Skip to main content
Log in

Generation of Albino Phenotype in Ornamental Fish by CRISPR/Cas9-Mediated Genome Editing of slc45a2 Gene

  • Research
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Albinism is the most common color variation described in fish and is a fascinating trait of some ornamental fish species. Albino mutants can be generated by knocking out core genes affecting melanin synthesis like slc45a2 in several fish species. However, genetic mutation remains challenging for species with unknown genome information. In this study, we generated albino mutants in two selected ornamental fish species, royal farlowella (Sturisoma panamense), and redhead cichlid (Vieja melanura). For this purpose, we carried out phylogenetic analyses of fish slc45a2 sequences and identified a highly conserved region among different fish species. A pair of degenerate primers spanning this region was designed and used to amplify a conserved slc45a2 fragment of 340 bp from the two fish species. Based on the amplified sequences, a target site in the 6th exon was used for designing guide RNA and this targeted site was first verified by the CRISPR/Cas9 system in the zebrafish (Danio rerio) model for the effectiveness. Then, specific guide RNAs were designed for the two ornamental fish species and tested. Most of the injected larvae completely lost black pigment over the whole body and eyes. DNA sequencing confirmed a high degree of mutation at the targeted site. Overall, we described a fast and efficient method to generate albino phenotype in fish species by targeting the conserved 6th exon of slc45a2 gene for genome editing via CRISPR/Cas9 and this approach could be a new genetic tool to generate desirable albino ornamental fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets used in the present study are available from the corresponding author on reasonable request.

References

  • Antinucci P, Hindges R (2016) A crystal-clear zebrafish for in vivo imaging. Sci Rep 6:29490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bian C, Li R, Wen Z, Ge W, Shi Q (2021) Phylogenetic analysis of core melanin synthesis genes provides novel insights into the molecular basis of albinism in fish. Front Genet 12:707228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanc JM, P. H. (2003) Expression of family differences through within-lot competition in juvenile rainbow trout Oncorhynchus mykiss. J World Aquac Soc 34:425–432

    Article  Google Scholar 

  • Blitz IL, Biesinger J, Xie X, Cho KW (2013) Biallelic genome modification in F(0) Xenopus tropicalis embryos using the CRISPR/Cas system. Genesis 51:827–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohnsack BL, Gallina D, Kahana A (2011) Phenothiourea sensitizes zebrafish cranial neural crest and extraocular muscle development to changes in retinoic acid and IGF signaling. PLoS ONE 6:e22991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braasch I, Schartl M, Volff JN (2007) Evolution of pigment synthesis pathways by gene and genome duplication in fish. BMC Evol Biol 7:74

    Article  PubMed  PubMed Central  Google Scholar 

  • Davis AE, Castranova D, Weinstein BM (2021) Rapid generation of pigment free, immobile zebrafish embryos and larvae in any genetic background using CRISPR-Cas9 dgRNPs. Zebrafish 18:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dooley CM, Schwarz H, Mueller KP, Mongera A, Konantz M, Neuhauss SC, Nusslein-Volhard C, Geisler R (2013) Slc45a2 and V-ATPase are regulators of melanosomal pH homeostasis in zebrafish, providing a mechanism for human pigment evolution and disease. Pigment Cell Melanoma Res 26:205–217

    Article  CAS  PubMed  Google Scholar 

  • Edvardsen RB, Leininger S, Kleppe L, Skaftnesmo KO, Wargelius A (2014) Targeted mutagenesis in Atlantic salmon (Salmo salar L.) using the CRISPR/Cas9 system induces complete knockout individuals in the F0 generation. PLoS ONE 9:e108622

    Article  PubMed  PubMed Central  Google Scholar 

  • Gong Z, Wan H, Tay TL, Wang H, Chen M, Yan T (2003) Development of transgenic fish for ornamental and bioreactor by strong expression of fluorescent proteins in the skeletal muscle. Biochem Biophys Res Commun 308:58–63

    Article  CAS  PubMed  Google Scholar 

  • Graf J, Voisey J, Hughes I, van Daal A (2007) Promoter polymorphisms in the MATP (SLC45A2) gene are associated with normal human skin color variation. Hum Mutat 28:710–717

    Article  CAS  PubMed  Google Scholar 

  • Hattori RS, Yoshinaga TT, Butzge AJ, Hattori-Ihara S, Tsukamoto RY, Takahashi NS, Tabata YA (2020) Generation of a white-albino phenotype from cobalt blue and yellow-albino rainbow trout (Oncorhynchus mykiss): Inheritance pattern and chromatophores analysis. PLoS ONE 15:e0214034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henning F, Renz AJ, Fukamachi S, Meyer A (2010) Genetic, comparative genomic, and expression analyses of the Mc1r locus in the polychromatic Midas cichlid fish (Teleostei, Cichlidae Amphilophus sp.) species group. J Mol Evol 70:405–412

    Article  CAS  PubMed  Google Scholar 

  • Jao LE, Wente SR, Chen W (2013) Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci U S A 110:13904–13909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong CB, Kang HM, Hong SA, Byeon E, Lee JS, Lee YH, Choi IY, Bae S, Lee JS (2020) Generation of albino via SLC45a2 gene targeting by CRISPR/Cas9 in the marine medaka Oryzias melastigma. Mar Pollut Bull 154:111038

    Article  CAS  PubMed  Google Scholar 

  • Karlson CKS, Mohd-Noor SN, Nolte N, Tan BC (2021) CRISPR/dCas9-based systems: Mechanisms and applications in plant sciences. Plants 10:2055. https://doi.org/10.3390/plants10102055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelsh RN, Brand M, Jiang YJ, Heisenberg CP, Lin S, Haffter P, Odenthal J, Mullins MC, van Eeden FJ, Furutani-Seiki M, Granato M, Hammerschmidt M, Kane DA, Warga RM, Beuchle D, Vogelsang L, Nusslein-Volhard C (1996) Zebrafish pigmentation mutations and the processes of neural crest development. Development 123:369–389

    Article  CAS  PubMed  Google Scholar 

  • Kotani H, Taimatsu K, Ohga R, Ota S, Kawahara A (2015) Efficient multiple genome modifications induced by the crRNAs, tracrRNA and Cas9 protein complex in zebrafish. PLoS ONE 10:e0128319

    Article  PubMed  PubMed Central  Google Scholar 

  • Kratochwil CF, Sefton MM, Meyer A (2015) Embryonic and larval development in the Midas cichlid fish species flock (Amphilophus spp.): a new evo-devo model for the investigation of adaptive novelties and species differences. BMC Dev Biol 15:12. https://doi.org/10.1186/s12861-015-0061-1

  • Lamason RL, Mohideen MA, Mest JR, Wong AC, Norton HL, Aros MC, Jurynec MJ, Mao X, Humphreville VR, Humbert JE, Sinha S, Moore JL, Jagadeeswaran P, Zhao W, Ning G, Makalowska I, McKeigue PM, O’Donnell D, Kittles R, Parra EJ, Mangini NJ, Grunwald DJ, Shriver MD, Canfield VA, Cheng KC (2005) SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Science 310:1782–1786

    Article  CAS  PubMed  Google Scholar 

  • Lang M, Orgogozo V (2011) Identification of homologous gene sequences by PCR with degenerate primers. Methods Mol Biol 772:245–256

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Ptak D, Zhang L, Walls EK, Zhong W, Leung YF (2012) Phenylthiourea specifically reduces zebrafish eye size. PLoS ONE 7:e40132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lister JA, Robertson CP, Lepage T, Johnson SL, Raible DW (1999) nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate. Development 126:3757–3767

    Article  CAS  PubMed  Google Scholar 

  • Newton JM, Cohen-Barak O, Hagiwara N, Gardner JM, Davisson MT, King RA, Brilliant MH (2001) Mutations in the human orthologue of the mouse underwhite gene (uw) underlie a new form of oculocutaneous albinism, OCA4. Am J Hum Genet 69:981–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan X, Zhan H, Gong Z (2008) Ornamental expression of red fluorescent protein in transgenic founders of white skirt tetra (Gymnocorymbus ternetzi). Mar Biotechnol (NY) 10:497–501

    Article  CAS  PubMed  Google Scholar 

  • Parker MO, Brock AJ, Millington ME, Brennan CH (2013) Behavioural phenotyping of casper mutant and 1-pheny-2-thiourea treated adult zebrafish. Zebrafish 10:466–471

    Article  CAS  PubMed  Google Scholar 

  • Preston GM (2003) Cloning gene family members using PCR with degenerate oligonucleotide primers. Methods Mol Biol 226:485–498

    CAS  PubMed  Google Scholar 

  • Segev-Hadar A, Slosman T, Rozen A, Sherman A, Cnaani A, Biran J (2021) Genome editing using the CRISPR-Cas9 system to generate a solid-red germline of Nile tilapia (Oreochromis niloticus). CRISPR J 4:583–594

    Article  CAS  PubMed  Google Scholar 

  • Singh AP, Nusslein-Volhard C (2015) Zebrafish stripes as a model for vertebrate colour pattern formation. Curr Biol 25:R81–R92

    Article  CAS  PubMed  Google Scholar 

  • Smith DR, Spaulding DT, Glenn HM, Fuller BB (2004) The relationship between Na(+)/H(+) exchanger expression and tyrosinase activity in human melanocytes. Exp Cell Res 298:521–534

    Article  CAS  PubMed  Google Scholar 

  • Steingrimsson E, Copeland NG, Jenkins NA (2004) Melanocytes and the microphthalmia transcription factor network. Annu Rev Genet 38:365–411

    Article  CAS  PubMed  Google Scholar 

  • Sun D, Qi X, Wen H, Li C, Li J, Chen J, Tao Z, Zhu M, Zhang X, Li Y (2023) The genetic basis and potential molecular mechanism of yellow-albino northern snakehead (Channa argus). Open Biol 13:220235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan H, He J, Ju B, Yan T, Lam TJ, Gong Z (2002) Generation of two-color transgenic zebrafish using the green and red fluorescent protein reporter genes gfp and rfp. Mar Biotechnol (NY) 4:146–154

    Article  CAS  PubMed  Google Scholar 

  • Wiriyasermkul P, Moriyama S, Nagamori S (2020) Membrane transport proteins in melanosomes: Regulation of ions for pigmentation. Biochim Biophys Acta Biomembr 1862:183318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Ren Z, Gong Z (2020) Transgenic expression and genome editing by electroporation of zebrafish embryos. Mar Biotechnol (NY) 22:644–650

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

ZR is supported by the NUS industry-relevant Ph.D scholarship. We thank Ms. Siangna Tan and Qian Hu staff to maintain fish aquaria.

Funding

This work was financially supported by a collaboration fund with Qian Hu Fish Farm of Singapore (R154000B27592) and Shandong Provincial Natural Science Foundation (ZR2021QH300).

Author information

Authors and Affiliations

Authors

Contributions

Changqing Zhang: conceptualization, methodology, investigation, data curation, formal analysis, supervision, and writing—original draft. Ziheng Ren: conceptualization, methodology, investigation, data curation, and writing—editing. Zhiyuan Gong: conceptualization, methodology, funding acquisition, resources, supervision, project administration, and writing—review and editing.

Corresponding authors

Correspondence to Changqing Zhang or Zhiyuan Gong.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1910 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Ren, Z. & Gong, Z. Generation of Albino Phenotype in Ornamental Fish by CRISPR/Cas9-Mediated Genome Editing of slc45a2 Gene. Mar Biotechnol 25, 281–290 (2023). https://doi.org/10.1007/s10126-023-10204-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-023-10204-9

Keywords

Navigation