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Abstract
Purpose To compare the image quality between a deep learning–based image reconstruction algorithm (DLIR) and an adap-
tive statistical iterative reconstruction algorithm (ASiR-V) in noncontrast trauma head CT.
Methods Head CT scans from 94 consecutive trauma patients were included. Images were reconstructed with ASiR-V 50% 
and the DLIR strengths: low (DLIR-L), medium (DLIR-M), and high (DLIR-H). The image quality was assessed quantita-
tively and qualitatively and compared between the different reconstruction algorithms. Inter-reader agreement was assessed 
by weighted kappa.
Results DLIR-M and DLIR-H demonstrated lower image noise (p < 0.001 for all pairwise comparisons), higher SNR of up 
to 82.9% (p < 0.001), and higher CNR of up to 53.3% (p < 0.001) compared to ASiR-V. DLIR-H outperformed other DLIR 
strengths (p ranging from < 0.001 to 0.016). DLIR-M outperformed DLIR-L (p < 0.001) and ASiR-V (p < 0.001). The distribu-
tion of reader scores for DLIR-M and DLIR-H shifted towards higher scores compared to DLIR-L and ASiR-V. There was a 
tendency towards higher scores with increasing DLIR strengths. There were fewer non-diagnostic CT series for DLIR-M and 
DLIR-H compared to ASiR-V and DLIR-L. No images were graded as non-diagnostic for DLIR-H regarding intracranial hem-
orrhage. The inter-reader agreement was fair-good between the second most and the less experienced reader, poor-moderate 
between the most and the less experienced reader, and poor-fair between the most and the second most experienced reader.
Conclusion The image quality of trauma head CT series reconstructed with DLIR outperformed those reconstructed with 
ASiR-V. In particular, DLIR-M and DLIR-H demonstrated significantly improved image quality and fewer non-diagnostic 
images. The improvement in qualitative image quality was greater for the second most and the less experienced readers 
compared to the most experienced reader.
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DLP  Dose-length product
FBP  Filtered back projection
GE  General Electric
HU  Hounsfield unit
ICH  Intracranial hemorrhage
IR  Iterative reconstruction
MCA  Middle cerebral artery
ML  Machine learning
PACS  Picture archiving and communication system
PLIC  Posterior limb of the internal capsule
ROI  Region of interest
SD  Standard deviation
SNR  Signal-to-noise ratio

Introduction

There is wide consensus that noncontrast head CT is the 
initial imaging modality of choice for acute moderate to 
severe traumatic brain injury. CT is specific and sensitive 
for detecting intracranial hemorrhage (ICH) [1]. However, 
certain anatomical regions such as the middle and the pos-
terior fossa are more prone to beam hardening artifacts from 
adjacent dense skull structures which can obscure subtle 
traumatic lesions [2–4]. Furthermore, CT without intra-
venous contrast agents has intrinsically relatively limited 
soft tissue contrast resolution [5, 6], e.g., in the brain paren-
chyma where the difference in CT attenuation between gray 
and white matter is relatively small. The diagnosis of some 
intracranial pathologies relies on the detection of the discreet 
alteration in attenuation that they cause between the gray and 
white matter [5]. These factors can make the interpretation 
of noncontrast trauma head CT challenging.

Iterative reconstruction (IR) techniques have demon-
strated superior image quality for head CT compared to 
filtered back projection (FBP) with reductions in artifacts 
and image noise [7–10]. One reported disadvantage of IR 
compared to FBP is that its noise reduction can cause a 
blotchy or “pixelated” image texture [11–13] which is more 
pronounced with higher IR strengths [14–16]. Furthermore, 
studies have shown that IR achieves inferior resolution com-
pared to FBP for low-contrast features [17], especially at low 
doses [18, 19].

Artificial intelligence (AI) has in recent years unlocked 
new possibilities in medical imaging including new meth-
ods for CT image reconstruction where deep learning (DL), 
a subset of machine learning, has been implemented [20]. 
DL is based on an artificial neural network inspired by the 
human brain in the sense that it automatically and unsuper-
vised learns distinctive features from the input data itself 
which gives DL the ability to estimate highly complex non-
linear relationships. The term “deep” refers to the multilayer 
networks of artificial neurons [20, 21].

The DL-based image reconstruction (DLIR) algorithm 
TrueFidelity has recently been introduced by GE Health-
care. It has been trained on ground truth data comprising 
CT images reconstructed with FBP from a great number 
of phantom and patient cases including different anato-
mies, clinical indications, and scanning conditions. Both 
a low-dose/high-noise and high-dose/low-noise dataset 
was obtained for each case and the latter was used as the 
ground truth data. The DLIR algorithm was applied on the 
low-dose/high-noise datasets with the high-dose/low-noise 
datasets being the training target. CT image quality experts 
from GE Healthcare and radiologists supervised the training 
process. TrueFidelity offers three selectable strength levels 
(low, medium, and high) [22].

As novel image reconstruction algorithms are put on the 
market, it is important to conduct an independent assess-
ment of their effect on image quality. Recent studies have 
shown that DLIR algorithms improve head CT image qual-
ity compared to IR [23–25]. However, none of these studies 
has evaluated how a DLIR algorithm performs compared 
to an IR algorithm on noncontrast head CT from a cohort 
of multitrauma patients presenting to a level 1 trauma unit. 
Our hypothesis is that DLIR will improve the conspicuity of 
trauma-related findings by decreasing the beam-hardening 
artifacts and reducing the image noise level, compared to 
IR. Hence, the purpose of this study was to evaluate the 
qualitative and quantitative image quality of noncontrast 
trauma head CT reconstructed with TrueFidelity with all 
three DLIR strengths and compare it to the IR algorithm 
adaptive statistical iterative reconstruction-Veo (ASiR-V), 
also by GE Healthcare.

Materials and methods

This study has been approved by the regional ethics commit-
tee (Dnr 2020–04700, 2021–02547).

Patient population

From 27 September 2020 until 15 December 2020, we ret-
rospectively included 98 consecutive trauma patients who 
underwent a noncontrast head CT as a part of their trauma 
CT protocol at the level 1 trauma unit at Karolinska Uni-
versity Hospital, Stockholm, Sweden. Four patients were 
excluded. Three because the CT series were used as edu-
cational cases during the training of the readers, and one 
because the CT series were incomplete. Finally, a total of 
94 patients were included in the study.
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CT protocol

The trauma CT scans were performed using a 512-slice 
scanner (Revolution CT, GE.

Healthcare). The following imaging parameters were 
used: scan mode, axial; scan field of view, head; display 
field of view, 230 mm; tube potential, 120 kV; tube current, 
290 mA; detector coverage, 100, 100 mm (Smart Coverage); 
rotation time, 1.0 s; number of rotations per scan, 2; slice 
thickness, 0.625 mm; slice overlap, 0.3125 mm (only avail-
able for ASiR-V); default scan length, 180 mm (can vary 
depending on patient size); filter, standard.

Images were reconstructed with ASiR-V 50% and all 
three levels of TrueFidelity. Hence, we obtained four image 
series for each patient: ASiR-V 50%, TrueFidelity low 
(DLIR-L), medium (DLIR-M), and high (DLIR-H) strength. 
Hence, a total of 376 (4 × 94) noncontrast head CT series 
were evaluated.

Quantitative image quality analysis

Images were evaluated on a PACS workstation (Sectra PACS 
IDS7, v.21.1, Linköping, Sweden). One radiologist with 
7 years’ experience of trauma radiology (AZ), who was not 
involved in the qualitative image quality analysis, performed 
the quantitative image analysis.

The following five parameters were assessed: (1) CT 
attenuation of gray and white matter; (2) noise measure-
ment of air, gray matter, white matter, and where applica-
ble in the ICH; (3) signal-to-noise ratio (SNR) in the gray 
matter, white matter, and where applicable in the ICH; (4) 
gray-white matter differentiation; and (5) artifacts in the pos-
terior cranial fossa. CT attenuation was defined as the mean 
Hounsfield unit (HU) values and the noise as the standard 
deviation (SD) of HU values.

Circular equal regions of interest (ROIs) were placed at 
the basal ganglia level in the right thalamus and in the right 
posterior limb of the internal capsule (PLIC). The thalamus 
was selected to represent the deep gray matter in our study 
because it enabled uniform ROI measurements. The head of 
the caudate nucleus was not chosen for this purpose because 
it is smaller than the thalamus. The lentiform nucleus was 
not chosen either because the globus pallidus has a higher 
myelin content compared to the putamen. ROIs were also 
placed in the right M5 cortex region (lateral MCA terri-
tory, equivalent to the Alberta Stroke Program Early CT 
Score — ASPECTS [26]) and in the adjacent white matter 
of the centrum semiovale (CSO), to maintain uniformity. In 
cases where obvious neuropathological CT findings were 
present, measurements in the corresponding structures of 
the contralateral hemisphere were performed. The ROIs 
measured between 4 and 6 mm in diameter for the thalamus 

and for the white matter, and 2 and 3 mm for the cortical 
gray matter, with minor size adjustments between patients to 
prevent volume averaging with nearby structures of different 
attenuation. For each ROI, the mean HU value and the SD 
of HU values were measured. The SNR was determined by 
the formula SNR = mean HU∕SD

The noise measurement of air was performed by plac-
ing a 10-mm ROI in the air surrounding the study object at 
the level of the basal ganglia and measuring the SD of HU 
values. In cases where one or several different types of ICHs 
were present, a ROI measuring between 3 and 6 mm was 
placed in a homogenous part of each ICH type and the mean 
HU value as well as the SD of HU values were measured.

The gray-white matter differentiation was assessed by 
calculating the contrast-to-noise ratio (CNR) between the 
thalamic gray matter and the white matter of the PLIC as 
well as between the M5 cortex and the adjacent white matter 
of the CSO, respectively. The following formula was used: 
CNR =

(meanHUGraymatter−meanHUWhitematter)

(SDGraymatter+SDWhitematter )×0.5

The artifact evaluation in the posterior cranial fossa was 
assessed by placing a 15–17-mm ROI in the interpetrous 
region of the pons on the section with the most prominent 
artifacts. The SD of HU values within the ROI (image noise) 
was used as a surrogate measure for artifacts, as described 
by Kim et al. [23].

Qualitative image quality analysis

The qualitative image quality was evaluated by three read-
ers independently, comprising two radiologists with a board 
certificate recognized in the European Union: WS with 
32  years’ experience (most experienced) and GV with 
10 years’ experience (second most experienced) of trauma 
radiology; and one radiology resident: HK with 1.5 years’ 
experience (less experienced) of trauma radiology. Each 
reader was blinded to who the other readers were. The read-
ers were also blinded to each other’s evaluations, to which 
of the four reconstructions that was applied to which CT 
series, and to the results from the quantitative image qual-
ity analysis. Prior to the readers’ assessment, each reader 
independently received a 1-h training session including a 
presentation of educational trauma cases with accompanying 
image quality scores that were previously reached by con-
sensus of three experienced radiologists (KSK, SC, and AZ). 
These educational cases were excluded from the study. The 
CT series were anonymized and displayed next to each other 
in a random order. The CT series comprised 0.625-mm-thick 
slices and were presented with the multiplanar reconstruc-
tion function of the PACS. The readers assessed the fol-
lowing four parameters: noise, brain structures, artifacts, 
and ICH conspicuity. The scoring system (see Table 1) was 
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based on the European guidelines on quality criteria for CT 
[27]. Scores could be used more than once if reconstructions 
were deemed equivalent.

The location and type of ICH was retrieved from the orig-
inal trauma CT report, verified by AZ, and incorporated into 
the patient’s unique evaluation table so that all three readers 
graded the exact same ICH. If a patient had more than one 
ICH type, each type was graded separately.

Statistical analysis

IBM SPSS (v.27, Chicago, IL, USA) was used to perform 
the statistical analyses. Continuous variables were reported 
as mean ± SD and ordinal variables as percentages. Two-
sided significance level was set to 0.05.

Continuous variables, comprising quantitative image 
quality parameters, were compared between the four groups 
(ASiR-V, DLIR-L, DLIR-M, and DLIR-H). Means were 
compared with a one-way repeated-measures analysis of 
variance (ANOVA), and if assumptions were violated, the 
Friedman test was used instead.

Ordinal variables, comprising qualitative image quality 
scores, were compared between the four groups with the 
Friedman test.

Following a statistically significant repeated-measures 
ANOVA, post hoc pairwise comparisons were performed 
with paired t-tests and p-values were adjusted with the Bon-
ferroni correction. Following a statistically significant Fried-
man test, post hoc pairwise comparisons were performed 
with the Dunn-Bonferroni test.

Normality testing was performed using the Shapiro-
Wilks test. Mauchly’s sphericity test was used to validate 

the repeated-measures ANOVA regarding the sphericity 
assumption.

Weighted kappa (κw) with linear weights was used to 
evaluate the inter-reader agreement. All κw-values were 
interpreted according to Altman [28]: < 0.20 poor agree-
ment, 0.21–0.40 fair agreement, 0.41–0.60 moderate agree-
ment, 0.61–0.80 good agreement, and 0.81–1.00 very good 
agreement.

Results

Patient demographics, intracranial hemorrhages, 
and radiation dose

The study population comprised 70 males and 24 females 
with a mean age of 42.0 ± 20.4 years.

A total of 28 ICHs in 13 patients (13.8%; 13/94) were 
diagnosed, comprising seven contusions/intracerebral 
(25.0%), 12 subarachnoid (42.9%), six subdural (21.4%), 
and three epidural (10.7%) hemorrhages. Trauma mecha-
nisms comprised four falls (30.8%), one assault (7.7%), three 
pedestrian-vehicle accidents (23.1%), two bicycle accidents 
(15.4%), one motor vehicle accident (7.7%), and two non-
trauma-related (spontaneous intracerebral hemorrhages) 
(15.4%).

The mean volume CT dose index (CTDIvol) was 
46.96 ± 0.49 mGy and the mean dose-length product (DLP) 
was 847.84 ± 22.25 mGy ∗ cm.

Table 1  Scoring system for the evaluation of the qualitative image quality parameters

ICH intracranial hemorrhage

Parameter Score

1 2 3 4 5

Image noise Very noisy, non-diag-
nostic image quality

Noisy, but permits 
evaluation

Moderate noise Low noise Little to no noise

Brain structures Very blurry, white/gray 
matter border, basal 
ganglia, CSF-spaces 
cannot be delineated, 
non-diagnostic

Blurry, white/gray 
matter border, basal 
ganglia, CSF-spaces 
can be delineated, 
permits evaluation

Moderate sharpness 
of white/gray matter 
border, basal ganglia, 
CSF-spaces

Good sharpness of 
white/gray matter 
border, basal ganglia, 
CSF-spaces

Sharpest visualization 
of white/gray matter 
border, basal gan-
glia, CSF-spaces

Artifacts Very severe artifacts, 
non-diagnostic image 
quality

Severe artifacts, per-
mits evaluation

Moderate artifacts Mild artifacts No artifacts

Intracranial 
hemorrhage 
conspicuity

Poor image quality, 
ICH is not displayed 
at all

Weak image quality, 
ICH is not well dis-
played and the image 
quality is insufficient 
for diagnosis

Satisfactory image 
quality, ICH is not 
clearly displayed but 
sufficiently enough to 
make a diagnosis

Good image quality, 
ICH is well displayed 
and can be diagnosed

Excellent image qual-
ity, ICH is very well 
displayed and easy 
to diagnose
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Quantitative image quality analysis

The results from the quantitative image quality analysis are 
summarized in Table 2 and Fig. 1. The post hoc pairwise 
multiple comparisons (see Supplementary Table 1) showed 
that the image noise of the CSO, the posterior fossa, and 
air was significantly different between all image reconstruc-
tions, with a gradual decrease from ASiR-V to higher DLIR 
strengths. The image noise of the thalamus, the PLIC, the 
M5 cortex, and the ICHs was significantly lower for DLIR-H 
and DLIR-M compared to ASiR-V, and for DLIR-H com-
pared to DLIR-M; however, no significant difference was 
detected between DLIR-L and ASiR-V. Regarding CT atten-
uation, there was a slight, yet significant difference between 
ASiR-V and at least one of the DLIR strengths (see Table 2). 
Also, there was a significant difference between DLIR-L and 
DLIR-H, and DLIR-M and DLIR-H, for the CT attenuation 
of the PLIC and the M5 cortex.

The SNR of both white matter regions (PLIC and CSO) 
was significantly different between all image reconstruc-
tions, with a gradual increase from ASiR-V to DLIR-H of 
up to 82.9%. The SNR of both gray matter regions (thalamus 
and M5 cortex) was significantly higher for DLIR-H and 
DLIR-M compared to ASiR-V, of up to 59.7%; however, 
no significant difference was detected between DLIR-L and 
ASiR-V. The same was found for SNR of ICH where there 
was a gradual increase from ASiR-V to DLIR-H of 45.4%; 
however, there was no significant difference between DLIR-
L and ASiR-V.

The CNR between the thalamus and the PLIC, as well 
as the CNR between the M5 cortex and the adjacent white 
matter of the CSO, was significantly higher for DLIR-H and 
DLIR-M compared to ASiR-V, by up to 53.3% and 49.2%, 
respectively. There was no significant difference between 
DLIR-L and ASiR-V.

Table 2  Comparison of 
quantitative image quality 
parameters for the noncontrast 
head CT series between ASiR-V 
and all three DLIR strength 
levels

HU Hounsfield units, GM gray matter, WM white matter, PLIC posterior limb of the internal capsule, 
M5 M5 cortex region (lateral MCA territory) according to Alberta Stroke Program Early CT Score — 
ASPECTS, CSO centrum semiovale, PF posterior fossa, ICH intracranial hemorrhage, SNR signal-to-noise 
ratio, CNR contrast-to-noise ratio, ASiR-V adaptive statistical iterative reconstruction-Veo, DLIR-L deep 
learning–based image reconstruction low strength level, DLIR-M deep learning–based image reconstruc-
tion medium strength level, DLIR-H deep learning–based image reconstruction high strength level
Post hoc pairwise multiple comparisons procedure with the Dunn-Bonferroni test showed a statistically 
significant (P < 0.05) difference between means when compared with DLIR-L (*), DLIR-M (a), and DLIR-
H (b)

ASiR-V DLIR-L DLIR-M DLIR-H P value

CT Attenuation (HU)
Thalamic GM 33.77 ± 2.44* 34.13 ± 2.18 34.05 ± 2.03 33.95 ± 2.02 0.001
PLIC WM 24.69 ± 2.30*ab 25.33 ± 2.03b 25.43 ± 1.99b 25.64 ± 1.99  < 0.001
M5 GM 36.99 ± 2.10ab 36.63 ± 2.04b 36.50 ± 2.00b 36.22 ± 1.97  < 0.001
CSO WM 26.86 ± 2.17b 27.04 ± 2.00 27.08 ± 1.88 27.17 ± 1.81 0.002
Image noise (HU)
Thalamic GM 5.51 ± 1.16ab 5.32 ± 1.11ab 4.39 ± 0.92b 3.46 ± 0.71  < 0.001
PLIC WM 5.74 ± 1.25ab 5.33 ± 1.02ab 4.31 ± 0.85b 3.23 ± 0.62  < 0.001
M5 GM 5.05 ± 1.04ab 4.87 ± 1.01ab 4.04 ± 0.83b 3.22 ± 0.72  < 0.001
CSO WM 5.46 ± 1.04*ab 5.10 ± 0.97ab 4.07 ± 0.78b 3.07 ± 0.58  < 0.001
PF (artifacts) 8.85 ± 1.39*ab 8.24 ± 1.02ab 7.12 ± 0.99b 5.94 ± 0.99  < 0.001
Air 6.83 ± 0.92*ab 4.75 ± 0.70ab 3.55 ± 0.60b 2.29 ± 0.50  < 0.001
ICH 6.01 ± 1.58ab 5.89 ± 1.62ab 5.00 ± 1.46b 4.23 ± 1.37  < 0.001
SNR
Thalamic GM 6.40 ± 1.37ab 6.69 ± 1.43ab 8.09 ± 1.68b 10.22 ± 2.11  < 0.001
PLIC WM 4.50 ± 1.05*ab 4.93 ± 1.02ab 6.13 ± 1.29b 8.23 ± 1.68  < 0.001
M5 GM 7.61 ± 1.51ab 7.81 ± 1.52ab 9.38 ± 1.79b 11.74 ± 2.39  < 0.001
CSO WM 5.11 ± 1.11*ab 5.50 ± 1.14ab 6.89 ± 1.36b 9.15 ± 1.76  < 0.001
ICH 10.44 ± 3.75ab 10.73 ± 3.73ab 12.68 ± 4.55b 15.18 ± 5.72  < 0.001
CNR
Thalamic GM-PLIC WM 1.65 ± 0.47ab 1.69 ± 0.44ab 2.03 ± 0.51b 2.53 ± 0.60  < 0.001
M5 GM-CSO WM 1.95 ± 0.50ab 1.95 ± 0.47ab 2.35 ± 0.54b 2.91 ± 0.65  < 0.001
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Fig. 1  Clustered boxplot diagrams showing a SNR for superficial 
gray matter (GMSF), deep gray matter (GMDEEP), superficial white 
matter (WMSF), and deep white matter (WMDEEP) and b CNR 
between superficial gray and white matter, and deep gray and white 
matter, for ASiR-V and all three DLIR reconstruction strengths. For 
SNR, there was a statistically significant difference between all recon-
structions, except between ASiR-V and DLIR-L for the deep and the 

superficial gray matter. For CNR, there was a statistically significant 
difference in mean CNR between all reconstructions, except between 
ASiR-V and DLIR-L. Both SNR and CNR gradually increased with 
higher DLIR strength levels. Boxes represent the middle 50% of the 
data, solid lines represent the median, and white diamonds represent 
the mean. The whiskers represent the minimum and maximum values. 
Circles represent outliers

Table 3  Comparison of qualitative image quality scores for the noncontrast head CT series between ASiR-V and all three DLIR strength levels

ICH intracranial hemorrhage, ASiR-V adaptive statistical iterative reconstruction-Veo, DLIR-L deep learning–based image reconstruction low 
strength level, DLIR-M deep learning–based image reconstruction medium strength level, DLIR-H deep learning–based image reconstruction 
high strength level, ns not significant
Post hoc pairwise multiple comparisons procedure with the Dunn-Bonferroni test showed a statistically significant (P < 0.05) difference between 
means when compared with DLIR-L (*), DLIR-M (a), and DLIR-H (b)

Reader and parameters 
(distribution of scores 
1/2/3/4/5 given as percent-
ages)

ASiR-V DLIR-L DLIR-M DLIR-H P value

Most expe-
rienced 
reader

Image noise 2.1/92.6/5.3/0/0ab 1.1/69.1/29.8/0/0ab 0/9.6/84.0/6.4/0b 0/1.1/18.1/76.6/4.3  < 0.001
Brain struc-

tures
2.1/69.1/26.6/2.1/0ab 1.1/64.9/31.9/2.1/0ab 0/19.1/56.4/24.5/0 0/6.4/57.4/36.2/0  < 0.001

Artifacts 2.1/26.6/28.7/42.6/0 2.1/25.5/28.7/43.6/0 1.1/25.5/28.7/44.7/0 1.1/22.3/30.9/44.7/1.1  < 0.001
ICH conspi-

cuity
0/3.6/42.9/28.6/25.0 0/3.6/42.9/28.6/25.0 0/0/46.4/28.6/25.0 0/0/46.4/28.6/25.0 ns (0.392)

Second 
most 
experi-
enced 
reader

Image noise 3.2/58.5/34.0/4.3/0*ab 0/24.5/54.3/21.3/0ab 0/1.1/34.0/61.7/3.2b 0/0/2.1/29.8/68.1  < 0.001
Brain struc-

tures
10.6/26.6/42.6/18.1/2.1*ab 0/17.0/36.2/36.2/10.6ab 0/4.3/18.1/50.0/27.7b 0/0/2.1/22.3/75.5  < 0.001

Artifacts 27.7/38.3/26.6/6.4/1.1*ab 9.6/40.4/31.9/17.0/1.1b 5.3/31.9/36.2/23.4/3.2b 2.1/7.4/36.2/40.4/13.8  < 0.001
ICH conspi-

cuity
7.1/3.6/25.0/28.6/35.7b 3.6/10.7/14.3/35.7/35.7b 0/7.1/10.7/28.6/53.6 0/0/10.7/25.0/64.3  < 0.001

Less experi-
enced 
reader

Image noise 0/95.7/4.3/0/0*ab 0/11.7/87.2/1.1/0ab 0/0/6.4/92.6/1.1b 0/0/0/6.4/93.6  < 0.001
Brain struc-

tures
0/81.9/18.1/0/0*ab 0/25.5/71.3/3.2/0ab 0/0/8.5/90.4/1.1b 0/0/0/7.4/92.6  < 0.001

Artifacts 0/26.6/60.6/12.8/0*ab 0/6.4/66.0/27.7/0ab 0/1.1/28.7/63.8/6.4b 0/0/4.3/63.8/31.9  < 0.001
ICH conspi-

cuity
0/21.4/64.3/14.3/0ab 0/7.1/75.0/17.9/0ab 0/0/35.7/57.1/7.1b 0/0/3.6/57.1/39.3  < 0.001
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Qualitative image quality analysis

The results from the qualitative image quality analysis 
are summarized in Table 3 and Fig. 2. The grading of the 
qualitative image quality parameters demonstrated a simi-
lar pattern when compared to the results of the quantita-
tive analysis. For all three readers, the distribution of scores 
for the DLIR reconstructions shifted towards higher scores 
compared to the distribution of scores for ASiR-V, for all 
parameters except for DLIR-L for ICH conspicuity for the 
most experienced reader, where the distribution of scores 
was the same as for ASiR-V (Figs. 3 and 4). Additionally, 
the shift towards higher scores gradually increased with 

increasing DLIR strengths for all parameters and readers, 
except between DLIR-M and DLIR-H for ICH for the most 
experienced reader where the distribution of the scores was 
the same. For the less experienced reader, the results from 
the pairwise comparisons (Supplementary Table 2) showed 
a significant difference between all image reconstructions 
for all parameters except between ASiR-V and DLIR-L, for 
ICH conspicuity. For the second most experienced reader, 
the pairwise comparisons demonstrated a similar result 
when compared to the less experienced reader with the 
addition that no significant difference was detected between 
DLIR-L and DLIR-M for artifacts and ASiR-V and DLIR-
M, and DLIR-L and DLIR-M, and DLIR-M and DLIR-H, 

Fig. 2  Stacked bar charts demonstrating reader scores as percentages 
in four parameters of qualitative image quality assessment (image 
noise, brain structures, artifacts, and intracranial hemorrhage (ICH) 
conspicuity) for ASiR-V, and all three DLIR strength levels (DLIR-
L, DLIR-M, and DLIR-H). The distribution of scores for the DLIR 
reconstructions shifted towards higher scores compared to the distri-
bution of scores for ASiR-V, for all parameters except for DLIR-L for 

ICH conspicuity for the most experienced reader, where the distribu-
tion of scores was the same as for ASiR-V. Furthermore, there was a 
tendency towards higher scores with increasing DLIR strength levels. 
The proportion of non-diagnostic CT series (i.e., “Score 1” for all 
image quality parameters as well as “Score 2” for ICH) was lower for 
DLIR-M and DLIR-H compared to ASiR-V, for all readers
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for ICH conspicuity. For the most experienced reader, for 
image noise, the pairwise comparisons showed significantly 
different scores between all image reconstructions except 
between ASiR-V and DLIR-L. For the same reader for brain 
structures, there was a significant difference between all 
image reconstructions, except between ASiR-V and DLIR-L, 
and DLIR-M and DLIR-H. No significant differences were 
detected between the reconstructions for artifacts and ICH 
scores in the most experienced reader.

The proportion of non-diagnostic scores (i.e., “score 1” 
for all parameters as well as “score 2” for ICH) decreased 
with increasing DLIR strengths for all readers (Table 3). 
Compared to ASiR-V, the reconstructions DLIR-M and 
DLIR-H demonstrated smaller percentages of non-diagnostic 
scores for all readers. Notably, regarding ICH conspicuity, 
fewer CT series were regarded as non-diagnostic (score 1 or 
2) for DLIR-M and DLIR-H compared to ASiR-V and DLIR-
L, and none was graded as non-diagnostic for DLIR-H.

The inter-reader agreement between the most experi-
enced and the less experienced reader was moderate for 
image noise (κw = 0.41), fair for brain structures (κw = 0.25), 
and poor for artifacts and ICH (κw = 0.13 and 0.09, respec-
tively). The agreement between the less experienced and the 
second most experienced reader was good for image noise 
(κw = 0.67), moderate for brain structures (κw = 0.48), and 
fair for artifacts and ICH (both κw = 0.24). The agreement 
between the most experienced and the second most experi-
enced reader was fair for image noise (κw = 0.36), poor for 
brain structures (κw = 0.12), and fair for artifacts and ICH 
(κw = 0.21 and 0.29, respectively).

Discussion

We compared the image quality between a DL-based (True-
Fidelity) and an IR-based (ASiR-V) image reconstruction 
algorithm for trauma head CT. We have demonstrated that 
TrueFidelity outperforms ASiR-V regarding both quantita-
tive and qualitative image quality parameters. The image 
quality increased with higher DLIR strengths. In particular, 
DLIR-M and DLIR-H had significantly lower image noise 
levels and higher SNR and CNR compared to ASiR-V. 

DLIR-M and DLIR-H also received higher reader scores 
compared to ASiR-V and DLIR-L. Furthermore, the pro-
portion of non-diagnostic CT series was lower for DLIR-M 
and DLIR-H when compared to ASiR-V, for all readers. The 
improvement in qualitative image quality provided by DLIR 
was greater for the second most and the less experienced 
reader than for the most experienced reader.

These findings are in line with the current literature which 
shows that DLIR algorithms achieve superior image qual-
ity for head CT compared to IR-based algorithms [23–25, 
29]. We confirm the findings from a similar study by Kim 
et al. [23]. However, they included all patients undergoing a 
noncontrast head CT, no matter the indication, and excluded 
pathology. We showed that the superior image quality of 
TrueFidelity compared to ASiR-V also applies to trauma 
patients with the potential of improving diagnostic per-
formance regarding ICH. Furthermore, we recruited three 
readers with different levels of experience, as opposed to 
the study by Kim et al. in which two experienced neuro-
radiologists performed the qualitative image quality analy-
sis. Not only were the readers in our study blinded to each 
other’s evaluations, but also to each other’s identity. Another 
strength with our study is that each reader received an indi-
vidual training session before initiating image evaluation. 
Additionally, although debatable, we consider our approach 
of presenting the ordinal data (reader scores) as percentages 
a more appropriate measure than the mean. We also included 
a larger number of patients in our study.

The study by Sun et al. was performed on a pediatric 
population and even though trauma cases were included in 
this study the patient cohort was quite heterogenous and 
also included patients with convulsion or mental symptoms 
or cases where emergency doctors requested a CT scan to 
exclude intracranial pathology [24]. We have focused on 
the trauma patient subset exclusively and thereby showed 
that DLIR can successfully be implemented for head CT on 
trauma patients presenting to a level 1 trauma unit. Addi-
tional strengths with our study are that we almost had the 
double sample size compared to Sun et al.

In a retrospective study, Wong et al. [29] developed a 
novel DL-based CT image denoising method where the 
model was trained on noncontrast head CT in patients with 
acute ischemic stroke. Each CT scan was unique regarding 
imaging protocol, scanner vendor and model, radiation dose, 
etc. A limitation of their study is that they only included 
three cases in the assessment of stroke visualization and that 
they did not quantify the direct visual comparisons. Further-
more, the visual comparisons were not performed by radi-
ologists. Also, the denoising performance assessment was 
only performed using the top 30 images of the supratentorial 
region. The strengths with our study compared to that of 
Wong et al. are that we included quantitative image quality 
parameters on several anatomical levels and also evaluated 

Fig. 3  Axial noncontrast trauma head CT images reconstructed with 
ASiR-V (a, e, i, m), DLIR-L (b, f, j, n), DLIR-M (c, g, k, o), and 
DLIR-H (d, h, l, p). The first row of images (a–d) is of a 24-year-old 
male patient at the level of the centrum semiovale. The second row of 
images (e–h) is of a 41-year-old male patient at the level of the basal 
ganglia. The third row of images (i–l) is of a 67-year-old female at the 
level of the pons/interpeduncular cistern. The fourth row of images 
(m–p) is of a 36-year-old female at the level of the pons/interpetrous 
region. Readers graded image noise, brain structures, and artifacts 
higher for the DLIR reconstructions compared to ASiR-V. In addition, 
there was a tendency towards higher scores with increasing DLIR 
strength levels
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qualitative parameters in a quantized and standardized man-
ner. Furthermore, our qualitative image quality assessment 
was performed by end-users.

Our study confirms the findings by Oostveen et al., who 
detected lower image noise and improved gray-white matter 
differentiation of DLIR compared to IR-based image recon-
struction algorithms for noncontrast head CT [25]. How-
ever, they included patients who underwent a head CT scan 
for various indications and did not incorporate intracranial 
pathology in their image quality assessment. Also, our sam-
ple size was nearly twice as large.

Our results are also in line with a review by Arndt et al. 
who evaluated DLIR phantom and body studies and con-
cluded that DLIR algorithms improve image quality with the 
potential for radiation dose reduction [30]. Another review 
by Zhang et al. confirms that DLIR preserves image quality 
better at low doses compared to other image reconstruction 
techniques [20]. However, the nonlinear properties of DLIR 
algorithms can occasionally cause complex and unantici-
pated effects on image quality parameters. One study has 
reported that even though DLIR algorithms achieve less 
noise than FBP or IR, the spatial resolution can become 
degraded, especially with a decreasing radiation dose of 
the training images for the DLIR algorithm [31]. Further-
more, a phantom study by Solomon et al. showed superior 
low-contrast resolution of FBP compared to both ASiR-V 
and TrueFidelity and the low-contrast resolution decreased 
with increasing ASiR-V and DLIR strengths [32]. Another 
study by Jensen et al. reported blurring of small abdomi-
nal lesions that increases with higher DLIR strengths [33], 
rather analogous to what has been observed with higher IR 
strengths [14–16]. We did not find any degradation of the 
image quality at higher DLIR strengths. We detected sub-
tle, yet statistically significant differences in CT attenuation 

between the reconstructions (Table 2). A further analysis of 
the mean absolute HU differences as pairwise differences 
between all possible combinations of the four image recon-
struction types (Supplementary Table 3) showed that the HU 
differences were slightly greater between ASiR-V and any 
DLIR strength level than between any possible combination 
of DLIR strength pairs, for all four brain regions. Addition-
ally, a greater number of cases with statistically significant 
mean absolute HU differences were detected between pairs 
where one of the reconstruction types in one or both pairs 
was ASiR-V (37 cases), compared to if it was DLIR-L (16 
cases), DLIR-M (15 cases), or DLIR-H (14 cases). These 
findings indicate that DLIR might cause minimal alterations 
in the attenuation values (in our case mean absolute HU 
differences of up to 1.03 HU). The clinical consequences of 
this finding are most likely insignificant.

There was a substantial variability in inter-reader agree-
ment. This could partially be due to the implementation of a 
5-grade scoring system. A scoring system with fewer scoring 
levels could have resulted in a higher inter-reader agree-
ment, at the expense of less specific qualitative image scores. 
Another contributing factor to the variability in κw-values 
could be that the scores for artifacts and ICH conspicuity 
for the most experienced reader were relatively uniform 
between the different image reconstructions compared to the 
second most and the less experienced readers. This could 
also indicate that the superior image quality of DLIR did 
not influence the diagnostic confidence of the most experi-
enced reader to the same degree as it did for the second most 
and the less experienced readers. Further studies are needed 
to evaluate if DLIR increases the diagnostic confidence 
for trauma head CT to a greater extent in less experienced 
compared to more experienced readers. If this is the case, it 
could lead to improved acute diagnostic accuracy for head 
CT for trauma patients at our trauma unit as the preliminary 
interpretation of the trauma CT usually is performed by our 
radiology residents (which is probably true for many trauma 
units during on call hours).

There are several limitations of our study. First, patients 
were evaluated retrospectively at a single level 1 trauma center. 
Second, the study did not directly assess diagnostic perfor-
mance, which is necessary to fully appreciate the potential 
clinical benefits of DLIR. Third, images were obtained by a 
standard dose CT protocol. Hence, the radiation dose reduc-
tion potential of DLIR could not be directly determined. 
Fourth, assessment of normal anatomical structures was also 
performed in cases with ICH. Even though the evaluation in 
these cases was performed on the unaffected contralateral 
hemisphere, confounding effects on image evaluation due to 
the pathology cannot be fully excluded. Fifth, even though a 
spontaneous intracerebral hemorrhage is not a trauma-related 
finding per se, we decided to include this ICH type in the study 
as it is found in a small fraction of the trauma patients that 

Fig. 4  Axial noncontrast trauma head CT images with intracranial 
hemorrhages, reconstructed with ASiR-V (a, e, i, m, q), DLIR-L (b, 
f, j, n, r), DLIR-M (c, g, k, o, s), and DLIR-H (d, h, l, p, t). The 
first row of images (a–d) is of a 26-year-old female patient who was 
assaulted. A left frontal epidural hematoma was diagnosed (white 
arrows in image d). The second row of images (e–h) is of a 22-year-
old male that was involved in a motor vehicle accident. At the level of 
the pons/interpetrous region, an epidural hematoma in the middle cra-
nial fossa on the left side was diagnosed (white arrows in image h). 
The third row of images (i–l) is of a 33-year-old male, a pedestrian 
who was hit by a car. A left frontal subarachnoid hemorrhage was 
diagnosed (white arrow in image l). The fourth row of images (m–p) 
is of a 62-year-old female who fell at home. An acute subdural hema-
toma along the right cerebral convexity was diagnosed (white arrows 
in image p). The fifth row of images (q–t) is of a 69-year-old male 
who fell. Cerebral hemorrhagic contusions were diagnosed adjacent 
to the floor of the right middle cranial fossa (white arrows in image 
t), and all three readers graded the ASiR-V images as non-diagnostic 
(score 1 or 2) and the DLIR-H images as diagnostic (score > 2). Over-
all, regarding intracranial hemorrhage conspicuity, the readers graded 
fewer CT series as non-diagnostic (score 1 or 2) for DLIR-M and 
DLIR-H compared to ASiR-V and DLIR-L
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present to our trauma unit and therefore mirrors the clinical 
scenario. Sixth, the CT scans were obtained with our stand-
ard trauma CT protocol with a slice thickness of 0.625 mm 
with 0.3125 mm overlap. However, the applied version of 
TrueFidelity on the raw data did not offer overlapping recon-
structions. We are confident that this difference did not signifi-
cantly affect the image quality comparison between ASiR-V 
and DLIR. If anything, the overlapping slices could potentially 
improve the image quality of ASiR-V by increasing the detec-
tion of small lesions [34]. We did not alter our standard trauma 
CT protocol by removing the slice overlap because we wanted 
to reflect the clinical scenario at our department as far as possi-
ble as this project also served the purpose as quality control for 
a novel trauma CT protocol. Seventh, we only evaluated how 
DLIR performs compared to ASiR-V, an IR technique based 
on hybrid/adapted-IR. We did not evaluate how DLIR per-
forms compared to full/model-based IR techniques (MBIR). 
A phantom study by Higaki et al. has demonstrated that the 
image quality achieved by DLIR at low radiation doses out-
performs that achieved by MBIR, but that MBIR outperforms 
DLIR at high radiation doses [35]. In a review, Nakamura et al. 
stated that DLIR may enhance the detection of low-contrast 
lesions compared to MBIR. They also indicated that MBIR 
enhances the detection of high-contrast lesions at high radia-
tion doses compared to DLIR [36]. Further studies are needed 
to evaluate the clinical implications of these findings. Eighth, 
the calculated SNRs in our study do not represent true SNRs. 
True signal is the output signal of the detector, which, for 
energy-integrating detectors, is proportional to the integrated 
energy levels of all received photons [37]. The HU in turn is 
the linear transformation of the measured linear attenuation 
coefficient [38]. It would have been sufficient only to present 
the image noise. However, SNR, as defined in this article, is a 
frequently encountered quantitative CT image quality param-
eter in the literature, probably recognizable by many readers 
and easily related to.

Our findings are in line with the current abovementioned 
literature and extends the superior image quality of DLIR 
for head CT to the trauma setting as well. Further studies 
are needed to evaluate the performance of DLIR for other 
anatomical locations and spectrum of traumatic injuries 
as well as to determine if DLIR increases the diagnostic 
confidence to a higher degree for less experienced than for 
more experienced readers. A next step after that would be to 
determine the degree of radiation dose reduction that DLIR 
allows while maintaining diagnostic image quality in trauma 
patients.

In conclusion, the image quality of trauma head CT series 
reconstructed with DLIR outperformed CT series recon-
structed with ASiR-V. In particular, DLIR-M and DLIR-H 
demonstrated significantly improved image quality and a 
lower proportion of non-diagnostic images. The qualitative 
image quality improvement provided by DLIR was more 

evident for the second most and the less experienced readers 
compared to the most experienced reader.
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