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Abstract
Host genetic factors play an important role in diverse host outcomes after influenza A (H7N9) infection. Studying differential
responses of inbred mouse lines with distinct genetic backgrounds to influenza virus infection could substantially increase our
understanding of the contributory roles of host genetic factors to disease severity. Here, we utilized an integrated approach of
mRNA-seq and miRNA-seq to investigate the transcriptome expression and regulation of host genes in C57BL/6J and DBA/2J
mouse strains during influenza virus infection. The differential pathogenicity of influenza virus in C57BL/6J andDBA/2J has been
fully demonstrated through immunohistochemical staining, histopathological analyses, and viral replication assessment. A tran-
scriptional molecular signature correlates to differential host response to infection has been uncovered. With the introduction of
temporal expression pattern analysis, we demonstrated that host factors responsible for influenza virus replication and host–virus
interaction were significantly enriched in genes exhibiting distinct temporal dynamics between different inbred mouse lines. A
combination of time-series expression analysis and temporal expression pattern analysis has provided a list of promising candidate
genes for future studies. An integrated miRNA regulatory network from both mRNA-seq and miRNA-seq revealed several
regulatory modules responsible for regulating host susceptibilities and disease severity. Overall, a comprehensive framework
for analyzing host susceptibilities to influenza infection was established by integrating mRNA-seq and miRNA-seq data of inbred
mouse lines. This work suggests novel putativemolecular targets for therapeutic interventions in seasonal and pandemic influenza.
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Introduction

Influenza A (H7N9) viruses normally circulate among birds
and infect people sporadically. Since the first identification of

H7N9 human infection in China in March 2013, a total of
1562 laboratory-confirmed cases have been reported to
WHO as of 13 September 2017 (http://www.who.int/csr/
don/13-september-2017-ah7n9-china/en/), around 40% of
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people confirmed with Asian H7N9 virus died. Although the
mechanisms by which H7N9 virus infects humans remain
unclear (Han et al. 2013; Lam et al. 2013; Xiong et al. 2013;
Zhou et al. 2013; Zhu et al. 2013), the idea that host suscep-
tibility plays a significant role is almost certain because only a
small fraction of people who are exposed to H7N9 is infected.
A list of host genes, such as IFITM3 (Wang et al. 2014),
LGALS1 (Chen et al. 2015), and TMPRSS2 (Cheng et al.
2015), has been demonstrated for their roles in regulating host
susceptibilities to influenza A (H7N9) virus infection.

For most human diseases, particularly infectious diseases,
host genetic susceptibility genes are typically identified using
mouse models. Mouse models provide advantages such as
availability of large numbers of experimental matings and
minimal variation in the environmental influences on disease
(Nadeau 2001). Studies on inbred mice have contributed sub-
stantially to our understanding of host susceptibility to influ-
enza viruses (Boivin et al. 2012; Boon et al. 2009; Ferris et al.
2013; Nedelko et al. 2012; Toth and Williams 1999).
Differential response to influenza A virus infection has been
demonstrated in seven inbred mouse strains, among which
infected DBA/2J mice exhibited relatively higher susceptibil-
ity to influenza infection than infected C57BL/6J mice in
terms of higher viral load in the lungs and higher levels of
cytokines and chemokines (Srivastava et al. 2009). These
findings suggest the major contribution of host genetic back-
ground to influenza Avirus susceptibility. Another study com-
pared DBA/2J and C57BL/6J mice in terms of their response
to H5N1 and identified genetic elements associated with sur-
vival (Boon et al. 2009). Both studies indicated that DBA/2J
mice exhibit higher susceptibility to influenza infection than
C57BL/6J mice. Thus, the comparisons between the two
mouse strains can be applied to establish a suitable model
system for detecting genes responsible for severe infection
outcomes in human. Although several quantitative trait loci
(QTL) associated with resistance to H5N1 virus have been
identified from genome-wide QTL mapping (Boon et al.
2009; Srivastava et al. 2009), other reports indicated that dif-
ferent QTL regions are associated with response to different
influenza virus strains (Bao et al. 2013). Thus, susceptibility to
H7N9 might not be determined by these previously identified
genes that affect the infectivity of other strains. The identifi-
cation of H7N9 susceptibility genes is an urgent and challeng-
ing task.

During acute influenza A virus infection, highly dynamic
and inter-related responses are triggered in the host, resulting
in clearance of pathogens and establishment of long-lasting
immunity. Several transcriptome studies suggested that host
responses to influenza infection could be studied comprehen-
sively by measuring changes in gene expression levels after
infection (Alberts et al. 2011; Pommerenke et al. 2012). On
the other hand, recent research has indicated that virus infec-
tion can induce the expression of cellular microRNA

(miRNA) species that modulate the stability of their target
host mRNAs and hence their protein products.

In this study, we used next-generation sequencing (NGS)
technology to characterize mRNA and miRNA levels in
C57BL/6J and DBA/2J mice before and after virus infection
to elucidate the molecular mechanisms of host susceptibility.
We found that influenza A (H7N9) virus exhibits great differ-
ential pathogenicity between C57BL/6J and DBA/2J mice.
The global gene expression profiles of these twomouse strains
were distinct. Through the combination of time-series expres-
sion level analysis and temporal expression pattern analysis
(i.e., DTW-MIC (Riccadonna et al. 2016)), we identified a list
of promising candidate genes and pathways that may play
pro-/anti-influenza roles after infection. A synergistic
miRNA regulatory network responsible for host susceptibility
was constructed using Mirsynergy (Li et al. 2014) by integrat-
ing all candidate genes identified, the genomic signatures em-
bedded in mRNA-seq and miRNA-seq data, and the function-
al knowledge of protein–protein interactions and miRNA–tar-
get prediction. These results can help us understand more
about the complex mechanisms underlying the susceptibility
and resistance of genetically diverse hosts to influenza
infection.

Results

Differential pathogenicity of H7N9 in C57BL/6J
and DBA/2J

We detected a higher amount of H7N9 antigens in infected
DBA/2J mice than that in infected C57BL/6J mice under the
same infection conditions (Fig. 1a). The results are highly
consistent with the higher amount of viral RNAs detected in
infected DBA/2J mice than that in infected C57BL/6J mice
(Add i t i o n a l F i l e 1 , S upp l emen t a r y F i g . S 1 ) .
Histopathologically, we detected significant peribronchiolar
interstitial infiltration, bronchiole epithelial cell necrosis, and
necrotic cell debris within the alveolar lumens of the H7N9-
inoculated DBA/2J lungs (Fig. 1b). Comparatively, mild
peribronchiolar interstitial infiltration was observed in
H7N9-inoculated DBA/2J lungs. Similar results were obtain-
ed from RNAseq analysis of 10 interferon-stimulated genes
(including CXCL10, IFIT1, IFIT3, IFNA4, IFNB1, IL1B,
ISG15, MX1, RSAD2, and USP18) (Chen et al. 2016). All
of these interferon-stimulated genes were upregulated after
H7N9 infection, and their differential expression levels in
DBA/2J were higher than that in C57BL/6J after infection
for 3 days (Additional File 1, Supplementary Fig. S2). Our
results demonstrated that DBA/2J was more susceptible to
influenza A (H7N9) virus infection than C57BL/6J, consistent
with the findings of previous studies (Boon et al. 2009;
Srivastava et al. 2009).
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Genomic signatures embedded in RNAseq data reveal
distinct host response to influenza infection and virus
temporal dynamics

Differential host responses to influenza infection between sus-
ceptible and resistant hosts exhibit a distinct temporal molec-
ular signature. To pick up this genomic signature in an unbi-
ased manner, we analyzed the global expression profile by
using an unsupervised method called non-negative matrix fac-
torization (NMF) (Dhillon and Sra 2005; Tandon and Sra
2010); this method requires no prior knowledge of phenotype
information, such as sample or time label and disease out-
come. The entire gene expression profile was clustered into
a predefined number (i.e., 4) of groups. To promote robust

cluster assignments, we obtained a consensus clustering as-
signment after aggregating the results of 200 different runs
into a single clustering result. Figure 2a shows that all samples
were grouped into three main clusters, except C57-D3-3
(which refers to C57BL/6J mice on day 3 after infection, bio-
logical replicate no. 3) that was grouped as a single cluster.
After introducing sample information about strains and con-
ditions (infected or uninfected) into the consensus matrix, we
found that all C57BL/6J samples (i.e., resistant mice), except
C57-D3-3, were grouped together. Uninfected DBA/2J mice
and infected DBA/2J mice on day 1 (i.e., susceptible mice at
early-stage of infection) were grouped into another cluster.
Infected DBA/2J mice on days 2 and 3 (i.e., susceptible mice
at the late stage of infection) were grouped as the third cluster.

Fig. 1 C57BL/6J and DBA/2J
show distinct phenotypes after
influenza A (H7N9) virus
infection. a
Immunohistochemical staining of
H7N9 antigens in virus-
inoculated DBA/2J (D2) and
C57BL/6J (B6) lungs.
Representative images of
immunohistochemically stained
influenza nucleoprotein (NP) in
formalin fixed mouse lung tissue
infected with H7N9 at day 3 post-
infection (right panels). Viral NP
protein was labeled brown by
3,39-diaminobenzidine and then
countered with hematoxylin.
Uninfected mouse lung as
negative control (left panels).
Images were taken at
magnification of × 200. b
Histopathological changes in the
D2 and B6 lung tissues infected
with H7N9. Representative
histological images of
hematoxylin and eosin (H&E)-
stained lung tissue sections of
normal mouse lung (left panels)
and infected mouse lung (right
panels) at day 3 post infection.
Images were taken at
magnification of × 100
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From the distribution of the amount of viral RNAs in each
cluster (Fig. 2b), we found that cluster 3 possessed higher load
of virus than clusters 1 and 2. This finding demonstrated the
strength of NMF for ab initio discovery of genomic signature
responsible for host response to influenza infection. Principle
component analysis (PCA) of the normalized host gene counts
for all samples also confirmed the separate groupings of mice
at early and late stage of infection (Fig. 2c). The diverse host
response to influenza infection was mainly represented by the
first principle component (i.e., PC1), which explained 42% of
the expression variation. PC2 revealed distinct expression pro-
files of C57BL/6J and DBA/2J due to their different genetic
backgrounds and explained around 17% of the total expres-
sion variation.

In addition to the genomic signatures of host genes,
RNAseq data also allowed us to analyze the expression profile
of eight viral segments (i.e., M2, NA, HA, NP, NEP, PB2, PB1,
PA). After infection, the overall expression levels of influenza
transcripts were higher in DBA/2J mice than those in C57BL/
6J mice from day 1 to day 3. The global expression levels of all
influenza segments were correlated well (Pearson correlation =
0.48, p value = 0.005) with the amount of viral RNAs (Fig. 3).

Host factors differentially expressed between strains
either in terms of overall expression level or temporal
expression pattern

To fully use the time point data available, we used mock-
treated mice on days 1 and 3 as infected mice on day 0 (before
infection) and carried out time-series analysis of differentially
expressed genes (DEGs) between strains over time by logistic
regression test in DESeq2 (Love et al. 2014). A total of 224
genes were significantly differentially expressed between
C57BL/6J and DBA/2J mice over time and defined as
strain-specific DEGs (Additional File 2, Supplementary
Table S1). The transcriptome profiles of these DEGs showed
distinct expression patterns between susceptible and resistant
mice (Additional File 1, Supplementary Fig. S3 A), and
around 26% of total expression variation of these genes can
be explained by genetic background (Additional File 1,
Supplementary Fig. S3 B).

Likelihood ratio tests can help us identify genes exhibiting
differential expression levels between strains over time.
However, a group of genes may have insufficient time to show
obvious differential expression levels within a short period of

Fig. 2 A genomic signature shows distinct host response to infection. a
Consensus matrix (average connectivity matrix) of samples across 200
runs. The consensus score assigned for a given pair of samples was
calculated as the percentage of assignments that these two samples were
grouped together among all clustering runs, and was represented as
heating colors from cold blue (score = 0) to hot read (score = 1). Sample
labels for infected mice were stated as in Bstrain-day time-biological
replicate^ format, i.e. C57-D1-1 represents an infected C57BL/6J mouse
(biological replicate 1) at day 1. For mock-treated mice, BC^ character

was added before the biological replicate number, i.e., C57-D1-C1 rep-
resents a mock-treated (control) C57BL/6J mouse (biological replicate 1)
at day 1. Different conditions (infected and mock-treated) and strains
(C57BL/6J and DBA/2J) were represented by different groups of colors
as shown in the legend. b The distribution of virus load in three main
clusters. c PCA of normalized host gene counts of all samples. Replicates
for a given day which were represented by the same color were grouped
together well. Different strains were also stratified well by the second
principle component
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time but exhibit distinct temporal expression patterns in dif-
ferent hosts. This type of genes should also play a role in host
susceptibility to influenza infection. To measure the similarity
of a gene between C57BL/6J and DBA/2J in terms of tempo-
ral expression pattern, we employed a similarity function
called dynamic time warping maximal information coefficient
(DTW-MIC) (Riccadonna et al. 2016); this function combined
a similarity measure taking care of non-linear interactions
(MIC) and a measure identifying time shifts (DTW)
(Riccadonna et al. 2016). Around 18.14 and 39.75% of all
genes with meaningful DTW-MIC scores (21,554 genes;
Supplementary Table S2, S3) were enriched in DTW-MIC
similarity ranges of 0.2–0.25 and 0.7–0.75, respectively

(Additional File 1, Supplementary Fig. S4 A). We then carried
out permutations by randomly swapping the phenotype labels
of C57BL/6J and DBA/2J 10,000 times. In each permutation,
we calculated the permutated DTW-MIC scores for all genes.
Genes with DTW-MIC scores lower than 0.25 achieved FDR
less than 0.05 (the real DTW-MIC score was lower than 95%
of all corresponding permutated scores; Additional File 1,
Supplementary Table S3), leaving a set of (3910) genes with
significantly low expression similarities between C57BL/6J
and DBA/2J mice, termed as sig.low.simi genes for brevity.
The expression variation across samples from this set of genes
was mainly attributed to host genetic background, which ex-
plained around 46% of the total expression variation
(Additional File 1, Supplementary Fig. S4 B). By contrast,
genes with DTW-MIC scores higher than 0.25 mainly ex-
plained the host response to influenza infection, and this char-
acteristic was the most obvious among genes with DTW-MIC
scores between 0.7 and 0.75, where the PCA showed the most
separated groupings of samples per host response to influenza
infection.

We then mapped the two list of candidate genes, namely,
strain-specific DEGs and sig.low.simi genes, responsible for
host susceptibility to a list of genes that were reported by at
least two RNAi screens for their roles in influenza virus rep-
lication (Chou et al. 2015) (Additional File 2, Supplementary
Table S4) and a list of host proteins that were reported as
interacting with influenza virus (Shapira et al. 2009)
(Additional File 2, Supplementary Table S5). No strain-
specific DEGs were reported as host factors responsible for
viral replication and/or host-virus interaction, whereas mouse
transcripts homologous to those host factors were significantly
enriched in genes with significantly low temporal similarities
between strains (Additional File 2, Supplementary Table S6).
Specif ical ly, 33 out of 3910 sig. low.simi genes
(hypergeometric distribution p value = 0.031) were mapped
to host factors associated with influenza virus replication,
and 22 out of 3910 genes (hypergeometric distribution p val-
ue = 0.022) were reported to interact with the influenza virus.
This result demonstrated that a significant amount of host
factors responsible for viral replication and/or host-virus inter-
action show distinct temporal dynamics in different hosts in-
stead of differential expression levels.

A total of 82 genes were identified as promising candidates
for future studies through differential expression level analysis
and temporal expression pattern analysis (Additional File 2,
Supplementary Table S7). Among them, A2Mwas reported as
a natural inhibitor against influenza A virus of swine origin
(Chen et al. 2010; Ryan-Poirier and Kawaoka 1993). Gpx2 is
an important member of glutathione peroxidases subfamily of
selenium; adequate selenium intake plays a vital role in influ-
enza A (H3N2) virus clearance and recovery (Beck et al.
2001), and supplementation of this element protects against
influenza A (H1N1) infection (Yu et al. 2011). In line with

Fig. 3 Dynamics of influenza gene expression level correlated with the
amount of viral RNAs in C57BL/6J and DBA/2J. a Expression levels of
influenza segments changed in infected mice compared with mock-
treated mice. The expression levels of influenza segments changed over
time were calculated as the mean expression value of (log2RPKM+ 1) in
infected mice at the same day, relative to that in respective mock-treated
mice (mock day 1 for day 1 and day 2 infectedmice, mock day 3 for day 3
infected mice). Lines represent expression levels from lungs of C57BL/6J
(B6d1, B6d2, B6d3) and DBA/2J at day 1, 2, and 3 (D2d1, D2d2, D2d3).
b The amount of viral RNAs extracted from the lungs of mock-treated
mice and infected mice at day 1, 2, and 3
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this, Gpx2 was significantly downregulated in DBA/2J after
infection, and the level of Gpx2 in C57BL/6J exhibited almost
no change (Additional File 2, Supplementary Table S7), sug-
gesting that the expression level of Gpx2 in host cells may also
play an important role in anti-influenza severity when infected
by influenza A (H7N9) virus. Pla2g16 was exclusively upreg-
ulated in DBA/2J mice and may play a pro-H7N9 role in
facilitating viral genome translocation and preventing viral
clearance (Staring et al. 2017). Functionally, the overlapped
candidate genes from time-series expression level analysis and
temporal expression pattern analysis were mainly enriched in
immune system and apoptotic process (Additional File 2,
Supplementary Table S8), indicating that these two processes
may respond distinctly not only in terms of differential expres-
sion levels but also in terms of diverse dynamics in different
hosts after being infected by influenza virus.

Hosts with distinct genetic background tend
to participate in different biological processes
after influenza infection

We hypothesized that genes that show distinct temporal dy-
namics between susceptible and resistant strains and also dif-
ferentially express between infected and uninfected mice in
either one of the two strains are more likely responsible for
host susceptibility to influenza than those which did not dif-
ferentially express in either of the two strains. Thus, we divid-
ed all sig.low.simi genes into genes that were significantly
differentially expressed between infected and uninfected mice
over time in both C57BL/6J and DBA/2J strains (cluster 1),
exclusively in C57BL/6J strain (cluster 2), exclusively in
DBA/2J strain (cluster 3), and in neither of these two strains
(cluster 4; Additional File 2, Supplementary Table S10).
Pathway enrichment analysis showed that cluster 1 genes
were significantly enriched in negative regulation of cardiac

muscle cell proliferation, whereas genes from cluster 2 and 3
show distinct pathway enrichments between each other, ex-
cept for a common link to the modulation of host immune and
inflammatory response (Table 1). Similar observations were
also obtained from the analysis of protein–protein interaction
networks in all genes from clusters 1, 2, and 3, where genes
from clusters 2 and 3 tended to aggregate within clusters and
formed several cluster-specific functional modules, such as
oxidative stress, ribosome, and cell cycle (Fig 4). There are
two possible explanations for this observation: first, besides
immune-related pathways, the influenza virus may trigger dif-
ferent biological processes in hosts with different genetic
background; and second, different hosts may have their own
tendencies to participate in one or several mechanisms in re-
sponse to influenza infection, which finally led to their resis-
tance or susceptibility after being infected by influenza.

Cell cycle and ribosome in pro-/anti-influenza
infection

Cell cycle and ribosome were the two pathways specifically
enriched in and aggregated by genes that were exclusively
differentially expressed in C57BL/6J (cluster 2) and DBA/2J
(cluster 3), respectively. Influenza A virus in infected cells
induces a pro-influenza environment by arresting a G0/G1-
phase cell cycle(Fan et al. 2017; He et al. 2010; Jiang et al.
2013) to promote viral protein accumulation and virus produc-
tion (He et al. 2010) or inhibit early cell death of infected cells,
allowing the cells to evade immune defenses (Bagga and
Bouchard 2014). Delayed mitotic exit has also been implicat-
ed in the pathogenesis of viral infection (Heilman et al. 2005).
The upregulation of some cell cycle molecules opposing the
completion of mitosis was linked to disease severity associat-
ed with influenza infection (Parnell et al. 2011). By contrast,
the dysregulation of the anaphase promoting complex (APC),

Table 1 Pathway enrichment of genes differentially expressed in either C57BL/6J or DBA/2J

Cluster Pathway Representative genes

Cluster 1 negative regulation of cardiac muscle cell proliferation GJA1, CXADR

Cluster 2 Cell cycle, cell division, mitotic nuclear division KIF23, KIF11, MKI67, KNTC1, NUF2, TIPIN, KIF18B, CDC25C, UBE2C,
SPC24, NCAPH, KIF20B, MIS18BP1, ZWILCH, CCNA2, ASPM, CDCA3

DNA replication PRIM1, RRM2, RRM1, LRWD1

positive regulation of interleukin-6 production IL1F9, IL1B, SPON2

Cluster 3 Ribosome, translation EEF1A1, EEF1B2, EIF3H, EIF3I, MCTS1, MRPL12, MRPL3, MRPL33,
MRPL57, MRPS16, NHP2, RPL13A, RPL14, RPL14-PS1, RPL15, RPL22L1,
RPL23, RPL36A, RPL37, RPL8, RPLP1, RPLP2, RPS11, RPS14, RPS19,
RPS20, RPS21, RPS25, RPS3, RPS5, RPS8, RPS9, SLC25A15, TRNAU1AP

rRNA processing NAF1, RPS19, RPL14, UTP18, RRP15, POP5, NHP2, NSA2

antigen processing and presentation H2-Q2, RAB3C, H2-Q1, CD1D1, CD74

Oxidative phosphorylation NDUFA4, ATP5E, UQCR10, NDUFB6, COX8A, NDUFC2, NDUFB2, COX6C

GABAergic synapse ADCY4, GABRA3, GNG10, GLS, GABRQ, PRKCB
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a major regulatory complex which coordinates cell cycle pro-
gression and mitotic exit(Castro et al. 2005), was found in
subjects with the most severe infection (Parnell et al. 2011).
Knockdown of cyclin D3, a key regulator of cell cycle in the
early G1 phase, led to cell cycle G0/G1 phase arrest and sig-
nificantly enhanced influenza virus replication (Fan et al.
2017). In summary, host response to influenza infection can
be characterized by opposing changes in cell cycle activity
(e.g., G0/G1 phase arrest and/or delayed mitotic exit). In line
with this, genes that promote cell cycle progression and exit
from mitosis were exclusively significantly upregulated in re-
sistant C57BL/6J mice but not in susceptible DBA/2J mice;
these genes include cell cycle regulator (CCNA2), a trigger of
mitotic entry (CDCA3), a component of the mitotic check-
point (KNTC1), and the mitotic-specific ubiquitin-

conjugating enzyme (UBE2C) (Additional File 1,
Supplementary Fig. S5; Additional File 3), indicating their
potential anti-influenza role in protecting hosts from highly
lethal infection.

Viruses recruit host ribosomes to translate viral mRNAs,
which not only ensures that viral proteins are produced but
also stifles innate host defenses to inhibit the capacity of in-
fected cells for protein synthesis (Walsh and Mohr 2011). In
influenza-infected cells, some mRNAs for ribosomal proteins,
such as S6 (Dufner and Thomas 1999) and RRS1 (Tsuno et al.
2000), were found to be highly upregulated, despite an overall
inhibition of the synthesis of infected cellular proteins (Geiss
et al. 2001). Not all genes involved in protein synthesis were
upregulated, indicating that the influenza virus may recruit
specific components for viral mRNA translation (Geiss et al.

Fig. 4 Interaction network of genes with significantly low temporal
similarities between C57BL/6J and DBA/2J and differentially expressed
in at least one strain. Genes from different clusters were represented by
different colors as shown in the legend. Aggregated modules of genes

were grouped by dashed circles in different colors. Representative path-
ways enriched by a certain module of genes were shown at the top of each
corresponding enlarged drawings. More details about member genes and
pathway enrichment of each module can be found in S11 Table
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2001). Since host ribosome regulates viral protein synthesis, a
worth trying in discovering new potential therapeutic target
will be focusing on the protein components on the surface of
the ribosome. The blockade of RPL40 disables vesicular sto-
matitis virus cap-dependent translation while leaving normal
cells largely unaffected, demonstrating that besides catalyzing
the synthesis of cellular proteins, ribosomes may act as a
translational regulator (Lee et al. 2013). Although no direct
links between ribosomal proteins and influenza A virus trans-
lation have yet been established, significant perturbations in
host proteome were found very early in influenza A (H5N1)
virus-infected human macrophages; the most pronounced ef-
fect was observed on the translational machinery (Cheung
et al. 2012). Several member proteins of the small 40S sub-
unit, including RPS5, RPS18, and RPS25, which were report-
ed to be significantly upregulated post-infection in H5N1
macrophages (Cheung et al. 2012), exhibited higher signifi-
cant differential expression levels between infected and unin-
fected mice in DBA/2J strain than that in C57BL/6J strain
(Additional File 1, Supplementary Fig. S6 A; Additional
File 3), indicating their potential pro-influenza role in influen-
za virus replication. In addition, three other genes encoding
ribosomal proteins, including RPS14 (Hao et al. 2008; Karlas
et al. 2010), RPL15 (Hao et al. 2008), and RPL13A (Brass
et al. 2009; Shapira et al. 2009), which were reported to inter-
act with viral ribonucleoproteins and are involved in influenza
virus life cycle, showedmuchmore significant upregulation in
DBA/2J than in C57BL/6J (Additional File 1, Supplementary
Fig. S6 B, C, D; Additional File 3). These results provide new
insights into the role of host ribosome in the pathogenicity of
influenza.

Integrated miRNA regulatory network responsible
for host susceptibilities

In addition to RNA-seq data, we also extracted miRNAs from
the lungs of the same series of mice and performed miRNA-
seq. A miRNA regulatory network responsible for host sus-
ceptibilities was constructed by integrated analysis of RNA-
seq data and miRNA-seq data through Mirsynergy(Li et al.
2014)—a deterministic overlapping clustering algorithm that
expands miRNA-mRNA module by greedily including
mRNAs into the module to maximize the synergy score,
which is defined as a function of the miRNA-mRNA interac-
tion weight (MMIW) matrix and the gene–gene interaction
weight (GGIW) matrix. All strain-specific DEGs over time
and genes with significantly low similarities between strains
were collected as input genes. miRNAswhich were predicated
as the regulators (context score <− 0.2) of these candidate
genes by TargetScan v7.1(Agarwal et al. 2015) were also in-
cluded. The MMIW matrix was determined by expression-
based correlations between miRNAs and corresponding
mRNAs using L1-norm regularized linear regression model

(i.e., LASSO). The binary interaction weight matrix between
mRNAs (i.e., GGIWmatrix) was determined by STRING v10
(Szklarczyk et al. 2015) association scores higher than 400
(medium confidence). A total of 28 regulatory modules
(Additional File 4) were constructed. For simplification, we
combined modules with over half of members overlapping
together as a group, leaving behind 13 groups (Fig. 5;
Additional File 4).

Functional enrichment analysis of these groups indicated
the roles of several pathways in regulating host susceptibilities
to influenza infection, including MAPK signaling pathway
(Gaur et al. 2011), PI3K/Akt pathway (Ehrhardt et al. 2007;
Zhao et al. 2014), endocytosis (Fujioka et al. 2011;
Lakadamyali et al. 2004; Sieczkarski and Whittaker 2003),
ribosome (Cheung et al. 2012; Lee et al. 2013; Walsh and
Mohr 2011), and calcium signaling pathway (Fujioka et al.
2013). The MAP kinase (MAPK) Rac1/p38 plays a key role
in regulating inflammatory responses (Mainiero et al. 2000).
Inhibition of Rac1 by NSC23766 leads to impaired replication
of influenza virus (Dierkes et al. 2014). Three miRNAs, in-
cluding miR-302c, miR-200, and miR-320, were predicted to
target this gene, and how Rac1 is regulated in different hosts is
worth investigating. Bcl2, which is the direct neighbor of
Rac1, is an apoptosis regulator, is involved in PI3K/Akt sig-
naling pathway, and exhibits an anti-influenza role in both
reduced virus-induced apoptosis [66, 67] and viral replication
[67, 68]. Intriguingly, both Rac1 and Bcl2 were neither differ-
entially expressed between strains nor differentially expressed
between infected and uninfected mice in either of the two
strains but showed distinct expression patterns between strains
(Additional File 2, Supplementary Table S9).

The integrated regulatory network also revealed several
important miRNAs contributing to anti-influenza virus.
MiR-491 inhibits H1N1 replication and was predicted to com-
plement the 3’-UTR of Tns4 mRNA, which is involved in
apoptosis. MiR-34a inhibits influenza virus-induced apoptosis
(Fan and Wang 2016). The predicted target of miR-34a, that
is, Chmp7, functions in endocytosis.

Discussion

Combination of expression level analysis
and temporal expression pattern analysis

As a classical gene expression analysis strategy, the likelihood
ratio test can reveal the overall contrast of a gene between two
conditions in terms of differential expression level. However,
a set of disease genes may have insufficient time to show
distinct expression level difference between conditions within
the period of study. To reduce false negatives from pure dif-
ferential expression level analysis, we introduced a temporal
expression pattern analysis to help us capture genes with
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distinct temporal dynamics between conditions within the ob-
servation period despite the low differential expression level.
In the present study, among the genes which show no obvious
expression level differences between C57BL/6J and DBA/2J
but exhibit distinct expression pattern between these two
strains (accounting for over 96% of total sig.low.simi genes;
Additional File 2, Supplementary Table S9), Rac1(Dierkes
et al. 2014), and Bcl2 (Nencioni et al. 2009; Nencioni et al.
2003; Olsen et al. 1996) have been demonstrated for their
pro-/anti-influenza role as mentioned above. Cd1d−/− mice
was shown to have higher IAV and reduced PR8-specific
CD8+ T lymphocytes and antibodies compared with PR8-
infected wide type mice (De Santo et al. 2008), suggesting
the anti-influenza role of Cd1d. Furthermore, with the intro-
duction of time course expression pattern analysis, we have
noticed the roles of a list of novel pathways, such as cell cycle
and ribosome, in host susceptibilities to influenza infection.

Genes differentially expressed between C57BL/6J and
DBA/2J mice over time do not necessarily show distinct tem-
poral dynamics between these two strains at the same time
(Additional File 1, Supplementary Fig. S7). Over 57% (129
out of 224) of all strain-specific DEGs had DTW-MIC simi-
larity scores higher than 0.7 (Additional File 1, Supplementary
Fig. S7 A). The expression variation across samples based on

these genes were mostly from host response to influenza in-
fection (Additional File 1, Supplementary Fig. S7 B and C,
right inset), indicating that a high false positive rate may exist
in differential expression analysis.

Although a systematic evaluation of the sensitivity and
specificity of differential expression level analysis and tempo-
ral expression pattern analysis is yet to be performed, the
introduction of DTW-MIC similarity function in RNA-seq
expression data analysis has provided us a new direction in
measuring the difference of a gene between two conditions.
Moreover, a combination of candidate genes from both ex-
pression level analysis and expression pattern analysis can
provide a more comprehensive understanding of host factors
responsible for different outcomes after influenza infection.

Integration of multiple layers of information

The major part (over 87%; Additional File 2, Supplementary
Table S10) of the sig.low.simi genes were from genes differ-
entially expressed between infected and uninfected mice in
either of the two strains (cluster 4). With the advancement of
a miRNA regulatory network and literature support, we have
uncovered several promising candidates responsible for host
susceptibilities, including Rac1 (Dierkes et al. 2014) and Bcl2

Fig. 5 Synergistic miRNA regulatory network responsible for host
susceptibilities to influenza infection. Genes were represented by circles
while miRNAs were shown as diamonds. The interactions between
miRNAs and genes were highlighted by blue, and the corresponding

target genes were circled by blue. Gene and/or miRNAs from different
groups were covered by solid circles in different colors as shown in the
legend. Most significant and representative pathways enriched by each
group of genes were listed beside the pathway-involved genes
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(Nencioni et al. 2009; Nencioni et al. 2003; Olsen et al. 1996),
which have been reported for their anti-/pro-influenza roles in
previous studies. However, a great number of sig.low.simi
genes, especially those that were neither differentially
expressed between infected and uninfected, nor correlated
with virus load (which account for around 61.5% of total
sig.low.simi genes), have no further information to explain
their roles in influenza pathogenesis in our current data.
Integrating additional layers of information beyond tran-
scriptome expression and miRNA regulation, such as geno-
type information, epigenome, copy number variations, and so
on, into a composite analysis framework may further expand
our ability to pinpoint the host factors responsible for different
outcomes after influenza infection.

Conclusions

Immunohistochemical and histopathological analyses indicat-
ed that the two mouse lines (i.e., C57BL/6J and DBA/2J)
show distinct susceptibilities upon being infected with influ-
enza virus. The genomic signatures in RNA-seq data of these
two mouse lines are so strong that we can group all biological
samples according to their response to influenza infection
through a clinically uninformed factor analysis method (i.e.,
NMF). By introducing temporal sequence similarity measure-
ment (i.e., DTW-MIC), we identified a list of genes which
show distinct temporal expression patterns between C57BL/
6J and DBA/2J, called sig.low.simi genes. Intriguingly, host
factors which have been suggested for their roles in influenza
virus replication and host-virus interactions were significantly
enriched in the sig.low.simi genes. A combination of both
traditional time-series gene expression level analysis and tem-
poral expression pattern analysis revealed that hosts with dif-
ferent genetic background may behave distinctly in immune
systems and apoptotic process when infected by influenza
infection not only in terms of overall expression level but also
in terms of temporal dynamics. In addition, we suggest that
susceptible and resistant hosts may have their own preference
in triggering internal biological processes in response to influ-
enza infection. Several pathways, such as cell cycle and ribo-
some, which are yet to be well-characterized for their roles in
influenza pathogenesis, may play a much important role in
pro-/anti-influenza infection than we have ever expected.
Furthermore, a miRNA regulatory network formed by inte-
grating both RNA-seq data and miRNA-seq data of the two
mouse lines has revealed several regulatory modules (e.g.,
MAPK signaling, ubiquitin, endocytosis, ribosome, and cal-
cium signaling), which were responsible for host susceptibil-
ity, and a list of miRNAs (e.g., miR-491 and miR-34a), which
have been reported for their roles in anti-/pro-influenza virus.
The predicted target genes of these miRNAs in the network
add important knowledge to miRNA-gene regulation in

directing diverse host outcomes after influenza infection.
Taken together, the results provided here will advance our
understanding of the mechanisms underlying host susceptibil-
ities or survival during influenza A (H7N9) infection.

Methods

Inbred mouse strains

C57BL/6J mice were obtained from the Animal Unit of the
University of Hong Kong. DBA/2J mice and BXD recombi-
nant inbred mice derived from crosses between C57BL/6J and
DBA/2J were imported from the Jackson Laboratory.

Infection of mice with H7N9 virus

Mice were infected with human H7N9 strain isolated from
Shenzhen/HK in 2014 and kept by Department of
Microbiology, HKU and State Key Laboratory for Emerging
Infectious Disease. Infection was done in P3 lab in the
Department of Microbiology, HKU. Experimental procedures
have been described (Xiong et al. 2013). In brief, mice were
anesthetized and virus was administered intra-nasally.
Afterward, we harvested the lungs from infected mice on days
1, 2, and 3 and collected the lungs from mock-treated mice on
days 1 and 3. For each strain at days 1 and 3, four infected
mice and four mock-treated mice were used for biological
replication. We only harvested the lungs of four infected mice
on day 2, assuming that mock-treated mice should have very
little variation in terms of gene expression from day 1 to day 2.
Harvested lungs were stored at 80 °C. We pooled lung RNAs
or microRNAs from the same mouse at each time point.
Pooled RNAs or microRNAs were sequenced in duplicate.
The lethal dose of H7N9 in C57BL/6J and DBA/2J mice
was determined as previously described (Boon et al. 2009).

Immunohistochemical staining, histopathological
analyses, and viral replication assessment of infected
mouse lung tissues

Infected mouse lungs were fixed in 10% paraformaldehyde
and paraffinized. After mounting on slides, the tissues were
de-paraffinized, rehydrated, and treated with Antigen
Unmasking Solution according the manufacturer’s instruc-
tions (Vector Laboratories Inc. Burlingame, CA, USA) to un-
mask the antigens. The influenza virus nucleoprotein (NP)
was then stained with mouse anti-influenza NP-antibody
(HB65, ATCC) at 4 °C for overnight after blocking with 3%
bovine serum albumin as previously described (Yeung et al.
2016). After washing, biotin-conjugated goat anti-mouse IgG
(Calbiochem, Darmstadt, Germany) was added to the tissue
sections at room temperature for 30 min. Streptavidin/
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peroxidase complex reagent (Vector Laboratories,
Burlingame, CA) was then added and incubated at room tem-
perature for 30 min after washing. Color development was
allowed after the addition of substrates 3,39-diaminobenzi-
dine (DAB, Vector Laboratories, Burlingame, CA, USA).
Digital images were acquired using NIKON Eclipse Ni-U
with SPOT RT3 camera. Histopathological changes of the
infected mouse lung tissues were examined by staining with
hematoxylin and eosin after deparaffinization as described
above. Viral replication and virus shedding were determined
by quantitative RT-PCR, plaque formation, and influenza
hemagglutination inhibition assay.

Gene expression analysis of H7N9-infected mice
by NGS (RNA-Seq)

All procedures were performed following the manufacturer’s
instructions. In brief, total RNA was extracted by Rneasy
(Qiagen). RNA quality was checked using the Bioanalyzer
2100 (Palo Alto, CA). cDNA was synthesized using the
Superscript system (InVitrogen) and the Enzo BioArray
High Yield RNA transcript Labeling kit (Enzo Biochem).
Purified cRNA was sequenced in an Illumina HiSeq2000
Analyzer at the Centre for Genomic Sciences of the
University of Hong Kong.

miRNA analysis of H7N9-infected mice by NGS
(miRNA-Seq)

RNA samples were prepared using the DGE-Small RNA
Sample Prep Kit (Illumina, San Diego, CA). Small RNAs of
18–30 nt in length were prepared from total RNA by gel
fractionation and then ligation to linkers. cDNA libraries were
generated by RT-PCR and then amplified with 15 PCR cycles
to produce sequencing libraries. Purified cDNAs were quan-
tified using the QuantiT PicoGreen dsDNA Kit (Invitrogen,
Carlsbad, CA) and diluted to 10 nM for sequencing on an
Illumina HiSeq2000 Analyzer at the Centre for Genomic
Sciences of the University of Hong Kong.

Statistical analysis

NMF method was used to detect genomic signature without
the supervision of prior class information (Fig. 2a). Similar to
other unsupervised factorization methods, NMF finds a de-
composition of the large input matrix V into two matrices:
one of metagenes matrix (W) and the other of metagene ex-
pression profiles (H). Specifically, let V be a n × p non-
negative matrix, (i.e., with Vij ≥ 0, denoted V ≥ 0), and r > 0
an integer. NMF consists in finding an approximation: X ≈
WH, where W, H are n × r and r × p (r < < min (n, p)) non-
negative matrices, respectively. Intuitively, an NMF-
discovered metagene can be viewed as a gene expression

profile, whose amplitudes represent the relative contribution
of each gene to that metagene, and the metagene loadings are
the proportions of these metagenes that are present in the
whole gene expression profile. Such positive constraints used
in this method are natural for RNAseq data because the
RNAseq read count data is always non-negative. In this appli-
cation, NMF was run on the whole gene expression profile in
terms of normalized gene read count, and extracted a total of
four major NMF metagenes. Multiple runs were applied to
achieve stability because the seeding method for NMF initial-
ization is stochastic. The final sample assignment was obtain-
ed from the consensus matrix (i.e., average connectivity ma-
trix across the runs) after 200 runs.

Raw read counts from mRNA-seq and miRNA-seq data
were taken as inputs for DESeq2(Love et al. 2014). The
DESeq2 function Brlog Transformation^ was used to normal-
ize and log transform raw read counts. The normalized expres-
sion counts were then used for further analysis without apply-
ing any additional pre-processing filtering. Heatmaps of
sample-to-sample Euclidean distance and principle compo-
nent analysis of normalized gene counts were constructed
using DESeq2. For each mouse strain, we carried out time-
series analysis for genes differentially expressed between in-
fected and uninfected mice over time by logistic regression
test in DESeq2, with mock-treated mice at day 1 used as
control data for the infected mice at day 2. Genes differentially
expressed between strains over time were detected by logistic
regression in DESeq2. Note that we grouped mock-treated
mice at day 1 and day 3 as infected mice at day 0 (before
infection) to increase the time points. In both of these time-
series expression level analyses, we defined DEGs as genes
with adjusted p value < 0.05 (FDR of 5%) and exhibiting at
least twofold difference in expression levels (|log2-fold
change| > 1). All mRNA-seq sequence reads were also aligned
to eight influenza gene segments. The sum of normalized
log2-tranformed RPKM (log2RPKM+ 1) values of all influ-
enza segments was used as influenza gene expression values
and correlated with influenza virus loads (TCID50) by
Pearson correlation test.

We used DTW-MIC method (Riccadonna et al. 2016) for
temporal expression pattern analysis. For a given gene, the
expression value expressed in each strain (C57BL/6J or
DBA/2J) at a given day (day 0, 1, 2 or 3) was calculated as
the median expression value of the biological replicates from
the same strain at the same day. DTW-MIC method was used
to measure the similarity of the expression patterns between
two strains for each gene. Note that genes with read count
covered on none of the samples of one strain or covered on
too few samples may lead to no meaningful DTW-MIC
scores; thus, these genes were excluded for further analysis.
Permutations were carried out by randomly swapping strain
labels of C57BL/6J and DBA/2J for both infected and mock-
treated mice for 10,000 times. Each gene with available DTW-
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MIC similarity score was assigned a permutation p value by
calculating the proportions of DTW-MIC scores under permu-
tations lower than real DTW-MIC score. Genes with signifi-
cantly low (DTW-MIC score < 0.25, permutation p value <
0.05) similarities between strains were collected and stated as
sig.low.simi genes. Among those sig.low.simi genes, genes
which were also differentially expressed between infected
and uninfected mice over time in at least one strain were
grouped into three clusters according to in which strain(s)
the gene was differentially expressed after infection. All gene
members of these three clusters were collected for functional
enrichment analysis and interaction network analysis.
Specifically, the interaction network of these cluster genes
was constructed by using the interaction scores from
STRING v10, whereby only interaction scores higher than
medium confidence (score > 400) were included. MCL clus-
tering embed in the AutoAnnotate application of Cytoscape
(Shannon et al. 2003) was used to aggregate the interaction
network, with edge weighted by the interaction scores be-
tween nodes. Aggregated modules with nodes more than 10
were selected for functional enrichment analysis.

All sig.low.simi genes and DEGs between strains over time
were collected as candidate genes responsible for host suscepti-
bilities to influenza infection. An integrated miRNA regulatory
network was constructed by using all candidate genes and their
corresponding regulatory miRNAs by Mirsynergy (Li et al.
2014). The miRNA-mRNA target prediction was carried out
by TargetScan v7.1 (Agarwal et al. 2015). The interaction ma-
trix between miRNA and mRNA (MMIW) was constructed
according to the expression level-based correlations between
miRNAs and their corresponding target genes. L1-norm regu-
larized linear regression model (i.e., LASSO) was used to cal-
culate the correlations. The binary interaction matrix between
genes (GGIW) was determined by the interaction scores with at
least medium confidence in STRING v10. Synergistic modules
produced by Mirsynergy were grouped together if over half of
their members (either miRNAor gene) were overlapped. KEGG
pathway enrichment analysis of each group of genes was carried
out by Enrichr (Chen et al. 2013; Kuleshov et al. 2016).
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