Skip to main content
Log in

Improved Growth and High Inheritance of Melanocortin-4 Receptor (mc4r) Mutation in CRISPR/Cas-9 Gene-Edited Channel Catfish, Ictalurus punctatus

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Effects of CRISPR/Cas9 knockout of the melanocortin-4 receptor (mc4r) gene in channel catfish, Ictalurus punctatus, were investigated. Three sgRNAs targeting the channel catfish mc4r gene in conjunction with Cas9 protein were microinjected in embryos and mutation rate, inheritance, and growth were studied. Efficient mutagenesis was achieved as demonstrated by PCR, Surveyor® assay, and DNA sequencing. An overall mutation rate of 33% and 33% homozygosity/bi-allelism was achieved in 2017. Approximately 71% of progeny inherited the mutation. Growth was generally higher in MC4R mutants than controls (CNTRL) at all life stages and in both pond and tank environments. There was a positive relationship between zygosity and growth, with F1 homozygous/bi-allelic mutants reaching market size 30% faster than F1 heterozygotes in earthen ponds (p = 0.022). At the stocker stage (~ 50 g), MC4R × MC4R mutants generated in 2019 were 40% larger than the mean of combined CNTRL × CNTRL families (p = 0.005) and 54% larger than F1 MC4R × CNTRL mutants (p = 0.001) indicating mutation may be recessive. With a high mutation rate and inheritance of the mutation as well as improved growth, the use of gene-edited MC4R channel catfish appears to be beneficial for application on commercial farms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agulleiro MJ, Roy S, Sánchez E, Puchol S, Gallo-Payet N, Cerdá-Reverter JM (2010) Role of melanocortin receptor accessory proteins in the function of zebrafish melanocortin receptor type 2. Mol Cell Endocrinol 320:145–152

    Article  CAS  PubMed  Google Scholar 

  • Alrubaian J, Sollars C, Danielson PB, Dores RM (2003) Evaluating the radiation of the POMC gene in teleosts: characterization of American eel POMC. Gen Comp Endocrinol 132:384–390

    Article  CAS  PubMed  Google Scholar 

  • Al-Thuwaini TM, Al-Shuhaib MBS, Lepretre F, Dawud HH (2021) Two co-inherited novel SNPs in the MC4R gene related to live body weight and hormonal assays in Awassi and Arabi sheep breeds of Iraq. Veterinary Medicine and Science 7:897–907

    Article  CAS  PubMed  Google Scholar 

  • Bart AN, Dunham RA (1996) Effects of sperm concentration and egg number on fertilization efficiency with channel catfish (Ictalurus punctatus) eggs and blue catfish (I. furcatus) spermatozoa. Theriogenology 45:673–682

    Article  CAS  PubMed  Google Scholar 

  • Cerda-Reverter JM, Ringholm A, Schioth HB, Peter RE (2003) Molecular cloning, pharmacological characterization, and brain mapping of the melanocortin 4 receptor in the goldfish: involvement in the control of food intake. Endocrinology 144:36–49

    Article  Google Scholar 

  • Cone RD (2006) Studies on the physiological functions of the melanocortin system. Endocr Rev 27:736–749

    Article  CAS  PubMed  Google Scholar 

  • Cortés R, Navarro S, Agulleiro MJ, Guillot R, García-Herranz V, Sánchez E, Cerdá-Reverter JM (2014) Evolution of the melanocortin system. Gen Comp Endocrinol 209:3–10

    Article  PubMed  Google Scholar 

  • Fan W, Boston BA, Kesterson RA, Hruby VJ, Cone RD (1997) Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 385:165–168

    Article  CAS  PubMed  Google Scholar 

  • Fei F, Sun SY, Yao YX, Wang X (2017) Generation and phenotype analysis of zebrafish mutations of obesity-related genes lepr and MC4R. Acta Physiologica Sinica 69:61–69

    PubMed  Google Scholar 

  • Green BW, Engle CR (2004) Growth of stocker channel catfish to large market size in single-batch culture. J World Aquaculture Soc 35:25–32

    Article  Google Scholar 

  • Hinney A, Schmidt A, Nottebom K, Heibult O, Becker I, Ziegler A, Gerber G, Sina M, Görg T, Mayer H, Siegfried W, Fichter M, Remschmidt H, Hebebrand J (1999) Several mutations in the melanocortin-4 receptor gene including a nonsense and a frameshift mutation associated with dominantly inherited obesity in humans. J Clin Endocrinol Metab 84:1483–1486

    Article  CAS  PubMed  Google Scholar 

  • Hruscha A, Krawitz P, Rechenberg A, Heinrich V, Hecht J, Haass C, Schmid B (2013) Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development 140:4982–4987

    Article  CAS  PubMed  Google Scholar 

  • Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, Berkemeier LR, Gu W, Kesterson RA, Boston BA, Cone RD, Smth FJ, Campfield LA, Burn P, Lee F (1997) Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88:131–141

    Article  CAS  PubMed  Google Scholar 

  • Japan embraces CRISPR-edited fish (2022) Nat Biotechnol 40:10. https://doi.org/10.1038/s41587-021-01197-8

  • Kawahara A, Yabe T, Ansai S, Takada S, Kinoshita M (2015) Genome editing in zebrafish and medaka. Targeted Genome Editing Using Site-Specific Nucleases 119–131. Springer, Tokyo

  • Khalil K, Elayat M, Khalifa E, Daghash S, Elaswad A, Miller M, Abdelrahman H, Ye Z, Odin R, Drescher D, Vo K, Gosh K, Bugg W, Ribinson D, Dunham R (2017) Generation of myostatin gene edited channel catfish (Ictalurus punctatus) via zygote injection of CRISPR/Cas9 system. Sci Rep 7:1–12

    Article  Google Scholar 

  • Kim KS, Larsen N, Short T, Plastow G, Rothschild MF (2000) A missense variant of the porcine melanocortin-4 receptor (MC4R) gene is associated with fatness, growth, and feed intake traits. Mamm Genome 11:131–135

    Article  CAS  PubMed  Google Scholar 

  • Kim KS, Thomsen H, Bastiaansen J, Nguyen NT, Dekkers JC, Plastow GS, Rothschild MF (2004) Investigation of obesity candidate genes on porcine fat deposition quantitative trait loci regions. Obes Res 12:1981–1994

    Article  CAS  PubMed  Google Scholar 

  • Kim KS, Lee JJ, Shin HY, Choi BH, Lee CK, Kim JJ, Cho BW, Kim TH (2006) Association of melanocortin 4 receptor (MC4R) and high mobility group AT-hook 1 (HMGA1) polymorphisms with pig growth and fat deposition traits. Anim Genet 37:419–421

    Article  CAS  PubMed  Google Scholar 

  • Kurita K, Burgess SM, Sakai N (2004) Transgenic zebrafish produced by retroviral infection of in vitro-cultured sperm. Proc Natl Acad Sci 101:1263–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubota S, Vandee A, Keawnakient P, Molee W, Yongsawatdikul J, Molee A (2019) Effects of the MC4R, CAPN1, and ADSL genes on body weight and purine content in slow-growing chickens. Poult Sci 98:4327–4337

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Park S, Kim H, Lee SK, Kim JW, Lee HK, Joeng DK, Lee SJ (2013) A C1069G SNP of the MC4R gene and its association with economic traits in Korean native cattle (brown, brindle, and black). Electron J Biotechnol 16:14

    Article  Google Scholar 

  • Li CY, Li H (2006) Association of MC4R gene polymorphisms with growth and body composition traits in chicken. Asian Australas J Anim Sci 19:763–768

    Article  CAS  Google Scholar 

  • Li D, Qiu Z, Shao Y, Chen Y, Guan Y, Liu M, Li Y, Gao N, Wang L, Lu X, Zhao Y, Liu M (2013) Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat Biotechnol 31:681–683

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Kinoshita M, Adolfi MC, Schartl M (2019) Analysis of the role of the MC4R system in development, growth, and puberty of medaka. Front Endocrinol 10:213

    Article  Google Scholar 

  • Lu D, Willard D, Patel IR, Kadwell S, Overton L, Kost T, Luther M, Chen W, Woychick RP, Wilkison WO, Cone RD (1994) Agouti protein is an antagonist of the melanocyte-stimulating-hormone receptor. Nature 371:799–802

    Article  CAS  PubMed  Google Scholar 

  • Manfredi-Lozano M, Roa J, Ruiz-Pino F, Piet R, Garcia-Galiano D, Pineda R, Zamora A, Leon S, Sanchez-Garrido MA, Romero-Ruiz A, Dieguez C, Jesus Vasquez M, Herbison AE, Pinilla L, Tena-Sempere M (2016) Defining a novel leptin–melanocortin–kisspeptin pathway involved in the metabolic control of puberty. Molecular Metabolism 5:844–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meidtner K, Wermter AK, Hinney A, Remschmidt H, Hebebrand J, Fries R (2006) Association of the melanocortin 4 receptor with feed intake and daily gain in F2 Mangalitsa × Piétrain pigs. Anim Genet 37:245–247

    Article  CAS  PubMed  Google Scholar 

  • Ortega-Azorín C, Sorlí JV, Asensio EM, Coltell O, Martínez-González MÁ, Salas-Salvadó J, Covas MI, Arós F, Lapetra J, Serra-Majem L, Gómez-Gracia E, Fiol M, Sáez-Tormo G, Pintó X, Muñoz MA, Ros E, Ordovás JM, Estruch M, Corella D (2012) Associations of the FTO rs9939609 and the MC4R rs17782313 polymorphisms with type 2 diabetes are modulated by diet, being higher when adherence to the Mediterranean diet pattern is low. Cardiovasc Diabetol 11:1–12

    Article  Google Scholar 

  • Qin Z, Li Y, Su B, Cheng Q, Ye Z, Perera DA, Fobes M, Shang M, Dunham RA (2016) Editing of the luteinizing hormone gene to sterilize channel catfish, Ictalurus punctatus, using a modified zinc finger nuclease technology with electroporation. Mar Biotechnol 18:255–263

    Article  CAS  Google Scholar 

  • Schjolden J, Schioth HB, Larhammar D, Winberg S, Larson ET (2009) Melanocortin peptides affect the motivation to feed in rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 160:134–138

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Cone RD (2007) Creation of a genetic model of obesity in a teleost. FASEB J 21:2042–2049

    Article  CAS  PubMed  Google Scholar 

  • Tlusty M, Tyedmers P, Ziegler F, Jonell M, Henriksson P, Newton R, Little D, Fry JP, Love D, & Cao L (2018) Commentary: comparing efficiency in aquatic and terrestrial animal production systems. Environ Res Lett 13

  • Vaisse C, Clement K, Guy-Grand B, Froguel P (1998) A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat Genet 20:113–114

    Article  CAS  PubMed  Google Scholar 

  • Varshney GK, Pei W, LaFave MC, Idol J, Xu L, Gallardo V, Carrington B, Bishop K, Jones M, Li M, Harper U, Huang SC, Prakash A, Chen W, Sood R, Ledin J, Burgess SM (2015) High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9. Genome Res 25:1030–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waltz E (2017) First genetically engineered salmon sold in Canada. Nature News 548:148

    Article  CAS  Google Scholar 

  • Wan Y, Zhang Y, Ji P, Li Y, Xu P, Sun X (2012) Molecular characterization of CART, AgRP, and MC4R genes and their expression with fasting and re-feeding in common carp (Cyprinus carpio). Mol Biol Rep 39:2215–2223

    Article  CAS  PubMed  Google Scholar 

  • Xie SL, Bian WP, Wang C, Junaid M, Zou JX, Pei DS (2016) A novel technique based on in vitro oocyte injection to improve CRISPR/Cas9 gene editing in zebrafish. Sci Rep 6:34555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Lan Z, Shu H, Zhou H, Jiang X, Hou L, Gu P (2018) Association between expression levels and growth trait-related SNPs located in promoters of the MC4R and MSTN genes in Spinibarbus hollandi. Genes & Genomics 40:1119–1125

    Article  CAS  Google Scholar 

  • Yang Z, Liang XF, Li GL, Tao YX (2020) Biased signaling in fish melanocortin-4 receptors (MC4Rs): divergent pharmacology of four ligands on spotted scat (Scatophagus argus) and grass carp (Ctenopharyngodon idella) MC4Rs. Mol Cell Endocrinol 115:110929

    Article  Google Scholar 

  • Yeo GS, Farooqi IS, Aminian S, Halsall DJ, Stanhope RG, O’Rahilly S (1998) A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat Genet 20:111–112

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by the United States Department of Agriculture National Institute of Food and Agriculture award 2015–67015-23488 to Roger Cone and sub-award to Rex Dunham.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Michael Coogan, Rex Dunham, Karim Khalil, Ahmed Elaswad, Mohd Khan, Roger D. Cone; methodology: Michael Coogan, Rex Dunham, Karim Kalil, Ahmed Elaswad, Patrick Page-McCaw, Wenbiao Chen, Maximilian Michel, Mohd Khan; formal analysis and investigation: Michael Coogan; writing—original draft preparation: Michael Coogan; writing—review and editing: Michael Coogan, Veronica Alston, Baofeng Su, Rex Dunham, Ian Butts, Andrew Johnson, De Xing, Jinhai Wang, Shangjia Li, Rhoda M.C. Simora, Wenwen Wang, Darshika Hettiarachchi, Cuiyu Lu; funding acquisition: Rex Dunham, Roger D. Cone; Resources: Rex Dunham; supervision: Rex Dunham, Ian Butts; data curation: Andrew Johnson, De Xing, Jinhai Wang, Shangjia Li, Rhoda M.C. Simora, Wenwen Wang, Darshika Hettiarachchi, Cuiyu Lu, and Tasnuba Hasin.

Corresponding author

Correspondence to Michael Coogan.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coogan, M., Alston, V., Su, B. et al. Improved Growth and High Inheritance of Melanocortin-4 Receptor (mc4r) Mutation in CRISPR/Cas-9 Gene-Edited Channel Catfish, Ictalurus punctatus. Mar Biotechnol 24, 843–855 (2022). https://doi.org/10.1007/s10126-022-10146-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-022-10146-8

Keywords

Navigation