Skip to main content

Advertisement

Log in

Contribution of HIF-1α to Heat Shock Response by Transcriptional Regulation of HSF1/HSP70 Signaling Pathway in Pacific Oyster, Crassostrea gigas

  • Research
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Ocean temperature rising drastically threatens the adaptation and survival of marine organisms, causing serious ecological impacts and economic losses. It is crucial to understand the adaptive mechanisms of marine organisms in response to high temperature. In this study, a novel regulatory mechanism that is mediated by hypoxia-inducible factor-1α (HIF-1α) was revealed in Pacific oyster (Crassostrea gigas) in response to heat stress. We identified a total of six HIF-1α genes in the C. gigas genome, of which HIF-1α and HIF-1α-like5 were highly induced under heat stress. We found that the HIF-1α and HIF-1α-like5 genes played critical roles in the heat shock response (HSR) through upregulating the expression of heat shock protein (HSP). Knocking down of HIF-1α via RNA interference (RNAi) inhibited the expression of heat shock factor 1 (HSF1) and HSP70 genes in C. gigas under heat stress. Both HIF-1α and HIF-1α-like5 promoted the transcriptional activity of HSF1 by binding to hypoxia response elements (HREs) within the promoter region. Furthermore, the survival of C. gigas under heat stress was significantly decreased after knocking down of HIF-1α. This work for the first time revealed the involvement of HIF-1α/HSF1/HSP70 pathway in response to heat stress in the oyster and provided an insight into adaptive mechanism of bivalves in the face of ocean warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agarwal S, Ganesh S (2020) Perinuclear mitochondrial clustering, increased ROS levels, and HIF1 are required for the activation of HSF1 by heat stress. J Cell Sci 133:jcs245589

    Article  CAS  PubMed  Google Scholar 

  • Ali YO, McCormack R, Darr A, Zhai RG (2011) Nicotinamide mononucleotide adenylyltransferase is a stress response protein regulated by the heat shock factor/hypoxia-inducible factor 1α pathway. J Biol Chem 286:19089–19099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–4340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey PSJ, Nathan JA (2018) Metabolic regulation of hypoxia-inducible transcription factors: the role of small molecule metabolites and iron. Biomedicines 6:60

    Article  PubMed  PubMed Central  Google Scholar 

  • Baird NA, Turnbull DW, Johnson EA (2006) Induction of the heat shock pathway during hypoxia requires regulation of heat shock factor by hypoxia-inducible factor-1. J Biol Chem 281:38675–38681

    Article  CAS  PubMed  Google Scholar 

  • Barbosa Solomieu V, Renault T, Travers M-A (2015) Mass mortality in bivalves and the intricate case of the Pacific oyster, Crassostrea gigas. J Invertebr Pathol 131:2–10

    Article  PubMed  Google Scholar 

  • Benjamin IJ, Kröger B, Williams RS (1990) Activation of the heat shock transcription factor by hypoxia in mammalian cells. Proc Natl Acad Sci USA 87:6263–6267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai X, Huang Y, Zhang X, Wang S, Zou Z, Wang G, Wang Y, Zhang Z (2014) Cloning, characterization, hypoxia and heat shock response of hypoxia inducible factor-1 (HIF-1) from the small abalone Haliotis diversicolor. Gene 534:256–264

    Article  CAS  PubMed  Google Scholar 

  • Chapman MG (2006) Intertidal seawalls as habitats for molluscs. J Molluscan Stud 72:247–257

    Article  Google Scholar 

  • Chen Y, Wang J, Liao M, Li X, Dong Y (2021) Temperature adaptations of the thermophilic snail Echinolittorina malaccana: insights from metabolomic analysis. J Exp Biol 224:jeb238659

    Article  PubMed  Google Scholar 

  • Cheng L, Abraham J, Trenberth KE et al (2021) Upper ocean temperatures hit record high in 2020. Adv Atmos Sci 38:523–530

  • Clark MS, Fraser KPP, Peck LS (2008) Lack of an HSP70 heat shock response in two Antarctic marine invertebrates. Polar Biol 31:1059–1065

    Article  Google Scholar 

  • Deka K, Singh A, Chakraborty S, Mukhopadhyay R, Saha S (2016) Protein arginylation regulates cellular stress response by stabilizing HSP70 and HSP40 transcripts. Cell Death Discov 2:1–8

    Article  Google Scholar 

  • Dengler VL, Galbraith MD, Espinosa JM (2014) Transcriptional regulation by hypoxia inducible factors. Crit Rev Biochem Mol Biol 49:1–15

    Article  CAS  PubMed  Google Scholar 

  • Dong Y, Yu S, Wang Q, Dong S (2011) Physiological responses in a variable environment: relationships between metabolism, hsp and thermotolerance in an intertidal-subtidal species. PLoS ONE 6:e26446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong Y, Liao M, Han G, Somero GN (2022) An integrated, multi-level analysis of thermal effects on intertidal molluscs for understanding species distribution patterns. Biol Rev 97:554–581

    Article  PubMed  Google Scholar 

  • Ely BR, Lovering AT, Horowitz M, Minson CT (2014) Heat acclimation and cross tolerance to hypoxia: bridging the gap between cellular and systemic responses. Temperature (austin) 1:107–114

    Article  PubMed  Google Scholar 

  • Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Ann Rev Physio 61:243–282

    Article  CAS  Google Scholar 

  • Freitas C, Villegas-Ríos D, Moland E, Olsen EM (2021) Sea temperature effects on depth use and habitat selection in a marine fish community. J Anim Ecol 90:1787–1800

    Article  PubMed  Google Scholar 

  • Fu H, Jiao Z, Li Y, Tian J, Ren L, Zhang F, Li Q, Liu S (2021) Transient receptor potential (TRP) channels in the Pacific oyster (Crassostrea gigas): genome-wide identification and expression profiling after heat stress between C. gigas and C. angulata. Int J Mol Sci 22:3222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giaccia AJ, Auger EA, Koong A, Terris DJ, Minchinton AI, Hahn GM, Brown JM (1992) Activation of the heat shock transcription factor by hypoxia in normal and tumor cell lines in vivo and in vitro. Int J Radiat Oncol Biol Phys 23:891–897

    Article  CAS  PubMed  Google Scholar 

  • Gunderson AR, Stillman JH (2015) Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proc Biol Sci 282:20150401

    PubMed  PubMed Central  Google Scholar 

  • Guo X (2009) Use and exchange of genetic resources in molluscan aquaculture. Rev Aquac 1:251–259

    Article  Google Scholar 

  • Guo X, Wang Y, Wang L, Lee J-H (2008) Oysters. In: Kocher T, Kole C (eds) Genome mapping and genomics in fishes and aquatic animals. Springer, Berlin, Heidelberg, pp 163–175

    Chapter  Google Scholar 

  • Hu Z, Feng J, Song H, Zhou C, Yu Z-L, Yang M-J, Shi P, Guo Y-J, Li Y-R, Zhang T (2022) Mechanisms of heat and hypoxia defense in hard clam: insights from transcriptome analysis. Aquaculture 549:737792

    Article  CAS  Google Scholar 

  • Huo D, Sun L, Zhang L, Ru X, Liu S, Yang H (2019) Metabolome responses of the sea cucumber Apostichopus japonicus to multiple environmental stresses: heat and hypoxia. Mar Pollut Bull 138:407–420

    Article  CAS  PubMed  Google Scholar 

  • Jeremias G, Barbosa J, Marques SM, Asselman J, Gonçalves FJM, Pereira JL (2018) Synthesizing the role of epigenetics in the response and adaptation of species to climate change in freshwater ecosystems. Mol Ecol 27:2790–2806

    Article  PubMed  Google Scholar 

  • Kaluz S, Kaluzová M, Stanbridge EJ (2008) Regulation of gene expression by hypoxia: integration of the HIF-transduced hypoxic signal at the hypoxia-responsive element. Clin Chim Acta 395:6–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawabe S, Yokoyama Y (2011) Novel isoforms of heat shock transcription factor 1 are induced by hypoxia in the Pacific oyster Crassostrea gigas. J Exp Zool 315A:394–407

    Article  Google Scholar 

  • Kawabe S, Yokoyama Y (2012) Role of hypoxia-inducible factor α in response to hypoxia and heat shock in the Pacific oyster Crassostrea gigas. Mar Biotechnol 14:106–119

    Article  CAS  Google Scholar 

  • Khan FU, Hu M, Kong H, Shang Y, Wang T, Wang X, Xu R, Lu W, Wang Y (2020) Ocean acidification, hypoxia and warming impair digestive parameters of marine mussels. Chemosphere 256:127096

    Article  CAS  PubMed  Google Scholar 

  • Klumpen E, Hoffschröer N, Zeis B, Gigengack U, Dohmen E, Paul RJ (2017) Reactive oxygen species (ROS) and the heat stress response of Daphnia pulex: ROS-mediated activation of hypoxia-inducible factor 1 (HIF-1) and heat shock factor 1 (HSF-1) and the clustered expression of stress genes. Biol Cell 109:39–64

    Article  CAS  PubMed  Google Scholar 

  • Krejčová G, Danielová A, Nedbalová P, Kazek M, Strych L, Chawla G, Tennessen JM, Lieskovská J, Jindra M, Doležal T, Bajgar A (2019) Drosophila macrophages switch to aerobic glycolysis to mount effective antibacterial defense. eLife 8:e50414

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li A, Li L, Zhang Z, Li S, Wang W, Guo X, Zhang G (2021) Noncoding variation and transcriptional plasticity promote thermal adaptation in oysters by altering energy metabolism. Mol Biol Evol 38:5144–5155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Qin JG, Abbott CA, Li X, Benkendorff K (2007) Synergistic impacts of heat shock and spawning on the physiology and immune health of Crassostrea gigas: an explanation for summer mortality in Pacific oysters. Am J Physiol Regul Integr Comp Physiol 293:R2353–R2362

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Qin JG, Li X, Benkendorff K (2009) Monthly variation of condition index, energy reserves and antibacterial activity in Pacific oysters, Crassostrea gigas, in Stansbury (South Australia). Aquaculture 286:64–71

    Article  Google Scholar 

  • Li Y, Song X, Wang W et al (2017) The hematopoiesis in gill and its role in the immune response of Pacific oyster Crassostrea gigas against secondary challenge with Vibrio splendidus. Dev Comp Immunol 71:59–69

    Article  CAS  PubMed  Google Scholar 

  • Liang R, Liu N, Cao J, Liu T, Sun P, Cai X, Zhang L, Liu Y, Zou J, Wang L, Ding X, Zhang B, Shen Z, Yoshida S, Dou J, Wang S (2022) HIF-1α/FOXO1 axis regulated autophagy is protective for β cell survival under hypoxia in human islets. Biochim Biophys Acta Mol Basis Dis 1868(5):166356

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Li L, Huang B, Wang W, Zhang G (2019) RNAi based transcriptome suggests genes potentially regulated by HSF1 in the Pacific oyster Crassostrea gigas under thermal stress. BMC Genom 20:639

    Article  Google Scholar 

  • Livak KJ, Schmittge TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Luo S-Y, Wang J-Q, Liu C, Gao X-M, Zhang Y-B, Ding J, Hou C-C, Zhu J-Q, Lou B, Shen W-L, Wu X-F, Zhang C-D, Tang D-J (2021) Hif-1α/Hsf1/Hsp70 signaling pathway regulates redox homeostasis and apoptosis in large yellow croaker (Larimichthys crocea) under environmental hypoxia. Zool Res 42:746–760

    Article  PubMed  PubMed Central  Google Scholar 

  • McArley TJ, Hickey AJR, Herbert NA (2020) Acute high temperature exposure impairs hypoxia tolerance in an intertidal fish. PLoS ONE 15:e0231091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLeod IM, zu Ermgassen PSE, Gillies CL, Hancock B (2019) Chapter 25 - Can bivalve habitat restoration improve degraded estuaries? In: Wolanski E, Day JW, Elliott M, Ramachandran R (eds) Coasts and Estuaries. Elsevier, pp 427–442

    Chapter  Google Scholar 

  • Michaud MR, Teets NM, Peyton JT, Blobner BM, Denlinger DL (2011) Heat shock response to hypoxia and its attenuation during recovery in the flesh fly, Sarcophaga crassipalpis. J Insect Physiol 57:203–210

    Article  CAS  PubMed  Google Scholar 

  • Mosca F, Narcisi V, Calzetta A, Gioia L, Finoia MG, Latini M, Tiscar PG (2013) Effects of high temperature and exposure to air on mussel (Mytilus galloprovincialis, Lmk 1819) hemocyte phagocytosis: modulation of spreading and oxidative response. Tissue Cell 45:198–203

    Article  CAS  PubMed  Google Scholar 

  • Nash S, Johnstone J, Rahman MS (2019) Elevated temperature attenuates ovarian functions and induces apoptosis and oxidative stress in the American oyster, Crassostrea virginica: potential mechanisms and signaling pathways. Cell Stress Chaperones 24:957–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patrick S, Faury N, Goulletquer P (2006) Seasonal changes in carbohydrate metabolism and its relationship with summer mortality of Pacific oyster Crassostrea gigas (Thunberg) in Marennes-Oléron bay (France). Aquaculture 252:328–338

    Article  CAS  Google Scholar 

  • Petes LE, Menge BA, Murphy GD (2007) Environmental stress decreases survival, growth, and reproduction in New Zealand mussels. J Exp Mar Biol Ecol 351:83–91

    Article  Google Scholar 

  • Pinsky ML, Eikeset AM, McCauley DJ, Payne JL, Sunday JM (2019) Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569:108–111

    Article  CAS  PubMed  Google Scholar 

  • Ritossa F (1962) A new puffing pattern induced by temperature shock and DNP in drosophila. Experientia 18:571–573

    Article  CAS  Google Scholar 

  • Semenza GL (2007) Hypoxia-inducible factor 1 (HIF-1) pathway. Sci STKE 2007:cm8

  • Solan M, Whiteley N (2016) Stressors in the marine environment: physiological and ecological responses; societal implications. Oxford University Press

    Book  Google Scholar 

  • Somero GN (2020) The cellular stress response and temperature: function, regulation, and evolution. J Exp Zool A Ecol Integr Physiol 333:379–397

    Article  CAS  PubMed  Google Scholar 

  • Song K, Wen S, Zhang G (2019) Adaptive evolution patterns in the Pacific oyster Crassostrea gigas. Mar Biotechnol 21:614–622

    Article  CAS  Google Scholar 

  • Strehse JS, Maser E (2020) Marine bivalves as bioindicators for environmental pollutants with focus on dumped munitions in the sea: a review. Mar Environ Res 158:105006

    Article  CAS  PubMed  Google Scholar 

  • Sun S, Xuan F, Fu H, Ge X, Zhu J, Qiao H, Jin S, Zhang W (2016) Molecular characterization and mRNA expression of hypoxia inducible factor-1 and cognate inhibiting factor in Macrobrachium nipponense in response to hypoxia. Comp Biochem Physiol B Biochem Mol Biol 196–197:48–56

    Article  PubMed  Google Scholar 

  • Tian J, Li Y, Fu H et al (2021) Physiological role of CYP17A1-like in cadmium detoxification and its transcriptional regulation in the Pacific oyster. Crassostrea Gigas Sci Total Environ 796:149039

    Article  CAS  PubMed  Google Scholar 

  • Tomanek L (2010) Variation in the heat shock response and its implication for predicting the effect of global climate change on species’ biogeographical distribution ranges and metabolic costs. J Exp Biol 213:971–979

    Article  CAS  PubMed  Google Scholar 

  • Tomanek L (2012) Environmental proteomics of the mussel Mytilus: implications for tolerance to stress and change in limits of biogeographic ranges in response to climate change. Integr Comp Biol 52:648–664

    Article  CAS  PubMed  Google Scholar 

  • Tomanek L (2014) Proteomics to study adaptations in marine organisms to environmental stress. J Proteomics 105:92–106

    Article  CAS  PubMed  Google Scholar 

  • Treinin M, Shliar J, Jiang H, Powell-Coffman JA, Bromberg Z, Horowitz M (2003) HIF-1 is required for heat acclimation in the nematode Caenorhabditis elegans. Physiol Genomics 14:17–24

    Article  CAS  PubMed  Google Scholar 

  • Vaquer-Sunyer R, Duarte CM (2011) Temperature effects on oxygen thresholds for hypoxia in marine benthic organisms. Glob Chang Biol 17:1788–1797

    Article  Google Scholar 

  • Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 92:5510–5514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T, Meng J, Li L, Zhang G (2016) Characterization of CgHIFα-like, a novel bHLH-PAS transcription factor family member, and its role under hypoxia stress in the Pacific Oyster Crassostrea gigas. PLoS ONE 11:e0166057

    Article  PubMed  PubMed Central  Google Scholar 

  • Wijsman JWM, Troost K, Fang J, Roncarati A (2019) Global production of marine bivalves. Trends and challenges. In: Smaal AC, Ferreira JG, Grant J, Petersen JK, Strand Ø (eds) Goods and Services of Marine Bivalves. Springer International Publishing, Cham, pp 7–26

    Chapter  Google Scholar 

  • Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, Yang P, Zhang L, Wang X, Qi H, Xiong Z, Que H, Xie Y, Holland PWH, Paps J, Zhu Y, Wu F, Chen Y, Wang Jiafeng, Peng C, Meng J, Yang L, Liu J, Wen B, Zhang N, Huang Z, Zhu Q, Feng Y, Mount A, Hedgecock D, Xu Z, Liu Y, Domazet-Lošo T, Du Y, Sun X, Zhang Shoudu, Liu B, Cheng P, Jiang X, Li J, Fan D, Wang W, Fu W, Wang T, Wang B, Zhang J, Peng Z, Li Yingxiang, Li Na, Wang Jinpeng, Chen M, He Y, Tan F, Song X, Zheng Q, Huang R, Yang Hailong, Du X, Chen L, Yang M, Gaffney P.M, Wang S, Luo L, She Z, Ming Y, Huang W, Zhang Shu, Huang B, Zhang Y, Qu T, Ni P, Miao G, Wang Junyi, Wang Q, Steinberg CEW, Wang H, Li Ning, Qian L, Zhang Guojie, Li Yingrui, Yang Huanming, Liu X, Wang Jian, Yin Y, Wang Jun (2012) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490:49–54

    Article  Google Scholar 

  • Zippay ML, Helmuth B (2012) Effects of temperature change on mussel, Mytilus. Integr Zool 7:312–327

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by grant from the National Key Research and Development Program of China (2022YFD2400300), the Key Research and Development Program of Shandong Province (No. 2021ZLGX03), the National Natural Science Foundation of China (Nos. 41976098 and 42276112) and the Agriculture Research System of China Project (CARS-49).

Author information

Authors and Affiliations

Authors

Contributions

S.L. conceived the study and obtained the funding. H.F., Y.L., and J.T. performed the experiment. H.F., B.Y., and Y.L. analyzed the data. F.H. drafted the manuscript, and S.L. revised the manuscript. Q.L. supervised the work. All authors reviewed manuscript.

Corresponding author

Correspondence to Shikai Liu.

Ethics declarations

Ethics Approval

The C. gigas, C. angulata, and their reciprocal hybrids are neither an endangered nor protected species. All experiments in this study were conducted according to national and institutional guidelines.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, H., Li, Y., Tian, J. et al. Contribution of HIF-1α to Heat Shock Response by Transcriptional Regulation of HSF1/HSP70 Signaling Pathway in Pacific Oyster, Crassostrea gigas. Mar Biotechnol 25, 691–700 (2023). https://doi.org/10.1007/s10126-023-10231-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-023-10231-6

Keywords

Navigation