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Abstract
Neurological prognostication after cardiac arrest (CA) is important to avoid pursuing futile treatments for poor outcome and 
inappropriate withdrawal of life-sustaining treatment for good outcome. To predict neurological outcome after CA through 
biomarkers in peripheral blood mononuclear cells, four datasets were downloaded from the  Gene Expression Omnibus  
database. GSE29546 and GSE74198 were used as training datasets, while GSE92696 and GSE34643 were used as verifica-
tion datasets. The intersection of differentially expressed genes and hub genes from multiscale embedded gene co-expression 
network analysis (MEGENA) was utilized in the machine learning screening. Key genes were identified using support vector 
machine recursive feature elimination (SVM-RFE), least absolute shrinkage and selection operator (LASSO) logistic regres-
sion, and random forests (RF). The results were validated using receiver operating characteristic curve analysis. An mRNA-
miRNA network was constructed. The distribution of immune cells was evaluated using cell-type identification by estimating 
relative subsets of RNA transcripts (CIBERSORT). Five biomarkers were identified as predictors for neurological outcome 
after CA, with an area under the curve (AUC) greater than 0.7: CASP8 and FADD-like apoptosis regulator (CFLAR), human 
protein kinase X (PRKX), miR-483-5p, let-7a-5p, and let-7c-5p. Interestingly, the combination of CFLAR minus PRKX 
showed an even higher AUC of 0.814. The mRNA-miRNA network consisted of 30 nodes and 76 edges. Statistical differ-
ences were found in immune cell distribution, including neutrophils, NK cells active, NK cells resting, T cells CD4 memory 
activated, T cells CD4 memory resting, T cells CD8, B cells memory, and mast cells resting between individuals with good 
and poor neurological outcome after CA. In conclusion, our study identified novel predictors for neurological outcome after 
CA. Further clinical and laboratory studies are needed to validate our findings.

Keywords Biomarker · Bioinformation · Machine learning · Neuroprotection · Cell death

Introduction

Cardiac arrest (CA) is a unique medical emergency charac-
terized by the loss of functional cardiac mechanical activ-
ity, which leads to cessation of circulation to the brain tis-
sue. As the brain tissue is highly dependent on consistent 
oxygen and energy supply, it only takes a few seconds for 
blood interruption to cause brain tissue injury (Sandroni 
et al. 2021). Failure to receive treatments will result in 
death. Under the early initiation of high-quality cardio-
pulmonary resuscitation and defibrillation, a few patients 
could return of spontaneous circulation and consciousness. 
But the rate is very low, only 5.6% in a Danish study (Son-
dergaard et al. 2020). Most patients remain comatose upon 
arrival at the hospital and are discharged into intensive 
care until (Perkins et al. 2021). Despite managements on 
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body temperature, oxygenation, arterial blood pressure, 
and ventilation, there is still no direct treatment for brain 
injury. (Cronberg et al. 2020).

For patients who do not wake up promptly, neurological 
prognostication should be performed no earlier than 72 h 
after admission to intensive care, to avoid pursuing futile 
treatments for poor outcome and inappropriate withdrawal 
of life-sustaining treatment for good outcome. The Cerebral 
Performance Category (CPC) scale is used to evaluate neu-
rological outcome. This scale consists of 5 categories: (1) 
good cerebral performance, (2) moderate cerebral perfor-
mance, (3) severe cerebral performance, (4) coma/vegetative 
state, (5) brain death (Brain Resuscitation Clinical Trial I 
Study Group 1986). CPC 1–2 defines a good neurological 
outcome, while CPC 3–5 indicates a poor neurological out-
come (Geocadin et al. 2019). Researchers try to use various 
methods, such as clinical examination, neuroimaging, elec-
trophysiology, and blood biomarkers to predict neurological 
outcome. Evidence confirms that the bilateral absence of 
corneal reflexes, pupillary reflexes, and N20 wave of soma-
tosensory evoked potentials are reliable indicators of poor 
prognosis (Sandroni et al. 2020). On the other hand, nor-
mal blood neuron-specific enolase values, Glasgow Coma 
Score 4 or 5, N20 wave or continue electroencephalography 
background, and absent diffusion restriction in the cortex or 
deep grey matter are indicators of good prognosis after CA 
(Sandroni et al. 2022). However, blood biomarkers provid-
ing quantitative results were fewer, and more predictors in 
blood are needed.

In recent years, studies on high-throughput functional 
genomics grow rapidly, providing a powerful tool for discov-
ery disease genes and drug targets. High-throughput genom-
ics data from peripheral blood mononuclear cells (PBMCs) 
of patients after CA have been published (Stammet et al. 
2012; Stefanizzi et al. 2020). But due to the limitation of 
computing methods, few predictors were found. Multiscale 
embedded gene co-expression network analysis (MEGENA) 
is a novel co-expression network analysis framework that 
can construct large-scale co-expression plane filtering net-
works and preserve gene interactions to reveal new targets. 
It has been used in breast carcinoma, lung adenocarcinoma, 
and tumor cell proliferation (Song and Zhang 2015; Yin 
et al. 2022). Machine learning algorithms including support 
vector machine recursive feature elimination (SVM-RFE), 
least absolute shrinkage and selection operator (LASSO) 
logistic regression, and random forests (RF) have been used 
to find key genes in stroke (Zheng et al. 2022) and breast 
cancer (Yuan et al. 2022). However, few studies have com-
bined MEGENA with machine learning algorithms to find 
key genes in CA.

In this study, datasets comparing the neurological out-
come after CA were downloaded from the Gene Expression 
Omnibus (GEO). MEGENA, SVM-RFE, LASSO, and RF 

algorithms were applied to identify potential key biomark-
ers that could to predict the neurological outcome after CA.

Methods

Cardiac arrest dataset

Four datasets downloaded from the GEO database were used 
in our study. GSE29546 includes 140 gene expression pro-
files of blood cells determined using 25,000 ~ gene micro-
array in two groups of patients: good outcome (CPC 1–2, 
n = 84) and poor outcome (CPC 3–5, n = 56). GSE92696 
includes 22 participants were dichotomized into good neu-
rological outcome, CPC 1 (n = 10), and poor neurological 
outcome CPC 4 (n = 4) and CPC 5 (n = 8) were analyzed 
on whole genome expression microarray to profile post-CA 
with its innate characteristic molecular signature. GSE74198 
includes plasma miRNA profiles of 50 cardiac arrest 
patients, including 25 good neurological outcome patients 
(CPC 1) and 25 poor neurological outcome patients (CPC 5) 
at 6 months. GSE34643 includes plasma miRNA profiles of 
10 age- and sex-matched patients, 5 good neurological out-
come patients (CPC 1–2) and 5 poor neurological outcome 
patients (CPC 3–5) at 6 months. GSE29546 and GSE74198 
were used as training datasets. GSE92696 and GSE34643 
were used as verification datasets. The workflow of our study 
is shown in Fig. 1.

Differential expression analysis

The series matrix file of each dataset was downloaded 
using the GEOquery package (Davis and Meltzer 2007). 
According to the annotation information in platform, probes 
were converted to gene symbols or miRNA names. Probes 
matching multiple genes were deleted. The average value 
of a gene measured by multiple probes was calculated as 
the final value. Missing values were filled using multiple 
imputation method in the mice package (van Buuren and 
Groothuis-Oudshoorn 2011). The limma (Ritchie et  al. 
2015) and DESeq2 (Love et al. 2014) packages were used 
to analyze the differentially expressed mRNA and miRNA, 
respectively. Differentially expressed genes (DEGs) were 
identified as adjusted P value less than 0.05.

MEGENA

MEGENA package (Song and Zhang 2015) was used to 
analyze the co-expression network, dissection into multi-
scale functional modules, and network key drivers. We con-
structed the fast planar filtered network, performed multi-
scale clustering analysis and multiscale hub analysis, and 
found the hub genes. Only the mRNA dataset GSE29546 
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performed MEGENA, due to fewer probes in the miRNA 
dataset GSE74198.

Machine learning algorithms

Machine learning algorithms were used to identify key genes 
in the intersection of DEGs and MEGENA hub genes that 
can predict good and poor outcomes. The SVM-RFE algo-
rithm was run with the aid of the e1071 package (Meyer 
et al. 2022) and a script created by Dr. John Colby (https:// 
github. com/ johnc olby/ SVM- RFE). The default param-
eters were used in this script (cost = 10, cachesize = 500, 
scale = false, type = “C-classification,” kernel = “linear”). 
The point with the lowest cross-validation error is the thresh-
old for valuable genes. The LASSO algorithm was run using 
the glmnet package (Friedman et al. 2010), and a tenfold 
cross-validation was performed to adjust the optimal penalty 
parameter. The RF algorithm was run using the random-
Forest package (Liaw and Wiener 2002). We explored the 

optimal value of random forest trees and ultimately selected 
1000 trees for mRNA and 600 trees for miRNA analysis. The 
intersection genes of top 30 mean decrease accuracy and top 
30 mean decrease gini were considered as valuable genes.

We only included the names of the valuable genes that 
were used in each machine learning model, regardless of 
the learning model itself. The intersection genes of valuable 
genes obtained by three machine learning algorithms were 
considered as key genes, and the results of three algorithms 
were visualized by the venn package (Dusa 2022).

Verification of key genes

The accuracy of each key gene in predicting neurological 
outcome after CA was validated by analyzing the receiver 
operating characteristic (ROC) curve and the area under the 
curve (AUC) using verification datasets; the pROC package 
(Robin et al. 2011) was used for this analysis. AUC > 0.7 

Fig. 1  The workflow of our 
study. AUC, area under the 
curve; CIBERSORT, cell-type 
identification by estimat-
ing relative subsets of RNA 
transcripts; DEGs, differentially 
expressed genes; LASSO, least 
absolute shrinkage and selection 
operator; MEGENA, multiscale 
embedded gene co-expression 
network analysis; RF, random 
forests; ROC, receiver operating 
characteristic; SVM-RFE, sup-
port vector machine recursive 
feature elimination

https://github.com/johncolby/SVM-RFE
https://github.com/johncolby/SVM-RFE
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implied a good predictor, and AUC closer to 1 represented 
better predictive efficiency.

mRNA‑miRNA network

The Pearson correlation coefficient between all genes in 
GSE29546 and the key mRNA genes was calculated using 
the expression matrix of GSE29546. Genes with an absolute 
value of coefficient > 0.6 and P < 0.05 were considered as 
key mRNA-related genes. The Encyclopedia of RNA Inter-
actomes (ENCORI) database (Li et al. 2014) was used to 
predict the targets of key miRNA genes with the following 
parameters: CLIP evidence (≥ 5), degradome evidence (≥ 0), 
program number (≥ 4) and predicted program (none). The 
mRNA-miRNA network was visualized using Cytoscape 
3.8.2 software (Shannon et al. 2003).

Evaluation of immune cells distribution

We used cell-type identification by estimating relative sub-
sets of RNA transcripts (CIBERSORT) (Newman et al. 
2015) to evaluate the difference in the distribution of 22 
immune cell types in the blood of patients with good and 
poor neurological outcome patients after CA by GES29546. 
The Pearson correlation coefficient of key genes and immune 
cells was also calculated.

Statistical analysis

The Wilcoxon rank sum test was used to test the difference 
between good and poor neurological outcome. Statistical 
tests were 2-sided, and P < 0.05 was considered statistically 
significant. R 4.2.2 software was used to carry out statistical 
analyses, and the ggplot2 package (Wickham 2016) was used 
to visualize the results. The computer hardware used in our 
study was described in supplementary file 1.

Results

CFLAR and PRKX were identified as the key mRNA 
predictors

From the mRNA dataset, we identified 7415 DEGs (Fig. 2A) 
and 1889 hub genes analyzed by MEGENA. The intersec-
tion of DEGs and hub genes resulted in 1026 genes, which 
were then fed into the three machine learning algorithms. 
The SVM-RFE algorithm identified 67 genes (Fig. 2B). The 
LASSO algorithm identified 60 genes (Fig. 2C). The RF 
algorithm identified algorithm 21 genes (Fig. 2D, E). Of 
these, there were 7 genes that were identified by all three 
algorithms (Fig. 2F).

In the validation dataset, the ROC cure analysis showed 
that the AUC for CASP8 and FADD-like apoptosis regu-
lator (CFLAR) and human protein kinase X (PRKX) was 
greater than 0.7. For the remaining 5 genes, the AUC was 
less than 0.7. Interestingly, CFLAR was upregulated in poor 
neurology outcome group, and PRKX was downregulated, 
resulting in an AUC of 0.814 when CFLAR minus PRKX 
(Fig. 2G). The detailed calculation results of each step are 
shown in supplementary file 2.

miR‑483‑5p, let‑7a‑5p, and let‑7c‑5p were identified 
as the key miRNA predictors

From the miRNA dataset, we identified 162 DEGs (Fig. 3A) 
and fed them into the three machine learning algorithms. 
The SVM-RFE algorithm identified 68 genes (Fig. 3B). The 
LASSO algorithm identified 17 genes (Fig. 3C). The RF 
algorithm identified 23 genes (Fig. 3D, E). Of these, there 
were 5 genes that were identified by all three algorithms 
(Fig. 3F).

In the validation dataset, the ROC curve analysis showed 
that the AUC for miR-483-5p, let-7a-5p, and let-7c-5p was 
greater than 0.7. For the remaining 2 genes, the AUC was 
less than 0.7 (Fig. 3G). The detailed calculation results of 
each step are shown in supplementary file 3.

The mRNA‑miRNA network

The Pearson correlation analysis revealed 246 genes related 
to CFLAR and 739 genes related to PRKX. In the ENCORI 
database, miR-483-5p had 2 targets, let-7a-5p had 502 
targets, and let-7c-5p had 503 targets. Let-7a-5p and let-
7c-5p had similar targets. Unfortunately, there were no 
predicted targets of key miRNAs on the key mRNA genes. 
The mRNA-miRNA network had 30 nodes and 76 edges. 
miR-483-5p had no overlap with CFLAR and PRKX and 
therefore did not appear in this network. Let-7a-5p had 9 
overlapping genes with CFLAR and 17 overlapping genes 
with PRKX, while let-7c-5p had 9 overlapping genes with 
CFLAR and 15 overlapping genes with PRKX. Notably, 
there were no overlapping genes between CFLAR and 
PRKX (Fig. 4).

The distribution of immune cells varies with good 
and poor outcomes: CFLAR and PRKX were related 
to different immune cells

Neutrophils and monocytes were the most common types 
of immune cells in the blood of patients with CA. There 
were statistically significant differences in the distribution 
of neutrophils, NK cells active, NK cells resting, T cells 
CD4 memory activated, T cells CD4 memory resting, T 
cells CD8, B cells memory, and mast cells resting between 
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Fig. 2  Identification of CFLAR and PRKX as key mRNA predictors. 
A Volcano plot of DEGs in the training dataset. Red represents genes 
upregulated in the good outcome group, and blue represents genes 
downregulated in the good outcome group. B Error plot of different 
number of features in SVM-RFE. The minimum error was obtained 
for the inclusion of 67 genes. C Error plot of different lambda in 
LASSO. The minimum error was obtained for the inclusion of 60 

genes. D, E Top 30 accuracy and gini results in RF respectively. F 
Venn plot of genes identified by the three machine learning algo-
rithms. G ROC and AUC of key mRNA predictors in the validation 
dataset. AUC, area under the curve; DEGs, differentially expressed 
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Fig. 3  Identification of miR-483, let-7a, and let-7c as key miRNA 
predictors. A Volcano plot of DEGs in the training dataset. Red rep-
resents genes upregulated in the good outcome group, and blue repre-
sents genes downregulated in the good outcome group. B Error plot 
of different number of features in SVM-RFE. The minimum error 
was obtained for the inclusion of 68 genes. C Error plot of different 
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patients with good and poor neurological outcome after CA 
(Fig. 5A).

CFLAR was related to several immune cell types, includ-
ing T cells CD8, monocytes, macrophages M1, RMSE, mast 
cell resting, and neutrophils (Fig. 5B). PRKX was related 
to macrophages M0, NK cell activated, NK cells resting, 
macrophages M1, RMSE, and T cells CD8 (Fi. 5C).

Discussion

In this study, we identified two mRNA genes (CFLAR and 
PRKX) and three miRNA genes (miR-483, let-7a, and let-
7c) as novel predictors for neurological outcome after CA 
in blood, through the combination of differential expression 
analysis, MEGENA, and machine learning algorithms. There 
were few studies using such a comprehensive approach to 
finding biomarkers in CA.

Previous studies using the same datasets have found sev-
eral predictors. Stamment and his colleagues found that miR-
21 and miR-122 were overexpressed in poor neurological 
outcome by GSE34643 (Stammetet al. 2012). Eun and his 
colleagues found that MAPK3, BCL2, and AKT1 were pre-
dictors of poor neurological outcome, with an AUC greater 
than 0.7 by GSE92696 (Eun et al. 2017). Stefanizzi and his 
colleagues found that miR-9-3p, miR-124-3p, and miR-
129-5p could predict neurological outcome by GSE74198 
(Stefanizzi et al. 2020). Zhang and his colleagues found that 
EEF1B2, PSMD14, RBX1, RPFDN5, and SNRPD2 were 
downregulated and positively correlated with the neurologi-
cal function of rats by GSE29540 and GSE92696 (Zhang 
et al. 2022c).

In our study, we used four datasets available in the GEO 
database on the neurological outcome after CA and used a 
combination of bioinformatics analysis and machine learn-
ing. This could explain why we found different predictors 

than previous studies. The number of studies using mul-
tiple algorithms to identify key genes or biomarkers is 
growing, and we believe that this will become a new 
trend (Meng et al. 2022; Zhang et al. 2022a). Actually, 
it remains challenging to identify predictors for disease 
outcomes in blood, and further laboratory and clinical 
researches are needed to validate our results.

CFLAR, also known as cellular caspase 8 (FLICE)-
like inhibitory protein (c-FLIP), is widely expressed in 
the human body. CFLAR can interact with the FADD and 
caspase 8 to protect cells from apoptosis (Budd et al. 2006; 
Irmler et al. 1997). What is more, loss of CFLAR results 
in increased necroptosis and autophagy, suggesting that 
CFLAR plays an important role in autophagy and necrop-
tosis (He and He 2013). In mice with middle cerebral 
artery occlusion, CFLAR was decreased. The infract vol-
ume in mice increased when CFLAR was knocked out, but 
decreased significantly when CFLAR was overexpressed. 
This means that CFLAR may be a potential target for neu-
roprotection (Xiaohong et al. 2019). Unfortunately, there 
are few studies on CFLAR and CA. Apoptosis is one of the 
important pathologies after CA (Zhang et al. 2022b), so 
we believe that CFLAR, as an apoptosis regulator, has the 
potential to improve the neurological outcome after CA.

PRKX is a serine/threonine protein kinase regulated by 
and mediating cAMP signaling in cells, is widely expressed 
in the human body, and plays an important role in the devel-
opment of kidney, brain, blood vessels, and blood cells 
(Huang et al. 2016). It inhibited the activation of Wnt/β-
catenin signaling pathway and inhibited ovarian cancer cell 
malignant, invasion, proliferation, and tumor growth (Chen 
et al. 2022). PRKX was overexpressed in triple-negative 
breast cancer (Santuario-Facio et al. 2017) and downregu-
lated in coronary artery disease (Long et al. 2018) which 
could be a predictor in these diseases. There are few studies 

Fig. 4  The mRNA-miRNA 
network. Round rectangles rep-
resent mRNA. Diamonds rep-
resent miRNA. Red represents 
the key genes. Blue represents 
genes related to key genes
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on PRKX and CA; more studies are needed to explore this 
relationship.

MiR-483-5p plays an important role in cancer. MiR-
483-5p binds to the fetal mRNA of insulin-like growth 
factor 2 and enhances its transcription, resulting in tumo-
rigenesis (Liu et al. 2013). Low expression of miR-483-5p 

was significantly associated with better tongue squa-
mous cell carcinoma patients’ prognosis and neoadju-
vant chemosensitivity (Tian et  al. 2019). MiR-483-5p 
can be activated by the Wnt/β-catenin signaling pathway 
and promotes invasive and metastatic properties of lung 
adenocarcinoma (Song et  al. 2014). MiR-483-5p was 
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overexpressed in metastatic tissues and serum of meta-
static patients and could be used as a biomarker for the 
presence of metastasis (Castro-Vega et al. 2020). But miR-
483-5p is a suppressor of liver colonization and metastasis 
(Loo et al. 2015). Targeting miR-483-5p could prevent the 
onset of osteoarthritis and delay its progression (Wang 
et al. 2017). PRKX inhibits β-catenin, but β-catenin acti-
vates miR-483-5p, which may be a potential pathway in 
CA. More studies are needed to confirm this hypothesis.

Let-7a-5p and let-7c-5p are members of the let-7 family 
of miRNAs. Let-7 is one of the first miRNAs discovered 
and is well conserved in different animal species. Higher 
animals have diverse let-7 family members such as let-7a, 
let-7b, and let-7c (Lee et al. 2016). Previous studies show 
that let-7 is a tumor suppressor and has crosstalk with 
oncogenes including β-catenin, which can inhibit let-7. 
Exogenous expression of let-7 inhibits the apoptosis medi-
ated by Fas, implying an anti-apoptotic effect (Wang et al. 
2015). More studies are needed to uncover the content of 
let-7 and CA.

However, our study has several limitations. The datasets 
of CA used in our study are mainly microarray-based data, 
which is limited by the pre-designed markers and a limited 
number of markers (Povysil et al. 2019). There are many 
missing values in the microarray-based datasets, which 
may lead to a decline in the credibility of our results. Now-
adays, with the advancement of next-generation sequenc-
ing, the cost is dropping. New technologies such as single-
cell RNA-sequencing help to understand the pathology 
of diseases and cell-to-cell interactions (Su et al. 2022). 
which can be used to understand CA and find biomarkers 
and targets. What is more, our results were only validated 
by other datasets and not in cell lines or animal models. 
In further studies, in vitro and in vivo studies using CA 
models are needed to confirm our findings. Clinical trials 
enrolling CA patients are needed to confirm the predictive 
value of these key genes.

In conclusion, our study identified CFLAR and PRKX 
as novel mRNA predictors and miR-483-5p, let-7a-5p, and 
let-7c-5p as novel miRNA predictors for neurological out-
come after CA. The distribution of immune cells varies with 
different outcomes. CFLAR and PREKX were related to dif-
ferent immune cells. More clinical and laboratory studies are 
needed to confirm our findings.
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