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Abstract
Purpose Recent	advancements	in	medical	imaging	have	transformed	diagnostic	assessments,	offering	exciting	possibilities	
for	extracting	biomarker-based	information.	This	study	aims	to	investigate	the	capabilities	of	a	machine	learning	classifier	
that incorporates dual-energy computed tomography (DECT) radiomics. The primary focus is on discerning and predicting 
outcomes related to pulmonary embolism (PE).
Methods The study included 131 participants who underwent pulmonary artery DECT angiography between January 2015 
and	March	2022.	Among	them,	104	patients	received	the	final	diagnosis	of	PE	and	27	patients	served	as	a	control	group.	A	
total of 107 radiomic features were extracted for every case based on DECT imaging. The dataset was divided into train-
ing	and	test	sets	for	model	development	and	validation.	Stepwise	feature	reduction	identified	the	most	relevant	features,	
which were used to train a gradient-boosted tree model. Receiver operating characteristics analysis and Cox regression tests 
assessed the association of texture features with overall survival.
Results The	 trained	machine	 learning	 classifier	 achieved	 a	 classification	 accuracy	 of	 0.94	 for	 identifying	 patients	with	
acute PE with an area under the receiver operating characteristic curve of 0.91. Radiomics features could be valuable for 
predicting outcomes in patients with PE, demonstrating strong prognostic capabilities in survival prediction (c-index, 0.991 
[0.979–1.00], p = 0.0001) with a median follow-up of 130 days (IQR, 38–720). Notably, the inclusion of clinical or DECT 
parameters did not enhance predictive performance.
Conclusion In conclusion, our study underscores the promising potential of leveraging radiomics on DECT imaging for the 
identification	of	patients	with	acute	PE	and	predicting	their	outcomes.	This	approach	has	the	potential	to	improve	clinical	
decision-making	and	patient	management,	offering	efficiencies	in	time	and	resources	by	utilizing	existing	DECT	imaging	
without the need for an additional scoring system.
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ML  Machine learning
PESI  Pulmonary Embolism Severity Index

Introduction

Pulmonary embolism (PE) represents a life-threatening con-
dition caused by the sudden blockage of pulmonary arteries 
due to blood clots [1]. Given its diverse clinical presenta-
tions, accurate diagnosis and prognosis of PE remain some-
times challenging in clinical practices. With a high global 
prevalence, the complex nature of PE necessitates a nuanced 
approach to diagnosis and management. Traditional diag-
nostic methods, such as angiography and D-dimer assays, 
have demonstrated limitations in terms of sensitivity and 
specificity	 [2]. In this context, the integration of imaging 
biomarkers appears as a promising perspective to not only 
enhance diagnostic accuracy but also provide insights into 
individualized treatment approaches.

In recent years, imaging has emerged as a crucial 
approach for investigating PE with computed tomography 
pulmonary angiography (CTPA) serving as the established 
gold standard for diagnosis [3]. Advanced technologies 
offer	the	potential	to	extract	specific	biomarker-based	infor-
mation [4–6]. This development has heightened interest in 
the	identification	and	validation	of	imaging	biomarkers	that	
not only contribute to the discrimination of PE but also aid 
in predicting treatment outcomes and prognostic parameters 
[7–9].

This study focuses on investigating the recent develop-
ments and advancements in dual-energy computed tomogra-
phy	(DECT)	and	radiomics	for	their	utility	in	differentiating	
pulmonary embolism and predicting disease progression. 
Through the exploration of these modern technologies, our 
objective is to enhance the diagnosis and prognosis of PE, 
ultimately	 contributing	 to	more	 effective	 patient	manage-
ment and care.

Methods

The study was approved by the local ethical committee and 
was carried out accordingly, which exempted the need for 
obtaining written informed consent. All analyses were con-
ducted in compliance with local data protection regulations.

Study population

In this study, we compiled clinical data and CT datasets 
from a total of 131 patients who had undergone CTPA for 
suspicion of acute PE. The CT scans were performed using 
a third-generation dual-source dual-energy CT machine at 

the University Hospital Frankfurt (Frankfurt am Main, Ger-
many). Data from this cohort have previously been reported 
[8]. The data collection period encompassed January 2015 
to March 2022.

All patients were divided into two distinct groups for 
analysis. One group consisted of patients with central PE 
and peripheral PE, while the other group who had no PE 
served as the control group. Inclusion criteria were patients 
over	18	years	with	 a	 confirmed	PE	and	 the	presence	of	 a	
dedicated CTPA examination depicting the complete lung 
vasculature. Exclusion criteria in both cohorts encompassed 
imaging artifacts in the pulmonary artery region (n = 11), 
inadequate visual delineation of the embolus (n = 7), 
incomplete examination protocols (n =	4)	 and	 insufficient	
data on disease progression (n = 28). Eligible participants 
were	 identified	 from	 the	 picture	 archiving	 and	 commu-
nication system (Centricity™ RIS-i 7.0‘ [Version 7.0.3.5, 
11/2021] und ‚Centricity™ Universal Viewer‘ [Version 7.0, 
08/2021], General Electric Healthcare, Chicago, Illinois, 
USA)	by	conducting	searches	using	specific	terms	such	as	
‘pulmonary embolism’, ‘pulmonal artery embolism’, ‘cen-
tral pulmonary embolism’ and ‘peripheral pulmonary embo-
lism’. The process of selecting participants for the study is 
illustrated in Fig. 1.

Clinical and laboratory data

We obtained additional patient data and parameters by 
extracting information from medical reports and the hos-
pital information system. Laboratory chemistry data were 
retrieved	from	recorded	laboratory	findings.	The	Wells	and	
Pulmonary embolism severity index (PESI) scores were 
also calculated, further classifying patients into risk classes 
ranging from 1 to 5 based on the PESI score [2].

Additionally,	a	retrospective	stratification	of	the	patients	
into the four risk categories according the European Soci-
ety of Cardiology (ESC) score was performed (low-risk PE, 
intermediate-low-risk PE, intermediate-high-risk PE, and 
high-risk PE) [2].

Overall survival was characterized as the duration from 
the DECT scan to the occurrence of death or the most recent 
documented follow-up.

Dual-energy CT protocol

The CT scans were conducted using a third generation 
DECT scanner equipped with a Somatom Force unit manu-
factured by Siemens Healthineers (Forchheim, Bavaria, 
Germany).

The examination parameters were as follows: tube A, 
90 kVp and 190 mAs; tube B, Sn150 kVp and 95mAs. In 
tube	B,	an	additional	tin	filter	(Selective	Photon	Shield	II,	
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Siemens Healthineers) was used to reduce radiation expo-
sure. Acquisition parameters were 0.25 s (s) rotation time, 
1–2 s acquisition time, 192 × 0.6-millimeter (mm) collima-
tion, and 2.5 pitch value. Scanning was performed in the 
craniocaudal direction in bolus-triggered arterial and venous 
phases with 80–120 milliliters (ml) of nonionized contrast 
agent (Imeron 400, Bracco, Milan, Italy) at an injection rate 
of 5–6 ml/s, a threshold of 120 HU and a delay of 7s.

Image segmentation and analysis

After anonymization, the CT datasets from all patients were 
extracted as Digital Imaging and Communications in Medi-
cine (DICOM) datasets and uploaded into 3D Slicer (www.
slicer.org, Version 5.0.2, Harvard University, Cambridge, 
USA).

The segmentation of the embolus and pulmonary trunk 
was performed in each patient using the interactive seg-
mentation algorithm GrowCut [10–12]. An example of 
the segmentation is shown in Fig. 2. The segmentation in 
each case was evaluated by two experienced radiologist 
(V.K.	and	S.S.M.,	 	board-certified	 radiologists	with	 four	
and seven years of experience in experimental imaging, 
respectively).

In case of any disagreement with the initial segmentation, 
the process was repeated, and necessary adjustments were 

made. All radiologists participating in the assessment were 
kept entirely unaware of the clinical data pertaining to the 
patients.

Extraction of radiomics features

Radiomic features were extracted through the utilization 
of the PyRadiomics extension package incorporated into 
the 3D Slicer software (Version 5.1.0–2022-05–20). This 
extraction process generated a total of 107 features for 
each segmentation (Table S1) [13]. All extracted features 
were	subsequently	classified	into	seven	distinct	groups,	as	
follows: Gray-Level Dependence Matrix (GLDM), Gray-
Level Co-Occurrence Matrix (GLCM), Gray-Level Run 
Length Matrix (GLRLM), Gray-Level Size Zone Matrix 
(GLSZM),	 Neighboring	 Gray	 Tone	 Difference	 Matrix	
(NGTDM), Shape, and First Order [13].

To provide a comprehensive assessment of the study’s 
transparency and quality, we included a CheckList for 
EvaluAtion of Radiomics Research (CLEAR) [14] in Fig-
ure S1.

Radiomics feature selection

In order to identify the most pertinent features for subse-
quent analysis, multi-stage feature selection process was 

Fig. 1 Flowchart of patient inclusion. Abbreviations PE, pulmonary embolism
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20.123). The normality of the data distribution was 
assessed through visual methods such as histograms and 
the Wilk-Shapiro test. Normally distributed values were 
presented as mean ± standard deviation (SD), while non-
normally distributed values were expressed as median 
and interquartile range (IQR). The t-test was employed 
for data with a continuous distribution, whereas the Man-
Whitney	 test	 or	 Spearman	 rank	 correlation	 coefficient	
was	 applied	 to	non-normally	distributed	data.	A	 signifi-
cance level of less than 0.05 was considered statistically 
significant.

The diagnostic accuracy of the optimal predictive param-
eters was evaluated using the area under the curve (AUC) 
derived from receiver operating characteristic (ROC) anal-
yses.	 Subsequently,	 diagnostic	 sensitivity	 and	 specificity	
were computed.

Cox proportional hazards models were used to identify 
independent factors among clinical markers, imaging mark-
ers, and radiomics features. Multivariate Cox proportional 
hazards	 models	 were	 adjusted	 for	 significant	 univariate	
prognostic parameters and clinically relevant confounders, 
with	hazard	ratios	and	their	corresponding	95%	confidence	
intervals (CI) reported.

implemented. Initially, all numerical features were nor-
malized using Z-score standardization. In the next step, 
the Boruta dimension reduction and feature elimination 
algorithm, was applied [15]. Furthermore, a correlation 
analysis was conducted to identify clusters of highly cor-
related features, defined by a Pearson’s correlation coef-
ficient (r ≥ 0.60). From each cluster, one feature with the 
highest Gini index was selected for further analysis.

Construction of the radiomics model

A gradient-boosted tree model was trained on the selected 
radiomic features to discriminate between pulmonary 
embolism and healthy patients using a training dataset com-
prising 79 patients. The model was subsequently assessed 
using a distinct test dataset comprising 52 patients. This test 
dataset had not been incorporated into the algorithm’s train-
ing phase previously.

Statistical analysis

Statistical analysis was conducted with the use of R sta-
tistical software (R Foundation for Statistical Computing, 
Vienna, Austria; Version 2023.06.0 + 421) and MedCalc 
(MedCalc Software Ltd., Ostend, Belgium; Version 

Fig. 2 Exemplary segmentation 
of the pulmonary arteries and the 
embolus. A, Unsegmented axial 
slice; B, Segmented axial slice; 
C, Unsegmented coronal slice; 
D, Segmented coronal slice; E, 
Unsegmented sagittal slice; F, 
Segmented sagittal slice; G, Final 
segmentation of the embolus. 
Abbreviations PE, pulmonary 
embolism
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comprised 27 patients who did not have PE at discharge. 
Table 1 provides an overview of the socio-demographic and 
clinical characteristics.

Wells Scores were found to be higher in the central PE 
patient group (p =	0.002),	whereas	no	significant	differences	
were observed for PESI (p =	0.7163).	Significantly	varying	
factors between central and peripheral PE patients included 
heart rate (p < 0.001), D-dimers (p < 0.0001), and CT-
derived measurements, such as RV/LV-ratio (p < 0.0004) 
and truncus pulmonalis diameter (p < 0.0006).

Results

Patient characteristics

A total of 181 patients were initially considered for study 
inclusion. After applying exclusion criteria, the ultimate 
study population encompassed a cohort of 131 patients aged 
64 ± 15 years. Among these, 88 individuals (67%) received 
a	 final	 diagnosis	 of	 central	 PE,	 while	 16	 patients	 (12%)	
were diagnosed with peripheral PE. The comparative group 

Variables
- n (%) or mean (SD)

All PE (n = 104) Central PE 
(n = 88)

Periph-
eral PE 
(n = 16)

No PE 
(n = 27)

Demographics
Overall age (years) 64± 14 61 ± 15 67 ± 13 63 ± 17
Male sex (n) 60 (58%) 53 (60%) 7 (44%) 16 (59%)
Female sex (n) 44 (42%) 35 (40%) 9 (56%) 11 (41%)
Laboratory parameters
D-dimers (ng/ml) 10,537 ± 2921 15,547 ± 

1895
5527 ± 
3947

-

Troponin T (pg/ml) 68± 83 90 ± 116 45 ± 49 -
NT-proBNP (pg/ml) 3550 ± 5364 5298 ± 

8226
1802 ± 
2501

-

Vital signs
Heart rate (bpm) 92 ± 25 100.± 25 83 ± 23 71 ± 17
Respiratory rate (/min) 20 ± 7 21 ± 8 18 ± 6 14 ± 3
Systolic blood pressure (mmHg) 13 8± 29 134 ± 31 141 ± 26 140 ± 23
Diastolic blood pressure (mmHg) 78 ± 15 78 ± 17 78 ± 12 80 ± 13
Saturation of peripheral oxygen (SpO2, %) 92 ± 6 92 ± 5 91 ± 6 95 ± 2
Temperature (°C) 36.9 ± 0.8 36.8 ± 0.6 37 ± 1.0 36.6 ± 

0.7
Risk factors
Obesity (n) 37 (36%) 33 (36%) 4 (25%) -
Atrial	fibrillation	(n) 11 (12%) 11 (12%) 0 (0%) -
Cancer (n) 34 (33%) 28 (30%) 6 (38%) 0 (0%)
Diabetes Mellitus (n) 17 (16%) 15 (16%) 2 (13%) 7 (26%)
Arterial hypertension (n) 47 (45%) 40 (43%) 7 (44%) 18 (67%)
Current smoking (n) 15 (14%) 12 (13%) 3 (19%) 9 (33%)
PE risk groups
Low risk group 9 (9%) 5 (6%) 4 (25%) -
Intermediate low risk group 25 (24%) 18 (20%) 7 (44%) -
Intermediate high risk group 62 (60%) 57 (65%) 5 (32%) -
High risk group 8 (9%) 8 (9%) 0 (0%) -
Initial treatment
Lysis (n) 10 (11%) 10 (11%) 0 (0%) -
Lysis in course (n) 6(7%) 6 (7%) 0 (0%) -
Unfractionated heparin (n) 61(59%) 57 (65%) 4 (25%) -
Low-molecular-weight heparin (n) 33 (32%) 23 (26%) 10 

(62.5%)
-

Oral anticoagulants (n) 10 (10%) 7 (8%) 3 (18.8%) -
Hospital stay
Length of hospital stay from event (days) 10 ± 7 11 ± 7 8 ± 6 -
Complications (n) 24 (23%) 21 (24%) 3 (18.8%) -
Recurrence PE (n) 4 (4%) 3 (3%) 1 (6.3%) -
Death caused by PE(n) 2 (2%) 2 (2%) 0 (0%) -

Table 1 Baseline characteristics 
of the study population

Note This is a sub analysis of 
a previous published study (8). 
Abbreviations: TAPSE, tricuspid 
annular plane systolic excur-
sion; sysPAP, systolic pulmo-
nary artery pressure; RV, right 
ventricle; LV, left ventricle; PE, 
Pulmonary embolism; PESI, 
Pulmonary Embolism Severity 
Index; NT-proBNP, N-terminal 
prohormone of brain natriuretic 
peptide
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through the multi-step feature selection process are pre-
sented in Table 2.

Performance of the radiomics model in detecting 
pulmonary embolism

In the next step, a gradient-boosted tree model was trained 
on	these	selected	radiomic	features	to	differentiate	between	
pulmonary	embolism	and	normal	pulmonary	artery	config-
urations.	To	assess	 the	model’s	 classification	performance	
and its ability to generalize, we applied the trained model to 

Selection of radiomics features

Following the implementation of the Boruta algorithm, 46 
features were retained for subsequent analysis. In the sub-
sequent step, a correlation matrix was generated. Figure 3 
provides a visual representation of the correlation matrix, 
highlighting the crucial features for distinguishing between 
pulmonary embolism and normal pulmonary artery con-
figurations.	After	 feature	 reduction,	 26	 features	 remained	
for	further	analysis.	The	most	significant	features	identified	

Fig. 3 Correlation matrix. Correlation matrix of the most important 
features. Abbreviations PE, pulmonary embolism; GLCM, gray-
level co-occurrence matrix; GLRLM, gray-level run length matrix; 

GLSZM, gray-level size zone matrix; NGTDM, neighboring gray tone 
difference	matrix;	GLDM,	gray-level	dependence	matrix;	MCC,	maxi-
mal	correlation	coefficient
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Discussion

In our study, we explored the potential of DECT-derived 
radiomics to enhance the diagnosis and prognostication of 
PE. A precise and reliable diagnosis of PE plays a pivotal 
role in the management of patients experiencing an acute 
event. Identifying individuals at high risk for adverse out-
comes is crucial for prompt interventions and the applica-
tion	of	suitable	treatment	strategies,	effectively	minimizing	
the risk of complications and potential harm [2, 9, 16].

There is a growing interest in integrating machine learn-
ing (ML) into various medical contexts, with the potential 
to alleviate physician workload and expedite the diagnos-
tic process [9, 17]. ML possesses an advantage in manag-
ing extensive, intricate and diverse data types, enabling 
it to automatically handle large datasets. Moreover, it has 
the capability to provide data-driven insights and contrib-
ute to decision-making in a broad range of medical condi-
tions, delivering advantages that go beyond saving time 
and resources. Over the past decade, a growing body of 
evidence has indicated the value of incorporating quantita-
tive imaging biomarkers into established clinical decision-
making models, enabling automated extraction of valuable 
imaging features from to diagnose a wide range of medical 
conditions or to gain tissue information [5, 18].

While past research has explored the capacity of radiomic 
features	 to	 differentiate	 between	 malignant	 and	 benign	
masses and predict outcomes across diverse cancer types 
[4, 19–21], there is limited information on techniques for 
forecasting outcomes in patients with PE. A previous study 
investigated the performance of distinct ML models based 
on clinical parameters to assess the diagnostic performance 
for the detection of PE [9]. The ML models based on clini-
cal markers achieved superior diagnostic performance in 

an independent test dataset, encompassing 52 patients who 
were	not	part	of	the	initial	analysis.	The	classification	accu-
racy in the validation dataset was 0.94 with an AUC of 0.91. 
Table 3	provides	a	comprehensive	overview	of	the	classifi-
cation	accuracy,	sensitivity,	specificity,	and	AUC.

Radiomics features performance in predicting the 
prognosis of pulmonary embolism

The Cox regression analysis unveiled that the selected 
radiomic features provided independent prognostic insights 
into mortality with a c-index of 0.991 (95% CI, 0.979-1.0, 
p = 0.0001). Following the adjustment of the unadjusted 
radiomics model by incorporating imaging parameters and 
clinical parameters showed that the prognostic accuracy 
decreased. Table 4 provides a summary of the performance 
of various Cox regression models in predicting the out-
comes of patients with PE incorporating radiomic features, 
imaging parameters and clinical parameters.

Table 2 The most important radiomics features
Features VoxelNum ClusterShade

Elongation DifferenceVariance
Flatness LargeAreaHighGrayLevelEmphasis
LeastAxisLength LargeDependenceLowGray-

LevelEmphasis
MajorAxisLength LowGrayLevelEmphasis
GrayLevelNon-
Uniformity

ZonePercentage 

SurfaceVolumeR-
atio

SmallDependenceLowGray-
LevelEmphasis

10Percentile LongRunLowGrayLevelEmphasis
RootMeanSquared ZoneVariance
Energy LargeAreaLowGrayLevelEmphasis
Skewness SizeZoneNonUniformity
Total Energy SizeZoneNonUniformityNormalized

Coarseness
Strength

Abbreviations PE, pulmonary embolism; GLCM, gray-level cooc-
currence matrix; GLRLM, gray-level run length matrix; GLSZM, 
gray-level	size	zone	matrix;	NGTDM,	neighboring	gray	tone	differ-
ence matrix; GLDM, gray-level dependence matrix; MCC, maximal 
correlation	coefficient

Table 3	 Performance	 of	 the	 radiomics	model	 for	 the	 differentiation	
between patients with and without acute PE

Validation cohort 95% CI of the validation cohort
AUC 0.91 0.76-1
Sensitivity 1 0.90-1
Specificity 0.89 0.63-0.95
Accuracy 0.94 0.88-1
PPV 0.98 0.78-1
NPV 1 0.92-1
Abbreviations: PE, pulmonary embolism; AUC, Area under the 
curve, PPV, positive predictive value; NPV, negative predictive value

Table 4	 Performance	 of	 different	 Cox-regression	 models	 to	 predict	
outcome using radiomics features and clinical parameters.
Model Harrells 

c-index
95% CI of 
c-index

Chi-squared P 
value

Unadjusted Model 1 0.991 0.979-1.000 63.056 0.0001
Adjusted Model 2 0.991 0.979-1.000 63.056 0.0002
Adjusted Model 3 0.989 0.973-1.000 48.131 0.0104
Adjusted Model 4 0.991 0.979-1.000 63.056 0.0002
Model 1: unadjusted radiomics model. Model 2: additionally adjusted 
by age. Model 3: additionally adjusted by troponin. Model 4: addi-
tionally adjusted by PESI-score
•	Variables	that	did	not	reach	univariate	significance:
	 ◦	D-dimers	(p=0.5987), TAPSE (p=0.6815)
•	Variables	that	reached	univariate	significance:
	 ◦	 Gender	 (p=0.0002), RV/LV-ratio (p=0.0002), tachypnoea 
(p=0.0387), age (p=0.0002), PESI (p=0.0002), Well-score 
(p=0.0002), hemodynamic instability (p=0.0002), signs of right 
heart strain (p=0.0002)
Abbreviations	CI,	confidence	interval
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acute PE. This innovative approach has the capacity to sig-
nificantly	 impact	 patient	 care	 by	 providing	more	 accurate	
risk assessment and tailored management strategies.

Supplementary Information The online version contains 
supplementary material available at https://doi.org/10.1007/s10140-
024-02216-2.
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