Skip to main content
Log in

Reproductive Characteristics and Suitability of Sterile dead end Knockout Nibe Croaker as a Recipient for Intraperitoneal Germ Cell Transplantation

  • Research
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The use of sterile recipients is crucial for efficiently producing donor-derived offspring through surrogate broodstock technology for practical aquaculture applications. Although knockout (KO) of the dead end (dnd) gene has been used in previous studies as a sterilization method, it has not been reported in marine fish. In this study, nibe croaker was utilized as a model for marine teleosts that produce small pelagic eggs, and the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9) system was utilized to produce dnd KO fish. The F1 generation, which carried a nonsense mutation in the dnd gene, was produced by mating founder individuals with wild-type counterparts. Subsequently, the F2 generation was produced by mating the resulting males and females. Among the F2 generations, 24.0% consisted of homozygous KO individuals. Histological analysis revealed that primordial germ cells (PGCs) were present in homozygous KO individuals at 10 days post-hatching (dph), similar to wild-type individuals. However, by 20 dph, PGCs were absent in KO individuals. Furthermore, no germ cells were observed in the gonads of both sexes of homozygous KO individuals at 6 months old, which is the typical maturity age for wild-type individuals of both sexes. In addition, when cryopreserved donor nibe croaker testicular cells were transplanted, only donor-derived offspring were successfully obtained through the spontaneous mating of homozygous KO recipient parents. Results indicate that dnd KO nibe croaker lacks germ cells and can serve as promising recipients, producing only donor-derived gametes as surrogate broodstock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data supporting the findings of this study are available upon request.

References

  • Baloch R, Franěk R, Saito T, Pšenička M (2021) Dead-end (dnd) protein in fish—a review. Fish Physiol Biochem 47(3):777–784. https://doi.org/10.1007/s10695-018-0606-x

    Article  CAS  PubMed  Google Scholar 

  • Cárdenas S (2012) Biología y acuicultura de corvinas en el mundo. AquaTIC 37:1–13

    Google Scholar 

  • Drum M, Kranaster R, Ewald C, Blasczyk R, Marx A (2014) Variants of a Thermus aquaticus DNA polymerase with increased selectivity for applications in allele- and methylation-specific amplification. PLoS ONE 9:e96640

    Article  PubMed  PubMed Central  Google Scholar 

  • FAO (1950–2020) (FishstatJ) [Internet] Fishery and aquaculture statistics. Global aquaculture production. Rev Aquacult Page 42 of 74 For Review Only [actualizado 2023; citado el 2 de abril de 2023]. Disponible en: http://www.fao.org/fishery/statistics/software/fishstatj/en. Roma, Italia: FAO Fisheries and Aquaculture Department 2023

  • Franěk R, Kašpar V, Shah MA, Gela D, Pšenička M (2021) Production of common carp donor-derived offspring from goldfish surrogate broodstock. Aquaculture 534:736252

    Article  Google Scholar 

  • Fujimoto T, Nishimura T, Goto-Kazeto R, Kawakami Y, Yamaha E, Arai K (2010) Sexual dimorphism of gonadal structure and gene expression in germ cell-deficient loach, a teleost fish. Proc Natl Acad Sci USA 107:17211–17216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujihara R, Katayama N, Sadaie S, Miwa M, Sanchez Matias GA, Ichida K, Fujii W, Naito K, Hayashi M, Yoshizaki G (2022) Production of germ cell-less rainbow trout by dead end gene knockout and their use as recipients for germ cell transplantation. Mar Biotechnol (NY) 24:417–429

    Article  CAS  PubMed  Google Scholar 

  • Goto R, Saito T, Takeda T, Fujimoto T, Takagi M, Arai K, Yamaha E (2012) Germ cells are not the primary factor for sexual fate determination in goldfish. Dev Biol 370:98–109

    Article  CAS  PubMed  Google Scholar 

  • Gross-Thebing T, Yigit S, Pfeiffer J, Reichman-Fried M, Bandemer J, Ruckert C, Rathmer C, Goudarzi M, Stehling M, Tarbashevich K, Seggewiss J, Raz E (2017) The vertebrate protein dead end maintains primordial germ cell fate by inhibiting somatic differentiation. Dev Cell 43:704–715.e5

    Article  CAS  PubMed  Google Scholar 

  • Güralp H, Skaftnesmo KO, Kjærner-Semb E, Straume AH, Kleppe L, Schulz RW, Edvardsen RB, Wargelius A (2020) Rescue of germ cells in dnd crispant embryos opens the possibility to produce inherited sterility in Atlantic salmon. Sci Rep 10:18042

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawamura W, Tani R, Yahagi H, Kamio S, Morita T, Takeuchi Y, Yazawa R, Yoshizaki G (2020) Suitability of hybrid mackerel (Scomber australasicus × S. japonicus) with germ cell-less sterile gonads as a recipient for transplantation of bluefin tuna germ cells. Gen Comp Endocrinol 295:113525

    Article  CAS  PubMed  Google Scholar 

  • Kawamura W, Hasegawa N, Yamauchi A, Kimura T, Yahagi H, Tani R, Morita T, Yazawa R, Yoshizaki G (2022) Production of albino chub mackerel (Scomber japonicus) by slc45a2 knockout and the use of a positive phototaxis-based larviculture technique to overcome the lethal albino phenotype. Aquaculture 560:738490

    Article  CAS  Google Scholar 

  • Kinoshita I, Fujita S (1988) Larvae and juveniles of blue drum, Nibea mitsukurii, occurring in the surf zone of Tosa Bay, Japan. Jap Jour Ich 35:25–30

    Google Scholar 

  • Kurokawa HD, Saito D, Nakamura S, Katoh-Fukui Y, Ohta K, Baba T, Morohashi K, Tanaka M (2007) Germ cells are essential for sexual dimorphism in the medaka gonad. Proc Natl Acad Sci USA 104:16958–16963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Iwasaki Y, Shikina S, Yoshizaki G (2013) Generation of functional eggs and sperm from cryopreserved whole testes. Proc Natl Acad Sci USA 110:1640–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Katayama N, Yoshizaki G (2016) Generation of juvenile rainbow trout derived from cryopreserved whole ovaries by intraperitoneal transplantation of ovarian germ cells. Biochem Biophys Res Commun 478:1478–1483

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Fujii W, Naito K, Yoshizaki G (2017) Application of dead end-knockout zebrafish as recipients of germ cell transplantation. Mol Reprod Dev 84:1100–1111

    Article  CAS  PubMed  Google Scholar 

  • Linhartová Z, Saito T, Kašpar V, Rodina M, Prášková E, Hagihara S, Pšenička M (2015) Sterilization of sterlet Acipenser ruthenus by using knockdown agent, antisense morpholino oligonucleotide, against dead end gene. Theriogenology 84:1246-1255.e1

    Article  PubMed  Google Scholar 

  • Marinović Z, Li Q, Lujić J, Iwasaki Y, Csenki Z, Urbányi B, Yoshizaki G, Horváth Á (2019) Preservation of zebrafish genetic resources through testis cryopreservation and spermatogonia transplantation. Abstr Sci Rep 9(1). https://doi.org/10.1038/s41598-019-50169-1

  • Morishima K, Yamamoto H, Sawada Y, Miyashita S, Kato K (2009) Developing 23 new polymorphic microsatellite markers and simulating parentage assignment in the Pacific bluefin tuna, Thunnus orientalis. Mol Ecol Resour 9:790–792

    Article  CAS  PubMed  Google Scholar 

  • Octavera A, Yoshizaki G (2019) Production of donor-derived offspring by allogeneic transplantation of spermatogonia in Chinese rosy bitterling†. Biol Reprod 100:1108–1117

    Article  PubMed  Google Scholar 

  • Octavera A, Yoshizaki G (2020) Production of Chinese rosy bitterling offspring derived from frozen and vitrified whole testis by spermatogonial transplantation. Fish Physiol Biochem 46:1431–1442

    Article  CAS  PubMed  Google Scholar 

  • Octavera A, Yamakawa K, Yoshizaki G (2023) The volume and shape of bitterling eggs are more strongly influenced by germ cell autonomy than by the surrounding somatic cells. Fish Physiol Biochem 49:967–981

    Article  CAS  PubMed  Google Scholar 

  • Piferrer F (2001) Endocrine sex control strategies for the feminization of teleost fish. Aquaculture 197:229–281

    Article  CAS  Google Scholar 

  • Piferrer F, Beaumont A, Falguière J, Flajšhans M, Haffray P, Colombo L (2009) Polyploid fish and shellfish: production, biology and applications to aquaculture for performance improvement and genetic containment. Aquaculture 293:125–156

    Article  Google Scholar 

  • Saito T, Goto-Kazeto R, Arai K, Yamaha E (2008) Xenogenesis in teleost fish through generation of germ-line chimeras by single primordial germ cell transplantation. Biol Reprod 78(1):159–66

    Article  CAS  PubMed  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slanchev KJ, Stebler J, de la Cueva-Méndez G, Raz E (2005) Development without germ cells: the role of the germ line in zebrafish sex differentiation. Proc Natl Acad Sci USA 102:4074–4079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeuchi Y, Higuchi K, Yatabe T, Miwa M, Yoshizaki G (2009) Development of spermatogonial cell transplantation in Nibe croaker, Nibea mitsukurii (Perciformes, Sciaenidae). Biol Reprod 81:1055–1063

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi Y, Yatabe T, Yoshikawa H, Ino Y, Kabeya N, Yazawa R, Yoshizaki G (2018) Production of functionally sterile triploid Nibe croaker Nibea mitsukurii induced by cold-shock treatment with special emphasis on triploid aptitude as surrogate broodstock. Aquaculture 494:45–56

    Article  Google Scholar 

  • Takeuchi Y, Yazawa R, Yoshizaki G (2020) Chapter 17 Intraperitoneal germ cell transplantation technique in marine teleosts. In: Yoshida M, Asturiano J (eds) Reproduction in aquatic animals. Springer, Berlin

    Google Scholar 

  • Wargelius A, Leininger S, Skaftnesmo KO, Kleppe L, Andersson E, Taranger GL, Schulz RW, Edvardsen RB (2016) Dnd knockout ablates germ cells and demonstrates germ cell independent sex differentiation in Atlantic salmon. Sci Rep 6:21284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weidinger G, Stebler J, Slanchev K, Dumstrei K, Wise C, Lovell-Badge R, Thisse C, Thisse B, Raz E (2003) Dead end, a novel vertebrate germ plasm component, is required for zebrafish primordial germ cell migration and survival. Curr Biol 13:1429–1434

    Article  CAS  PubMed  Google Scholar 

  • Yazawa R, Kubokawa T, Ichida K, Kawamura W, Tani R, Kamio S, Morita T, Yoshizaki G (2021) Establishment of a tracing technique for transplanted bluefin tuna germ cells in recipient’s gonads using monoclonal antibodies specifically recognizing bluefin tuna spermatogenic cells. Fish Sci 87:105–112

    Article  CAS  Google Scholar 

  • Yoshikawa H, Takeuchi Y, Ino Y, Wang J, Iwata G, Kabeya N, Yazawa R, Yoshizaki G (2017) Efficient production of donor-derived gametes from triploid recipients following intra-peritoneal germ cell transplantation into a marine teleost, Nibe croaker (Nibea mitsukurii). Aquaculture 478:35–47

    Article  Google Scholar 

  • Yoshikawa H, Xu D, Ino Y, Yoshino T, Hayashida T, Wang J, Yazawa R, Yoshizaki G, Takeuchi Y (2018) Hybrid sterility in fish caused by mitotic arrest of primordial germ cells. Genetics 209:507–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshikawa H, Ino Y, Kishimoto K, Koyakumaru H, Saito T, Kinoshita M, Yoshiura Y (2020) Induction of germ cell-deficiency in grass puffer by dead end 1 gene knockdown for use as a recipient in surrogate production of tiger puffer. Aquaculture 526:735385

    Article  CAS  Google Scholar 

  • Yoshizaki G, Takashiba K, Shimamori S, Fujinuma K, Shikina S, Okutsu T, Kume S, Hayashi M (2016) Production of germ cell-deficient salmonids by dead end gene knockdown, and their use as recipients for germ cell transplantation. Mol Reprod Dev 83:298–311

    Article  CAS  PubMed  Google Scholar 

  • Yoshizaki G, Lee S (2018) Production of live fish derived from frozen germ cells via germ cell transplantation. Stem Cell Res 29:103–110

    Article  PubMed  Google Scholar 

  • Yoshizaki G, Yazawa R (2019) Application of surrogate broodstock technology in aquaculture. Fish Sci 85:429–437

    Article  CAS  Google Scholar 

Download references

Funding

This work was partly supported by JSPS KAKENHI Grant Number 23H00344 and JST-Mirai Program Grant Number JPMJMI21C1.

Author information

Authors and Affiliations

Authors

Contributions

K. S., A. Y., O. E., K. O., W. K., and R. Y. conducted experiments and analyzed the data. R. Y., Y. T., T. M., and G. Y. designed the research. R. Y. and G. Y. conceived the study and wrote the manuscript. All authors critically revised the report, commented on drafts of the manuscript, and approved the final report.

Corresponding author

Correspondence to Ryosuke Yazawa.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 428 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yazawa, R., Saitoh, K., Yamauchi, A. et al. Reproductive Characteristics and Suitability of Sterile dead end Knockout Nibe Croaker as a Recipient for Intraperitoneal Germ Cell Transplantation. Mar Biotechnol (2024). https://doi.org/10.1007/s10126-024-10323-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10126-024-10323-x

Keywords

Navigation