and risk scores using K-M log rank test.

Targeted drug sensitivity prediction

Drug sensitivity was predicted for each PAAD patient using 
the “pRRophetic” R package, and the “wilcox.test” R func-
tion was used to evaluate the possibly sensitive medications 
in low-risk and high-risk populations. Targeted medications 
were deemed trustworthy when they showed statistical sig-
nificance in all three cohorts (train, test1, and test2). Notably, 
medication sensitivity increases as the IC50 value decreases.

Cell lines and culture

HPDE6-C7 cell line was chalked up from American Type 
Culture Collection (ATCC, USA). CF-PAC1 and Panc-1 cell 
lines were amicably supported by Procell Life Science & 
Technology Co., Ltd. BxPC-3 cell line was obtained from 
KeyGEN BioTECH (Jiangsu province, China). The cell lines 
of HPDE6-C7, BxPC-3, and Panc-1 were cultured in DMEM 
(Gibco, USA), whereas CF-PAC1 cell line was cultured in 
IMEM (Procell, China). All of medium were replenished 
with 10% fetal bovine serum (Gibco, USA).

Clinical human samples

Paired cancerous and para-cancerous pancreatic tissues were 
collected from eight patients with PAAD and rapidly froze 
in liquid nitrogen for RNA extraction. Each of patient signed 
the informed consent form supplied by the First Affiliated 
Hospital of Dalian Medical University.

Quantitative real‑time PCR (qRT‑PCR)

Total RNAs of cell lines and tissues of human pancreatic 
cancer were extracted using RNAex Pro Reagent (Accu-
rate Biotechnology). To avoid RNA degradation, the RNA 
extraction of human pancreatic tissues was performed using 
liquid nitrogen grinding. The cDNAs were prepared using 
Evo M-MLV RT Kit with gDNA Clean (Accurate Biotech-
nology). The qRT-PCR technology was implemented using 
 SYBR® Green Premix Pro Taq HS qPCR Kit (Accurate 
Biotechnology, Shanghai, China). GAPDH was used as the 

control gene. The ΔΔCt method was utilized to quantitate 
the gene expression. All of primer sequences employed in 
this research were as follows: for human UBE2C, 5′-GAC 
CTG AGG TAT AAG CTC TCGC-3′ (forward), 5′-TTA CCC 
TGG GTG TCC ACG TT-3′ (reverse); for human DANCR, 
5′-GCG CCA CTA TGT AGC GGG TT-3′ (forward), 5′-TCA 
ATG GCT TGT GCC TGT AGTT-3′ (reverse); for human 
AL139147.1, 5′-GCA GCC TCT ACC AAT GTG ATG-3′ (for-
ward), 5′-GGA CAG TTT TCG TCA TTC CCG-3′ (reverse); 
for human AC092171.2, 5′-GGT CAT CGA AAG GCA GGT 
GA-3′ (forward), 5′-TTC GCC ACC TTC TGA GCA TT-3′ 
(reverse); for human AC005062.1, 5′-TTC TCT CGA CTG 
AGC CAA CACA-3′ (forward), 5′-GAG AGA CAG AAA 
GCG GAG TCA-3′ (reverse); for human BX293535.1, 
5′-ACT TCT GAG CCA GAC TGC TTG-3′ (forward), 5′-AGT 
GAG TAC ATT CAA ACC AGA ACT -3′ (reverse); for human 
AC009065.5, 5′-TGA ACC TCT GTT GTC TGT GGA-3′ (for-
ward), 5′-GGA GCC TTT CTG CTC CTA CAA-3′ (reverse); 
for human AP005233.2, 5′-CCA AAG AAC CAA GAG CTG 
CA-3′ (forward), 5′-CAA ACC CAC AGA CCC TCT CT-3′ 
(reverse); for human AC005261.1, 5′-GCC TGT TCA AGT 
CCC AAC CT-3′ (forward), 5′-GGC CTC AAT CCC TGA CCT 
TT-3′ (reverse); for human GAPDH, 5′-GGT CTC CTC TGA 
CTT CAA CA-3′ (forward), 5′-GTG AGG GTC TCT CTC TTC 
CT-3′ (reverse). The above primers were purchased from 
GenePharma (Suzhou, China).

Statistical analysis

The statistical analyses of quantitative data were performed 
using the Student’s t-test and the Wilcoxon rank-sum test. 
The normally distributed variables were analyzed by the 
Student’s t-test, whereas the nonnormally distributed vari-
ables were analyzed by the Wilcoxon rank-sum test. Kruskal-
Wallis test and one-way ANOVA test were used to compare 
more than two groups as nonparametric and parametric 
methods, respectively. The R (version 4.1.1) and Perl lan-
guages were used to conduct all statistical analyses in this 
work (*p < 0.05, **p < 0.01, ***p < 0.001).

Results

Pan‑cancer overview of the ubiquitination‑related 
regulators

Even though a large number of ubiquitination-related regu-
lators have been investigated in various cancers (Sun et al. 
2020), the mutations of these genes are not well summarized. 
Consequently, we investigated the mutations of ubiquitina-
tion-related regulators in pan-cancers. The high-throughput 
CNV and SNV data gathered from TCGA database were 
analyzed and visualized as heatmaps. The result of CNV 
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gain frequency showed that URGs had higher frequencies of 
gain mutations in kidney chromophobe (KICH), adrenocorti-
cal carcinoma (ACC), uterine carcinosarcoma (UCS), ovar-
ian serous cystadenocarcinoma (OV), sarcoma (SARC), and 
rectal adenocarcinoma (READ), whereas derlin-1 (DERL1), 
ubiquitin-conjugating enzyme E2W (UBE2W), peroxisomal 
E3 ubiquitin ligase peroxin 2 (PEX2), ubiquitin-conjugating 
enzyme E2C (UBE2C), PRKDC, and ubiquitin-conjugat-
ing enzyme E2V2 (UBE2V2) had higher frequencies of 
gain mutations across various cancer types (Fig. 1A). The 
result of CNV loss frequency displayed that ubiquitination-
related regulators had higher frequencies of loss mutations 
in KICH, OV, UCS, ACC, READ, and SARC, while ubiq-
uitin-conjugating enzyme E2G1 (UBE2G1), UBB, peroxi-
somal E3 ubiquitin ligase peroxin 14 (PEX14), SNF2 his-
tone linker PHD RING helicase (SHPRH), RING finger 152 
(RNF152), and Ras-related GTP-binding A (RRAGA) had 
higher frequencies of loss mutations across various cancer 
types (Fig. 1B). In addition to this, the heatmap of SNV 
data showed higher mutation frequencies of ubiquitination-
related regulators in uterine corpus endometrial carcinoma 
(UCEC), colon adenocarcinoma (COAD), skin cutaneous 
melanoma (SKCM), and stomach adenocarcinoma (STAD). 
Notably, protein kinase, DNA-activated, catalytic subunit 
(PRKDC), and ubiquitin-specific protease 9X (USP9X) had 
higher mutation frequencies in multiple cancers, mainly 
including UCEC, SKCM, COAD, and STAD (Fig. 1C).

To investigate the mRNA expression of ubiquitination-
related regulators in various cancers, pan-cancer analy-
sis was carried out with the help of gene expression data 
from TCGA database; then, the result was presented as 
the heatmap. The gene expressions of most ubiquitination-
related regulators were low, while the gene expressions of 
UBE2C and ubiquitin-conjugating enzyme E2T (UBE2T) 
were extremely high in multiple types of cancer (Fig. 1D). 
To clearly display the gene expression changes, the nega-
tive log p value of each gene was utilized to create a new 
heatmap, which showed a comparatively high-degree vari-
ations of ubiquitination-related regulators in LIHC (liver 

hepatocellular carcinoma), KIRC, and LUSC (lung squa-
mous cell carcinoma) (Fig. 1E). UBE2C and UBE2T were 
greatly changed in various cancers (Fig. 1E). Next, we 
integrated the gene expression and clinical survival time 
in TCGA dataset to intensively investigate the prognostic 
performances of the above ubiquitination-related regula-
tors in pan-cancers. The univariate cox regression analysis 
identified ubiquitination-related regulators as risky (HR > 
1 and p < 0.05) or protective (HR < 1 and p < 0.05) fac-
tors, and most of those were valuable in PAAD prognosis 
(Fig. 1F). Following this, we investigated how these ubiq-
uitination-related regulators modulated the cancer-related 
signaling pathways in various cancer types by the GSEA. 
The result is presented as the heatmap in Fig. 1G, which 
revealed that ubiquitination scores were positively correlated 
to MYC_TARGETS_V1 and V2, MTORC1_SIGNALING, 
G2M_CHECKPOINT, and E2F_TARGETS, whereas nega-
tively correlated to MYOGENESIS, INFLAMMATORY_
RESPONSE, and ALLOGRAFT_REJECTION in multiple 
cancers.

The scRNA‑seq data unveils the close association 
between ubiquitination and PAAD

Next, we utilized the scRNA data to explore the correlation 
between ubiquitination and PAAD. The 24,005 genes from 
57,530 cells were gathered for examination in line with the 
quality control criterion of scRNA-seq data (Supplementary 
Figure 1A). Even though there is a substantial link between 
UMI and mRNA, UMI/mRNA had no relationship with 
mitochondrial gene content (Supplementary Figure 1B). 
PCA was applied to assess the available dimensions, which 
showed that PAAD cells were not significantly distinct (Sup-
plementary Figure 1C). Fifty of the most significant PCs 
were selected for in-depth analysis (Supplementary Fig-
ure 1C). The t-SNE was used to visualize the unsupervised 
clustering of cells, displaying the distribution of cells in each 
sample using distinct colors (Fig. 2A). In light of the consen-
sus that proliferation is a primary hallmark for tumor cells, 
we labeled human PAAD cells in various phases of cell 
cycle (Fig. 2B). In addition, we annotated the distribution 
of nonmalignant and malignant cells in PAAD (Fig. 2C). 
In the majority of samples, malignant cells had much less 
percentage than normal cells (Fig. 2D). The majority of cells 
in PAAD samples were found to be in G1 phase, while only 
a tiny proportion of the cells located in the G2/M phase 
(Fig. 2E).

Apart from that, we also compared the expression differ-
ence of several tumor-associated regulatory pathways between 
malignant and nonmalignant cells in PAAD. Other from non-
malignant cells, a variety of classical carcinogenesis path-
ways were comparatively active in malignant cells (Fig. 3A). 
It should be noted that protein ubiquitination was among these 

Fig. 1  Pan-cancer overview of the ubiquitination-related genes. A, 
B CNV gain frequency and CNV loss frequency information among 
cancer types. The red color represents the gain frequency, whereas 
the blue color represents the loss frequency in the ubiquitination-
related genes from pan-cancers. C SNV data among cancer types. 
The mutant frequencies of ubiquitination-associated genes in pan-
cancers (red color to blue color represents low to high). D, E Dif-
ferential expression traits of the ubiquitination-related genes in pan-
cancers and their corresponding para-cancerous tissues (D log2FC 
values, E p values). F Prognostic contributions of the ubiquitina-
tion-related genes in pan-cancers. Genes (p > 0.05) were presented 
by white color, and the risky and protective genes were presented by 
blue and yellow colors, respectively. G Enrichment analysis for typi-
cal cancer-associated pathways between distinct URG-score crowds 
(NES, normalized enrichment score)

◂
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Fig. 2  Characterization of cell types and cell cycles in pancreatic 
cancer. A The t-SNE algorithm identified cell clusters of pancreatic 
cancer. B Annotation of cells during various phases of the cell cycle 
in pancreatic cancer. C Malignant and nonmalignant cells in PAAD 

samples were depicted by various colors in t-SNE plots. D In each 
PAAD sample, the percentage of malignant to benign cells. E Propor-
tion of cells in the G1, G2/M, and S phases in each PAAD sample
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Fig. 3  Identification of ubiquitination characteristics of pancreatic cancer in the scRNA-seq level. A In PAAD, normal and cancerous cells acti-
vated different biochemical pathways. B Difference in expression of URGs between malignant and nonmalignant cells in PAAD
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carcinogenesis pathways (Fig. 3A). More importantly, most of 
URGs showed enhanced expression levels in malignant cells 
contrasted to normal cells (Fig. 3B). The enrichment score of 
each pathway and the expression of each URG are also dem-
onstrated in Supplementary Figure 2. Therefore, ubiquitination 
could be crucial for cellular malignization. Construction of 
ubiquitination-based molecular classification and risk stratifi-
cation is promising for precise prediction of PAAD prognosis.

Identification of ubiquitination‑related mRNAs 
and lncRNAs with traits of both differential 
expression and prognostic values

To date, besides functional mRNAs, numerous lncRNAs have 
been characterized as functional molecules that are associ-
ated with different types of cancers by cancer transcriptome 
analysis (Li et al. 2020). It has been reported that lncRNAs 
are explored for the early detection and prognostic evaluation 
in PAAD (Namkung et al. 2016; Eid et al. 2021). Hence, the 
role of ubiquitination-related mRNAs and lncRNAs in the 
prognosis of PAAD was further investigated. Pearson cor-
relation analysis determined 396 ubiquitination-related lncR-
NAs in PAAD (Supplementary Figure 3A). The analysis of 
178 PAAD and 171 normal pancreas samples identified the 
expression profiles of 64 ubiquitination-associated mRNAs 
and 396 ubiquitination-associated lncRNAs. Then, a total of 
263 differentially expressed ubiquitination-associated mRNAs 
and lncRNAs between PAAD and normal pancreas tissues 
were screened by Wilcoxon test in R language (Supplemen-
tary Table 1). Following that, 136 ubiquitination-related 
mRNAs and lncRNAs with prognostic values were screened 
in PAAD samples by univariate Cox regression analysis (Sup-
plementary Table 2). Seventy-nine ubiquitination-related 
mRNAs and lncRNAs with traits of both differential expres-
sion and prognostic values were preserved after taking an 
intersection (Supplementary Figure 3B). The heatmap showed 
the distribution of the above 79 ubiquitination-related RNAs 
in PAAD and normal pancreas samples (Supplementary Fig-
ure 3C). Univariate Cox regression analysis showed that these 
79 ubiquitination-related genes could serve as the potential 
prognostic markers, being the protective or risky factors in 
PAAD (Supplementary Figure 3D).

Consensus clustering analysis identifies 
ubiquitination‑related mRNA‑lncRNA‑based 
molecular clusters

To identify ubiquitination-based molecular clusters of 
PAAD, the above 79 ubiquitination-related mRNAs and 
lncRNAs with traits of both differential expression and 
prognostic values were utilized to perform consensus clus-
tering analysis. In terms of cumulative distribution func-
tion (CDF) curves and Delta area, the quantity of subtypes 

was determined as k = 2, which was distinct and non-over-
lapping (Fig. 4A, B). Hence, two ubiquitination-associated 
molecular clusters of PAAD were established, which con-
tained 115 cases in cluster 1 and 63 cases in cluster 2. 
The OS, PFI, DSS, and DFI were statistically different 
between two ubiquitination-related clusters (Fig. 4C–F). 
A lower ubiquitination pathway activity was displayed for 
patients with PAAD of cluster 2 than cluster 1 (Fig. 4G). 
The apparent differences of overall survival and pathway 
activity between two clusters indicated the vital role of 
ubiquitination in PAAD progression. Then, the discrep-
ancies of clinicopathological traits were also investigated 
between two clusters. Tumor stage and histological grade 
also showed significant discrepancies between two clus-
ters, suggesting the molecular clusters might be associated 
with the progression in PAAD (Fig. 4H). Then, we deeply 
explored the underlying mechanism of the different clin-
icopathological traits between two clusters. The volcano 
plot showed 2689 genes were upregulated, whereas 1656 
genes were downregulated in cluster 2 compared to clus-
ter 1 (|log2 fold change| > 1, FDR < 0.05) (Fig. 4I). Gene 
ontology enrichment analysis (GOEA) was performed with 
2689 upregulated and 1656 downregulated genes using 
Cytoscape plug-in ClueGO, CluePedia, and yFiles Layout 
Algorithms. GOEA result is shown in Fig. 4J (p < 0.05), 
which discovered that the signaling pathways related to 
immune system process, epidermis development, and reti-
noic acid metabolism process showed significant differ-
ences. This result indicated TIME progression might be 
vital for ubiquitination-related poor prognosis.

Cluster‑based exploration of the discrepancy 
of TIME

To explore the discrepancy of TIME, “ESTIMATE” and 
“CIBERSORT” algorithms were performed with the help of 
R language. The results of “ESTIMATE” algorithm showed 
a higher ImmuneScore, StromalScore, and EstimateScore 
in cluster 2, whereas a stronger tumor purity in cluster 1 
(Fig. 5A). The above results suggested that prognostic per-
formance positively correlated to immune and stromal com-
ponents in patients with PAAD. The “CIBERSORT” algo-
rithm was utilized to display the proportional distribution of 
22 subsets of tumor-infiltrated immune cells in patients of 
clusters 1 and 2, which revealed that the macrophage had an 
elevated infiltration in cluster 1, whereas the T cell had an 
enhanced infiltration in cluster 2 (Fig. 5B). This result was 
supported by the result of ICI by the “wilcox.test” function 
in R (Fig. 5C). Furthermore, the expression levels of 48 ICGs 
were depicted in two clusters (Fig. 5D). Taken together, these 
data hinted the key role of immune environment in prognostic 
discrepancy between ubiquitination-based molecular clusters.
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Fig. 4  Identification of ubiquitination-related clusters in PAAD using 
consensus clustering analysis. A The consensus CDF curve when k 
is between 2 and 9. B The correlation between two ubiquitination-
related clusters when k value is 2. C–F Comparison of OS, PFI, DSS, 
and DFI between two ubiquitination-related clusters. G Relationship 
of ubiquitination pathway activities and ubiquitination-related clus-
ters. H Heatmap shows the correlation between ubiquitination-related 
clusters and clinicopathologic traits. I Volcano plot displayed 2689 

upregulated and 1656 downregulated genes in cluster 2 compared 
with cluster 1. J GOEA was generated based on 2689 upregulated 
and 1656 downregulated genes with the Cytoscape plug-in ClueGO, 
CluePedia, and yFiles Layout Algorithms. The different colors of 
node represented the different GO results of 2689 upregulated and 
1656 downregulated genes. The size of the node represented p value, 
and the p values of all nodes are < 0.05
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Construction and assessment 
of ubiquitination‑related prognostic signature 
in the train cohort

To accurately evaluate the survival probability in patients with 
PAAD, we constructed a novel URPS and validated it. In the train 
cohort, LASSO regression analysis of 79 candidate ubiquitina-
tion-related mRNAs and lncRNAs with traits of both differential 

expression and prognostic values was conducted to exclude col-
linearity and avert over-fitting of the prognostic model, which 
screened out 15 vital variables. Figure 6A presents the trajec-
tory changes of the above independent variable parameters. The 
model construction using cross validation is presented in Fig. 6B. 
Multivariate Cox proportional hazards regression analysis of 15 
vital variables was performed to establish the URPS that con-
sisted of one mRNA and eight lncRNAs (Table 1).

Fig. 5  Exploration of the discrepancy of tumor immune microenvi-
ronment between two ubiquitination-related clusters. A EstimateS-
core, ImmuneScore, StromalScore, and tumor purity in two ubiquit-
ination-related clusters. B, C The CIBERSOFT algorithm highlighted 

the traits of immunocyte distribution between cluster 1 and 2. D The 
differential expressions of 48 immune checkpoints genes in two ubiq-
uitination-related clusters
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Individual risk scores for PAAD in the train cohort were 
calculated using R’s “predict” function, and 89 PAAD 
patients were stratified into low- and high-risk categories 
according to a median risk score of 1.092 (Fig. 6C). The 
distributions of risk scores and clinical survival time were 
displayed for a subset of patients with PAAD (Fig. 6D), 
revealing a greater mortality in the high-risk grouping. The 
RNAs in our URPS were visualized as the heatmap that char-
acterized the relative expressions of one mRNA and eight 
lncRNAs (Fig. 6E). Accordantly, survival analyses uncovered 
that patients with PAAD had a poor OS, PFI, DSS, and DFI 
in high-risk subpopulation with the help of the Kaplan-Meier 
method (Fig. 6F–I). This result suggested that our URPS 
could accurately distinguish the prognoses of patients with 
PAAD that distributed in different risk stratification.

Followingly, the efficiency and accuracy of our prognostic 
panel was further verified. The receiver operating character-
istic (ROC) analysis showed the diagnostic efficacies of the 
clinical parameters and risk score. The area under the curve 
(AUC) values of risk score at 0.5 year, 1 year, 2 years, and 
3 years were 0.892, 0.872, 0.945, and 0.960, respectively, 
which were higher than those of age, gender, grade, and 
stage (Fig. 6J). This result indicated that URPS-based risk 
score had a satisfied diagnostic performance better than age, 
gender, grade, and stage. In addition, the predictive perfor-
mance of our URPS was contrasted to other four prognostic 
signatures of PAAD, which showed a better performance to 
predict survival of our URPS (Fig. 6K).

The internal validation dataset verifies 
the robustness of the ubiquitination‑related 
prognostic signature

To validate the robustness of our URPS, the risk scores of all 
177 PAAD patients in the test1 cohort were computed depend-
ing on the same method as the train cohort. The median risk 
score in the train cohort was utilized to categorize patients with 
PAAD in the test1 cohort into low-risk and high-risk catego-
ries (Supplementary Figure 4A). Parallel to the train cohort, 
a higher risk score coupled with a higher death rate (Supple-
mentary Figure 4B). The expression levels of these 9 genes in 
our URPS were coincident with those in the train cohort (Sup-
plementary Figure 4C). Survival analysis of the Kaplan-Meier 
method exhibited a worse OS, PFI, DSS, and DFI in high-risk 
subgroup along with train cohort (Supplementary Figure 4D-
G). Besides, time-dependent ROC analysis showed that the risk 
score had a better diagnostic performance (AUC = 0.727 for 0.5 
year; AUC = 0.753 for 1 year; AUC = 0.779 for 2 years; AUC 
= 0.817 for 3 years) (Supplementary Figure 4H). Similarly, the 
survival possibility predicted by our URPS was also obviously 
stronger than other four prognostic signatures in the test1 cohort 
(Supplementary Figure 4I).

The external validation dataset verifies 
the robustness of the ubiquitination‑related 
prognostic signature

To further determine the validity and stability of our URPS, 
the model verification was conducted using 82 PAAD 
patients in the test2 cohort. The parameters and tools in the 
test2 cohort were coincident with those in the train cohort. 
Like the train and test1 cohorts, these high-scoring patients 
had more death events in the test2 cohort (Supplementary 
Figure 5A,B). And the expression trends of these 9 genes 
were accordant with the train and test1 cohorts (Supplemen-
tary Figure 5C). Survival analysis showed that coincident 
with the results in the train and test1 cohorts, there was a 
statistical difference of OS in the two subgroups (Supple-
mentary Figure 5D). ROC analysis presented the AUC val-
ues of risk score, indicating the risk score in the test2 cohort 
also had a favorable diagnostic performance (AUC = 0.681 
for 0.5 year; AUC = 0.764 for 1 year; AUC = 0.757 for 2 
years; AUC = 0.883 for 3 years) (Supplementary Figure 5E).

Independent prognostic performance 
of the ubiquitination‑related prognostic signature

Risk scores and clinicopathological features in 177 PAAD sam-
ples were chosen to determine whether or not our URPS might 
behave as an independent prognostic indicator using variate Cox 
proportional hazards regression analysis. Independent prognos-
tic indexes were identified as the risk score and cancer status 
in this study (risk score in univariate analysis: HR = 1.0578, 
95% CI = 1.0329–1.0833, p < 0.001; risk score in multivariate 
analysis: HR = 1.0347, 95% CI = 1.0059–1.0642, p = 0.0176; 
cancer status in univariate analysis: HR = 4.6081, 95% CI = 
2.1332–9.9540, p < 0.001; cancer status in multivariate analysis: 
HR = 3.0927, 95% CI = 1.3312–7.1853, p = 0.0087) (Table 2).

URPS‑based pathway annotation

To explore the discrepancy of potential signaling pathways 
between low-risk and high-risk crowds, we performed ssGSEA in 
the train and test cohorts. The differential abundance of pathway 
activities between low-risk and high-risk crowds in the training 
and test cohorts is depicted in Fig. 7A–C. The correlation between 
these pathway activities and risk scores is shown in Fig. 8A–C. 
Interestingly, numerous metabolism-related pathways exhibited 
significant difference between low-risk and high-risk crowds. 
Of note, the pathway activities of both fatty acid and tryptophan 
metabolism were obviously downregulated in high-risk crowd 
compared to low-risk crowd in the train and test cohorts (Fig. 8D, 
E). These results suggested the close association between ubiquit-
ination modification and metabolic reprogramming, especially of 
fatty acid and tryptophan metabolism.
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URPS‑based characterization of the TIME

Using TIMER, CIBERSORT, CIBERSORT-ABS, QUAN-
TISEQ, MCPCOUNTER, XCELL, and EPIC algorithms, 
the difference in immunocyte infiltration between low-risk 
and high-risk populations was analyzed. The heatmap about 
ICI showed the fewer infiltrations of  CD4+ T cells,  CD8+ T 
cells, natural killing (NK) cells, and naive B cells in high-
risk subgroup from the train cohort, which was verified by 
the results of ICI in the test cohorts (Fig. 9A–C). Given the 
significance of immune checkpoint inhibitor-based immuno-
therapies for cancer, the gene expression of common ICGs 
between two subgroups is shown in Fig. 9D–F. Interestingly, 
only CD276 and CD40LG exhibited similar expression trend 
in all the three cohorts, indicating CD276 and CD40LG 
might function as potential therapeutic targets of low-risk 
and high-risk populations. Subsequently, we investigated the 
difference of immune subtypes between two subgroups. For 
both the train and test1 cohorts, wound healing (C1) and 
IFN-γ dominant (C2) were the main immune subtypes in 
high-risk subgroup, while inflammatory (C3) and TGF-β 
dominant (C6) were the primary immune subtypes in low-
risk subgroup (Fig. 9G, H).

URPS‑based characterization of the tumor mutation 
burden

Considering the prognostic and clinical values of TMB, the 
correlation between risk score and TMB score was researched 
based on the mutation information of PAAD patients from 
the train and test1 cohorts. Spearman correlation analysis 
revealed that risk scores positively correlated to TMB scores 
in the train and test1 cohorts (train cohort: p = 0.012; test1 
cohort: p = 0.0016) (Fig. 10A, B). Similarly, the TMB scores 
of high-risk segment were visibly greater than those of the 
low-risk subpopulation (Fig. 10C, D). There was a visibly 
higher mutation quantity of genes in high-risk subgroup, 
which centrally covered KRAS, tumor protein p53 (TP53), 
and SMAD4 (Fig. 10E, F). The patients with PAAD that 
acquired high TMB scores had a shorter survival period than 
individuals with low TMB values (Fig. 10G, H). To further 
analyze the synergistic or antagonistic relationship between 

TMB score and risk score in survival prediction, patients 
with PAAD were stratified on the basis of these two scores 
for subsequent survival analysis, which revealed a worse sur-
vival time in patients that got high TMB and risk scores than 
the others (Fig. 10I, J).

Targeted drug sensitivity prediction

Taking into account the clinical values of the molecularly 
targeted therapy in PAAD, we screened the potentially sen-
sitive drugs for low-risk and high-risk patients depending 
on the drug sensitivity evaluated using the “pRRophetic” 
package in the train and test cohorts. Our findings revealed 
that FTI-277 had a better curative effect in high-risk patients, 
while MK-2206 had a superior therapeutic effect in low-risk 
patients (Fig. 11A–F).

Verification of the expression levels of nine URGs 
in PAAD cell lines and clinical samples

To clarify the expression traits of nine URGs in PAAD, qRT-
PCR was used to measure the RNA expression levels of 
one mRNA and eight lncRNAs involved in the signature 
(i.e., mRNA: UBE2C; lncRNA: DANCR, AP005233.2, 
AC092171.2, AL139147.1, BX293535.1, AC005261.1, 
AC005062.1, and AC009065.5). These nine RNAs were 
measured in three PAAD cell lines (BxPC-3, CF-PAC1, 
Panc-1) and the normal pancreas cell line H6C7. We also 
collected 8 paired PAAD samples and para-tumor samples 
to examine the differential expression of above nine URGs. 
Among above RNAs, eight RNAs could be detected in 
both cell and tissue levels (Fig. 12A, B). As for DANCR, 
UBE2C, AP005233.2, BX293535.1, and AC005062.1, qRT-
PCR assays of both cell lines and clinical samples displayed 
the same overall trends (Fig. 12A, B). Of note, qRT-PCR 
assays showed that the RNA expressions of AC005062.1 
were largely enhanced in both cell lines and tissues, indicat-
ing its irreplaceable value in ubiquitination-related prognosis 
of patients with PAAD (Fig. 12A, B).

Discussion

PAAD, a highly fatal malignancy, is characterized by early 
metastasis and resistance to anti-cancer therapy, which has 
been the seventh leading death from cancer worldwide (Ryan 
et al. 2014; Bray et al. 2018). Despite the rapid development 
of diagnosis and therapeutic strategies for malignant tumors, 
PAAD patients are often diagnosed at a late stage and ben-
efit little from current treatments. Therefore, the develop-
ment of biomarkers for early diagnosis and risk assessment 
of pancreatic cancer has important clinical significance (Lu 

Fig. 6  Construction and assessment of ubiquitination-related prog-
nostic signature based on the train cohort. A, B The processing of 
LASSO algorithm. (A the trajectory changes of the independent 
variables; B the confidence interval of each lambda). C Sectionali-
zation based on the median risk score. D Distribution characteristics 
of survival status in low-risk and high-risk populations. E Heatmap 
showed the molecular expression levels of 9 genes involved in the 
prognostic panel. F–I The discrepancies in clinical outcomes between 
low-risk and high-risk patients, including OS, PFI, DSS, and DFI. J 
Multi-index combined with ROC curve highlighted the superiority 
and great clinical application value of ubiquitination panel. K ROC 
curves of our URPS and other four prognostic signatures of PAAD

◂
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et al. 2023; Zheng et al. 2023). Recently, the role of ubiq-
uitination-related regulators in the occurrence and outcome 
of pancreatic cancer has been deeply researched, which can 
influence the occurrence, progression, metastasis, and treat-
ment response of various cancers (Ma et al. 2020; Sun et al. 
2020; Chen et al. 2021). Ubiquitination-related prognostic 

signatures have been developed for estimating the prognosis 
of several types of cancers (Cai et al. 2021; Wu et al. 2021; 
Zhou et al. 2021). In our research, the expression character-
istics and prognostic performances of URGs in PAAD were 
systematically explored to classify different ubiquitination-
related clusters and a novel prognostic signature was precisely 
established for disease stratification. To our knowledge, this 
is the first report to identify an ubiquitination-based mRNA-
lncRNA prognostic panel in PAAD using bioinformatics.

Pan-cancer analysis uncovered the significant role 
of URGs across various cancers, which was profoundly 
explored based on the multi-omics data. It is the first time 
to systemically display the gene expression, gene variation, 
OS, and signaling pathways of URGs across various cancer 
types, indicating the impressive regulation of ubiquitina-
tion-related immune response on cancers. In this study, we 
conducted more in-depth research for PAAD. The location 
of normal and malignant cells in PAAD tissues was identi-
fied in the first portion of the research by the scRNA-seq 
analysis. Significant differences of the activation of ubiq-
uitination pathways and the expression traits of URGs were 
detected between normal and malignant cells, also sug-
gesting the close association of ubiquitination and PAAD 
progression. Next, the ubiquitination-related clusters of 
PAAD were explored using consensus clustering analysis 
and risk analysis. In cluster analysis, PAAD patients were 
successfully divided into two clusters with distinct clinical 
outcomes, ubiquitination scores, and immunocyte infiltration 
status. Patients with PAAD of cluster 2 were accompanied 
by favorable clinical outcomes and lower ubiquitination 
pathway activities, further validating the risky roles of ubiq-
uitination in PAAD. More importantly, there was a remark-
able correlation between ubiquitination-based clusters and 
clinicopathological characteristics (i.e., tumor stage and 
tumor grade), indicating that ubiquitination closely corre-
lated to the malignant degree of PAAD. Meanwhile, GOEA 
results suggested that the different prognoses between two 
ubiquitination-related clusters were greatly impacted by the 
abundance of ICI, particularly macrophage and T cell. Thus, 
URGs might occupy a dominating status in the occurrence 

Table 1.  Multivariate Cox 
regression analysis to identify 
prognosis-related URGs

Gene Coefficient HR HR.95L HR.95H p value

DANCR −0.504471 0.6038251 0.3192458 1.1420817 0.1208055
AC005062.1 −1.447725 0.2351045 0.0533278 1.0364967 0.0557984
AL139147.1 1.0976127 2.9970027 1.3137959 6.836698 0.0090917
AC005261.1 −0.73841 0.4778731 0.2014814 1.1334184 0.0937875
AC009065.5 0.6279344 1.8737361 1.1244295 3.122372 0.015949
AC092171.2 −0.873169 0.4176259 0.1802551 0.967581 0.041666
UBE2C 0.558152 1.7474402 1.0741106 2.8428613 0.024583
AP005233.2 0.3331748 1.3953912 1.0281671 1.8937744 0.0324977
BX293535.1 −0.767486 0.4641787 0.2122659 1.0150566 0.0545393

Table 2  Univariate and multivariate Cox regression analysis deter-
mined the independent prognostic performance of our risk score

a stage, stage I, stage II, stage III, stage IV; bhistologic_grade, G1, 
G2, G3, G4; cmaximal tumor diameter, <3.5, ≥3.5; dtype_of_surgery, 
distal pancreatectomy, total pancreatectomy, Whipple, other method; 
eresidual_tumor, R0, R1, R2; fradiation_therapy, no, yes; gcan-
cer_status, tumor free, with tumor; hhistory_of_pancreatitis, no, yes; 
iSmoking_history, I/II/III/IV/V; jriskScore, risk scores of each patient 
were calculated with the help of “predict” function in R

HR HR.95L HR.95H p value

Univariate
 astage 2.4455 1.4762 4.0512 0.0005
 bgrade 1.7026 1.1639 2.4906 0.0061
 ctumor_diameter 1.2418 0.6909 2.2320 0.4692
 dtype_of_surgery 1.4723 1.0471 2.0702 0.0261
 eresidual_tumor 1.6925 0.9777 2.9298 0.0602
 fradiation_therapy 0.3821 0.1620 0.9009 0.0279
 gcancer_status 4.6081 2.1332 9.9540 0.0001
 hhistory_of_pancreatitis 0.9945 0.3921 2.5224 0.9908
 iSmoking_history 0.8730 0.7032 1.0839 0.2186
 jriskScore 1.0578 1.0329 1.0833 <0.0001
Multivariate
 astage 1.5099 0.7560 3.0160 0.2431
 bgrade 1.5199 0.9647 2.3945 0.0711
 ctumor_diameter 1.3234 0.6936 2.5251 0.3952
 dtype_of_surgery 1.2330 0.8609 1.7659 0.2532
 eresidual_tumor 1.2787 0.6923 2.3618 0.4322
 fradiation_therapy 0.4114 0.1684 1.0055 0.0514
 gcancer_status 3.0927 1.3312 7.1853 0.0087
 hhistory_of_pancreatitis 0.9527 0.3557 2.5512 0.9231
 iSmoking_history 0.8262 0.6477 1.0538 0.1241
 jriskScore 1.0347 1.0059 1.0642 0.0176
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Fig. 7  Inherent molecular heterogeneity in high- and low-risk patients. A–C GSEA showed the discrepancies in the activities of KEGG-derived 
pathways between different risk subgroups in the training, test1, and test2 cohorts
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Fig. 8  The correlation between differential tumor-related pathways 
and risk score. A–C Pearson correlation analysis showed the corre-
lation between risk score and the enrichment score of tumor-related 
pathways in the training and test cohorts. D Two pathways screened 
by the intersection of tumor-related pathways among the training and 

test cohorts. E The discrepancy of fatty acid and tryptophan metabo-
lism scores computed by ssGSEA in the training and test cohorts 
(ordinate: metabolism-related pathway scores calculated by ssGSEA. 
A higher metabolism score indicates a higher metabolism activity)
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Fig. 9  The differences of immune characteristics between low-risk 
and high-risk subgroups. A–C The heatmaps showed immune cell 
infiltrations in different risk subgroups based on the training and test 
cohorts. D–F The gene expressions of immune checkpoints in low-

risk and high-risk subgroups based on the training and test cohorts. 
G, H The distributions of immune subtypes in low-risk and high-risk 
subgroups based on the training and test1 cohorts
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Fig. 10  The association between ubiquitination-related risk score and 
TMB. A, B Spearman correlation analysis showed the close associa-
tion of ubiquitination-related risk score and TMB in the training and 
test1 cohorts. C, D The discrepancies in the levels of TMB in differ-
ent risk subgroups based on the training and test1 cohorts. E, F Top 

20 mutation gene traits were displayed in the heatmap in the training 
and test1 cohorts. G, H Correlation between TMB levels and clinical 
outcomes of PAAD patients in the training and test1 cohorts. I, J Sur-
vival analysis of OS for patients stratified by the TMB and risk scores
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and progression of patients with PAAD through regulating 
the local immune microenvironment.

The risk analysis showed that a novel URPS was 
established based on differentially expressed candidate 
genes with prognostic values from the train cohort using 
LASSO-Cox regression analysis, including AL193147.1, 
AC092171.2, AC005062.1, BX293535.1, AC009065.5, 
AP005233.2, UBE2C, DANCR, and AC005261.1. Accord-
ing to the current literature search, there are three genes 
having been investigated, but the other six are not reported 
till now. UBE2C is a necessary component of the ubiq-
uitin proteasome system, involved in the degradation of 
anaphase-promoting complex (APC/C) target proteins (Jin 
et al. 2008; Meyer and Rape 2011). The biological func-
tions of UBE2C include ubiquitin conjugation, degradation 
of major proteins regulating cell cycle progression, and 
regulation of mitotic spindle checkpoint (Xie et al. 2014). 
The mRNA and/or protein levels of UBE2C are aberrantly 
enhanced in pancreatic cancer with dismal clinical out-
comes (Shi et al. 2020; Zhu et al. 2021). However, our 
confirmatory experiments showed the mRNA expression of 
UBE2C between para-tumor and tumor tissues in patients 
with PAAD was opposite to the results in the above lit-
erature, indicating the gene-expressing heterogeneity in 
pancreatic cancer. Additionally, DANCR plays a key role 

in pancreatic cancer via modulating tumor cell prolifer-
ation and immune response (Hu et al. 2020; Tang et al. 
2020). Studies show that AP005233.2, a highly expressed 
lncRNA in tumor tissue, associates with the prognosis of 
lung adenocarcinoma and intrahepatic cholangiocarcinoma 
(Qi et al. 2019; Zou et al. 2021). The expressional tenden-
cies of DANCR and AP005233.2 in our experiments were 
consistent with these literatures. Of note, the RNA expres-
sion of AC005062.1 in the entire three PAAD cell lines 
was elevated several thousandfold, suggesting its extremely 
valuable for prognostic prediction and targeted therapy of 
pancreatic cancer in subsequent research. Patients with 
PAAD had statistically significant differences of survival 
time between low-risk and high-risk populations, indicat-
ing the excellent prognostic discrimination of our panel and 
the vital part of these URGs in pancreatic cancer prognosis.

Subsequently, we explored the underlying mechanisms 
of this different prognosis of patients with PAAD between 
low-risk and high-risk populations. URPS-based pathway 
annotation displayed fatty acid and tryptophan metabolisms 
were detected to function as protective roles in the ubiquit-
ination progression of patients with PAAD. The fatty acid 
metabolism is obviously altered in cancer cell that accel-
erates tumor progression (Koundouros and Poulogiannis 
2020). De novo fatty acid synthesis is essential for tumor 

Fig. 11  Targeted drug sensitivity prediction between low-risk and high-risk subgroups. A–C The box plots of the estimated IC50 for FTI-277 
in the training and test cohorts, respectively. D–F The box plots of the estimated IC50 for MK-2206 in the training and test cohorts, respectively
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proliferation, membrane generation, and tumor-promoting 
signaling molecules (Currie et al. 2013; Koundouros and 
Poulogiannis 2020). It has been reported that fatty acid 
metabolism makes a deep contribution to pancreatic can-
cer malignancy (Downes et al. 2020). Inversely, omega-3 
polyunsaturated fatty acids (PUFAs) inhibit tumor dete-
rioration via reducing the local inflammation, inducing 
cancer cell apoptosis, and suppressing tumor angiogenesis 
(Torres et al. 2018). In our study, the decreased fatty acid 
metabolism in high-risk subgroup based on ubiquitination-
related genes indicated the decrease of omega-3 PUFAs 
metabolism might be responsible for ubiquitination-related 
poor outcome in patients with PAAD. In the tumor micro-
environment, tryptophan metabolism-related enzymes 
produced by tumor cells and tryptophan metabolites are 
involved in the induction of immune tolerance (Mellor and 
Munn 2004). In addition, tryptophan metabolism induced 
by IDO1 enzyme in pancreatic cancer cell is the source of 
one-carbon units for pancreatic stellate cells, which accel-
erates the development of PAAD (Newman et al. 2021). By 
contrast, our analysis showed that the tryptophan metab-
olism was reduced in high-risk subgroup. The potential 
reason for this opposite result was that some signaling mol-
ecules among tryptophan metabolism were involved in the 
inhibition of tumor progression that were yet discovered or 
only tumor heterogeneity. The above results suggested that 
the tumor cell proliferation and immune response regulated 
by fatty acid and tryptophan metabolism might participate 
in ubiquitination-related poor prognosis of pancreatic can-
cer patients.

Due to the infiltration of immunosuppressive leukocytes 
and minimal infiltration of antitumor T cells, pancreatic 
cancer is usually deemed to be immunosuppressed (Von-
derheide and Bayne 2013). It is worth noting that ICI and 
immune checkpoints had statistical differences between 
low-risk and high-risk subgroups. Patients with PAAD in 
high-risk subgroup had fewer infiltrations of  CD4+ T cells, 
 CD8+ T cells, NK cells, and naive B cells. By retrieving 
literatures, these immune cells can detect and eradicate 
tumor cells via different mechanisms (Borst et al. 2018; 
Terrén et al. 2019; Philip and Schietinger 2021). Research 
has revealed that survival time was significantly longer in 
PAAD patients with high levels of  CD4+ and/or  CD8+ T 
cells (Carstens et al. 2017). The lack of  CD4+ T cells,  CD8+ 
T cells, and NK cells that results in decreased tumor cell 

clearance is responsible for ubiquitination-related unsatis-
factory prognosis in pancreatic cancer patients. Besides, the 
gene expressions of CD276 and CD40LG were statistically 
different between these two subgroups. CD276, an immune 
checkpoint molecule, regulates cell proliferation, invasion, 
and migration of malignant tumors (Liu et al. 2021). The 
transmembrane protein CD40LG, as a member of the tumor 
necrosis factor (TNF) gene superfamily, is a ligand of CD40 
and largely generated by activated T cells (Laman et al. 
2017). In breast cancer, CD40LG has been developed as a 
key prognostic gene associated with the tumor microenvi-
ronment (Yuan et al. 2021). More than that, PAAD patients 
in different risk stratification had a significant difference 
of immune subtypes. Thus, it can be seen that TIME is 
vital for the malignant degree and ubiquitination-related 
prognosis of PAAD.

Gene mutation exerts a pivotal effect on the efficacy 
of targeted drug therapy for pancreatic cancer (Liu and 
Qian 2022; Yuan et al. 2022). We also investigated the 
discrepancies of gene mutation and targeted drug between 
these two subgroups. The waterfall plot uncovered a vis-
ibly higher mutation quantity of genes in high-risk pop-
ulation, primarily including KRAS, p53, and SMAD4. 
KRAS mutation contributes to tumor inception, and the 
mutations of p53, SMAD4, and CDKN2A are rate-limit-
ing events for tumor progression and metastasis (Hustinx 
et al. 2005; Qian et al. 2020). Interestingly, the targeted 
drug sensitivity analysis displayed that high-risk patients 
were more able to benefit from FTI-277. FTI-277, as one 
of farnesyltransferase (FTase) inhibitors, can regulate Ras 
signaling pathway via inhibiting Ras membrane associa-
tion (Cox et al. 2015). The Ras family members of 21-kDa 
GTPases serve as molecular switches of signaling path-
ways of cell survival, proliferation, and immune response 
(Carbone et al. 2005; Hancock and Parton 2005). The 
ubiquitination-associated Ras signaling pathway, espe-
cially KRAS mutation, strongly might participate in the 
regulation of FTI-277-targeted therapy for pancreatic can-
cer. The molecular mechanism that how Ras signaling 
pathway influences the targeted therapy of FTI-277 by 
interacting with ubiquitination regulators is still further 
explored.

Our research has a few limitations that should be 
acknowledged. Firstly, this study belonged to retrospec-
tive research and was performed mainly on the basis of 
public databases. The number of PAAD patients from 
TCGA, ICGC, and GTEx databases was relatively small for 
establishing the ubiquitination-related prognostic model. 
Thus, a prospective clinical study with large samples is 
required for the validation of the predictive performance 
of our prognostic model. Secondly, further investigation of 
molecular mechanism is required to examine the role of the 
nine URGs in the occurrence and progression of PAAD.

Fig. 12  Verification of the expression levels of eight URGs in PAAD cell 
lines and clinical samples. A The qRT-PCR assays showed the expression 
levels of DANCR, UBE2C, AC005062.1, AL139147.1, AC005261.1, 
AC092171.2, AP005233.2, and BX293535.1 in three PAAD cell lines 
(BxPC-3, CF-PAC1, Panc-1) and the normal pancreas cell line H6C7. B 
The qRT-PCR assays showed the expression levels of DANCR, UBE2C, 
AP005233.2, AC092171.2, AL139147.1, BX293535.1, AC005261.1, and 
AC005062.1 in PAAD and para-tumor samples

◂
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Conclusion

In this study, we found an essential association between ubiqui-
tination and pancreatic cancer through pan-cancer and scRNA-
seq analyses. The clusters of PAAD patients based on URGs 
demonstrated that ubiquitination cloud determine the poor prog-
nosis of pancreatic cancer. Furthermore, we constructed a novel 
ubiquitination-related mRNA-lncRNA prognostic panel with 
outstanding prediction capacity. Depending on this panel, we 
deeply investigated the underlying mechanisms of different prog-
nosis between two risk-ranking populations in pancreatic cancer 
patients, uncovering the metabolic reprogramming, TIME, TMB, 
and targeted drug therapy strongly associated with ubiquitination-
related poor prognosis. This provides a new thinking for creating 
the effective strategies of diagnostic program, prognostic evalua-
tion, and targeted drug therapy in pancreatic cancer.
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