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Abstract
Yellow drum (Nibea albiflora) is an important maricultural fish in China, and genetic improvement is necessary for this species.
This research evaluated the application of genomic selection methods to predict the genetic values of seven economic traits for
yellow drum. Using genome-wide single-nucleotide polymorphisms (SNPs), we estimated the genetic parameters for seven traits,
including body length (BL), swimming bladder index (SBI), swimming bladder weight (SBW), body thickness (BT), body
height (BH), body length/body height ratio (LHR), and gonad weight index (GWI). The heritability estimates ranged from 0.309
to 0.843. We evaluated the prediction performance of various statistical methods, and no one method provided the highest
predictive ability for all traits. We then evaluated and compared the use of genome-wide association study (GWAS)–informative
SNPs and random SNPs for prediction and found that GWAS-informative SNPs obviously increased. It only needed 5 and 100
informative SNPs for LHR and BT to achieve almost the same predictive abilities as using genome-wide SNPs, and for BL, SBI,
SBW, BH, and GWI, about 1000 to 3000 informative SNPs were needed to achieve whole-genome level predictive abilities. It
can be concluded from the test results that breeders can use fewer SNPs to save the breeding costs of genomic selection for some
traits.
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Introduction

Genomic selection (GS) uses genome-wide single-nucleotide
polymorphisms (SNPs) to obtain breeding value estimates,
which was first proposed by Meuwissen et al. (2001). The
key feature of the GS is that it can provide more accurate
estimates for kinship among individuals compared with the

use of pedigrees (Muir 2007). In recent years, GS has been
widely carried out in livestock breeding and has made great
progress, especially for dairy cattle. It usually gives higher
accuracy for breeding value estimates than the best linear un-
biased prediction (BLUP), but the utilization of genomic se-
lection in aquatic animals is very few (Hayes et al. 2009; Yue
2014; Dong et al. 2016a; Dou et al. 2016). The accurate se-
lection for aquatic animals is also important due to the fact that
one pair of aquatic animals usually produces a large number of
fry and will have a big economic effect (Yue 2014). To date,
genomic selection has already been applied to genetically im-
prove the economic performance of many aquatic animals,
such as Atlantic salmon (Salmo salar) (Tsai et al. 2015), sea
bream (Sparus aurata) (Palaiokostas et al. 2016), Yesso scal-
lops (Patinopecten yessoensis) (Dou et al. 2016), large yellow
croaker (Larimichthys crocea) (Dong et al. 2016a), Pacific
white shrimp (Litopenaeus vannamei) (Wang et al. 2017),
the common carp (Cyprinus carpio) (Palaiokostas et al.
2018), Japanese flounder (Paralichthys olivaceus) (Liu et al.
2018), and so on.

Yellow drum (Nibea albiflora) is an economically impor-
tant marine fish in China (Sun et al. 2018). Due to overfishing
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and environmental pollution, the number of wild populations
has been dropped sharply (Han et al. 2008), and the Chinese
government and breeders are now paying more attention to
artificial breeding of yellow drum (Yang et al. 2013; Chen
et al. 2017). Yellow drum is simply selected using phenotypic
selection based on body size every year. Therefore, genetic
progress has been quite limited. Furthermore, some economic
traits cannot be measured without killing the fish, such as
eviscerated weight and meat quality. Using genomic selection
not only shortens the breeding cycle but also accelerates the
genetic gain (Zenger et al. 2018). With the decrease in se-
quencing costs, it is easy to genotype genome-wide SNPs
using whole-genome sequencing or genotyping-by-
sequencing (GBS) (Rustagi et al. 2017). The genome of yel-
low drum is only approximately 565 Mb (Han et al. 2019),
which is a great advantage for use with sequencing techniques
to obtain a large number of genome-wide SNPs and favors the
application of genomic selection to the yellow drum genetic
breeding program. Genome-wide association study (GWAS)
analysis is an efficient approach for screening trait-related
markers or genes (Wang et al. 2019; Yu et al. 2019). In the
future, we will further conduct GWAS analysis on these traits
of yellow drum to further study the genetic mechanism of
these traits.

In this research, we evaluate the application of genomic
selection to the genetic improvement of seven yellow drum
traits: body length (BL), swimming bladder index (SBI),
swimming bladder weight (SBW), body thickness (BT), body
height (BH), body length/body height ratio (LHR), and gonad
weight index (GWI). The GBS technique was applied to ge-
notype genome-wide SNPs in yellow drum, estimate genetic
parameters for the above seven traits, and evaluate the predic-
tive abilities of various genomic selection strategies.

Materials and Methods

Ethics Statement

All the yellow drums came from a fish breeding company
Jinling Aquaculture Science and Technology Co. Ltd. in
Ningde City, Fujian Province, P.R. China. This study was
approved by the Animal Care and Use Committee of the
Fisheries College of Jimei University.

Sample Collection and Phenotype Measurement

In the spring of 2015, the parent fish were randomly selected
from the Ningde Dongwuyang Bay. The parent fish were si-
multaneously injected with luteinizing hormone releasing hor-
mone A3, and after 60 days of indoor breeding, the offspring
were transferred to a floating cage for 1 year. Then, more than
6000 fish were randomly selected from the floating cage and

transferred to the aquaculture farm. After 10 months of indoor
rearing, a total of 393 yellow drums (195 males, 198 females)
were collected as the experimental materials.

Severn traits were investigated, including BL, SBI, SBW,
BT, BH, and GWI, which were measured in the Key
Laboratory of Healthy Maricultural for the East China Sea.
The weight of swimming bladder, gonads, and the body
weight were measured using electronic scale with a precision
of 0.01 g; the BL, BT, and BH were directly measured using
vernier caliper with precision of 0.01 mm (for BT and BH) or
1 mm (for BL). Where SBI is the ratio of swimming bladder
weight to body weight, LHR is the ratio of BL to BH, and
GWI is the ratio of gonad weight to body weight.

Genotyping and Quality Control

The fins of 393 fish were collected and the DNAwas extracted
with TIANamp Genomic DNA Kit (TIANGEN, Beijing,
China); and DNAwas sequenced with GBS technique imple-
mented via Illumina HiSeq X Ten platform (Illumina, USA).
After removing 22 samples with low coverage (< 3 × 106),
371 samples (183 males and 188 females) were retained for
SNP genotyping. The raw sequencing reads were filtered with
FastQC software (Andrews 2010) and aligned to the reference
genome (Han et al. 2019) using BWAv0.7.17software (Li and
Durbin 2009); then, the SNPs were called with Platypusv0.8.1
(Rimmer et al. 2014), resulting in 3,868,328 SNPs. The SNPs
were further filtered using plink v1.9 (Chang et al. 2015) with
parameters “–vcf merge_pass.vcf –maf 0.01 –geno 0.1 –hwe
1e-5 –recode vcf -iid –biallelic-only –out snp –allow-extra-chr
–threads 30”, resulting in 53,677 SNPs with the average miss-
ing rate 3.32%. The missing SNPs were imputed with soft-
ware Beagle v4.1 (Browning and Browning 2016).

Statistical Methods

All phenotypes are based on a linear model:

y ¼ Xα þ Bβþ e; ð1Þ
where y is the vector of the phenotypes for different traits;X is
a design matrix for fixed effects; α is a vector of fixed effect
(only the sex effect is included here); B is a design matrix for
SNP effects (the elements in the SNPs genotypes are “0,” “1,”
and “2” for genotypes “AA,” “Aa,” and “aa,” respectively); β
is the vector for SNP effects; and e is the vector for residual
effects. The residual effects are generally considered to be
independent of each other and subject to the same distribution,
e ∼N(0, Ισe

2), where I is a vector of identity matrix and σe
2 is

a residual variance. Genomic best linear unbiased prediction
(GBLUP) (Vanraden 2008) directly predicted the genomic
breeding values (GEBVs) of all individuals, and the mixed
model equation can be expressed as
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where λ = σe
2/σg

2 = (1 − h2)/h2; σg
2 is the additive genetic var-

iance of traits; h2 is the heritability of different traits, estimated
from restrict-maximum likelihood (REML) method; and Z is
the design matrix related to g. The G matrix can be obtained
from all SNP genotypes:

G ¼ B−2Pð Þ B−2Pð Þ0

2∑ pj 1−pj

� � ; ð3Þ

where P is the vector of the allele frequency of each SNP and
pj is the frequency of allele “a” at the jth locus of each SNP.

We investigated 7 models for GS, BayesA (Meuwissen
et al. 2001), BayesB (Meuwissen et al. 2001; Cheng et al.
2015), BayesCπ (Habier 2011), MMixp (Dong et al. 2017),
ridge regression best linear unbiased prediction (RRBLUP)
(Meuwissen et al. 2001), GBLUP (Vanraden 2008), and mod-
ified convolutional neural network (CNN) of Ma et al. (2018),
where the CNN was modified to fit a large number of SNPs
(unpublished method). In BayesB (Meuwissen et al. 2001;
Cheng et al. 2015), the hyperparameter π (the probability of
including an SNP in the model) is set as 0.001, 0.01, 0.1, and v
(the degree of freedom of the inverse chi-square distribution)
is set as 4.2 in this study. The scale parameter (s2) is derived by
the expectation formula for the inverse chi-square distribution
and σg

2. In the GBLUP and RRBLUP methods, the variance
of all SNP effects is equal in the prior distribution (Meuwissen
et al. 2001; Vanraden 2008). In BayesA, all SNPs have effects,
and the variances of the SNPs follow inverse chi-square dis-
tribution (Meuwissen et al. 2001). MMixp also assumes dif-
ferent SNPs have different variance (large variance or small
variance) (Dong et al. 2017). In BayesB and BayesCπ, only a
small fraction of SNPs have non-zero effects (Meuwissen
et al. 2001; Habier 2011; Cheng et al. 2015). The main differ-
ence between BayesB and BayesCπ is that the latter estimates
the probability of the inclusion of a QTL into the model from
Gibbs sampling but the former sets this parameter beforehand
(Habier 2011; Cheng et al. 2015).

Cross Validations

The cross-validation was used to test prediction accuracy. The
371 individuals were randomly divided into 2 groups (refer-
ence population and testing population) with the ratio about
5:1, resulting in a reference population containing ~ 334 fish
and a testing population of ~ 37 fish. The populations were
randomly sampled for 100 times, and for each sampling we
evaluated the predictive ability for each strategy, where the
predictive ability was calculated as the correlation coefficient
between GEBVs and phenotypes.

Results

Genetic Parameter Estimates

The statistical results of phenotypic data of 7 traits are shown
in Table 1. We tested the gender effect by comparing the
phenotypes between the male and female group using t test
for 7 traits. As shown in Table 1, gender has significant effect
on the BL, GWI, SBI, BT, and BH, but not on the LHR and
SBW. The phenotypes for the males and females of the sample
sets are summarized in Table 1. There are significant differ-
ences for BL, SBI, BT, BH, and GWI between genders, sug-
gesting that a gender effect must be considered in the estima-
tion of breeding values. The variance components (σg

2 and
σe

2) and heritability (h2) with 371 individuals were estimated
using GVCBLUP software (Wang et al. 2014). The results are
also presented in Table 1. The heritability of LHR was rela-
tively lower (0.309 ± 0.140) compared with the other traits,
and BL has the highest heritability (0.843 ± 0.150) among
the 7 traits investigated (we will explain the overestimate of
it in discussion). The heritability estimates of 6 of the 7 traits
exceeded 0.4, suggesting these traits had the potentiality to be
genetically improved.

Performance of Different GS Methods

The predictive abilities for 7 traits are shown in Table 2. It was
also noted that in BayesB (Meuwissen et al. 2001; Cheng et al.
2015), the hyperparameters have a great effect on prediction
accuracy, and we chose the best one here. Using different
algorithms, the predictive abilities ranged from 0.361 to
0.396 for BL, from 0.145 to 0.207 for LHR, from 0.203 to
0.242 for SBI, from 0.180 to 0.238 for SBW, from 0.283 to
0.317 for BT, from 0.350 to 0.400 for BH, and from 0.374 to
0.412 for GWI. The maximum difference and percentages of
the differences across algorithms are also listed in Table 2. For
some traits, such as BL and GWI, the difference among
methods is small (< 10%), whereas for the other 5 traits, the
differences were more than 10%, and as even as high as
24.4%. However, none of the methods consistently provided
the highest predictive ability for all the traits. Among these
traits, BL, BH, and GWI have higher prediction accuracy than
the other traits.

Prediction Performance with Different Numbers
of SNP Sets

To reduce the cost of selection, we evaluated the performance
of genomic selection with an SNP set rather than using whole-
genome SNPs. We built the SNP set in two ways. The first
method was based on informative SNPs that were selected
according to p values (from small to big) of GWAS that im-
plemented via EMMAX software (Perry 2000; Meuwissen
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et al. 2001; Kang et al. 2010). The different number of SNPs
were 5, 10, 15, 20, 30, 100, 200, 300, 400, 1000, 2000, 3000,
5000, 10,000, 20,000, 30,000, 40,000, and 53,677 (all). In
contrast, the second method chose the same number of SNP
set randomly. The GBLUPmethod (Vanraden 2008) was used
to estimate the genetic values, and cross-validation was
employed to test the predictive ability.

As shown in Fig. 1, generally, the predictive abilities were
relatively higher with an informative SNP set than with a
random SNP set, which suggests that informative SNPs are
helpful in increasing predictive abilities; furthermore, for both
strategies, the predictive abilities improved with an increase in
the number of SNPs. Using 5 random SNPs, the predictive
abilities were very close to zero or below zero for all traits, and
compared with this, with the use of 5 informative SNPs, it
produces more obvious predictive abilities for some of the
traits, such as LHR, BT, and GWI. It is also shown in Fig. 1
that for BL, SBI, SBW, BH, and GWI, a set of 1000 to 3000
informative SNPs could bring almost the same predictive abil-
ities as using the whole-genome SNPs; and for BTand LHR, it
only needs approximately 100 and 5 informative SNP to

achieve the same predictive abilities as using whole-genome
SNPs. However, random SNP set requires much more SNPs
(typically tens of thousands) to achieve similar predictive abil-
ities to those achieved by using whole-genome SNPs. The
results of LHR in Fig. 1b decreased from 30 to 2000 SNPs.
The reason is that the sample size is small, and the pedigree of
this population is complex, making the results a bit unstable,
but which does not affect to get the general trend.

Discussion

This research evaluated the performance of using genomic
selection to predict breeding values for yellow drum, which
provides a reference for future breeding programs. The study
also successfully estimated the genetic parameters for 7 traits
using genome-wide SNPs, which provides direct and accurate
information to build kinship among individuals, and thus
leads to accurate estimates for genetic parameters. Though
heritability is usually estimated with pedigree information,
by which the kinship among individuals can be built, it is very

Table 2 Effect of different methods on the predictive ability of 7 traits

Methods Parameter Predictive abilities (mean ± standard errors)

BL LHR SBI SBW BT BH GWI

BayesA 0.361 ± 0.011 0.157 ± 0.014 0.209 ± 0.014 0.184 ± 0.013 0.315 ± 0.017 0.355 ± 0.014 0.397 ± 0.013

BayesB π = 0.001 0.240 ± 0.015 0.186 ± 0.014 0.177 ± 0.016 0.139 ± 0.017 0.259 ± 0.016 0.363 ± 0.012 0.349 ± 0.014

π = 0.01 0.334 ± 0.015 0.186 ± 0.014 0.242 ± 0.018 0.191 ± 0.016 0.293 ± 0.015 0.393 ± 0.013 0.394 ± 0.012

π = 0.1 0.362 ± 0.014 0.191 ± 0.014 0.230 ± 0.016 0.214 ± 0.015 0.298 ± 0.015 0.397 ± 0.013 0.400 ± 0.012

BayesCπ 0.396 ± 0.014 0.165 ± 0.014 0.203 ± 0.013 0.180 ± 0.014 0.317 ± 0.016 0.384 ± 0.015 0.391 ± 0.012

MMixp 0.378 ± 0.013 0.207 ± 0.014 0.215 ± 0.013 0.195 ± 0.012 0.296 ± 0.017 0.400 ± 0.012 0.386 ± 0.014

RRBLUP 0.380 ± 0.015 0.192 ± 0.014 0.224 ± 0.013 0.218 ± 0.013 0.298 ± 0.015 0.380 ± 0.012 0.389 ± 0.012

GBLUP 0.378 ± 0.015 0.174 ± 0.013 0.219 ± 0.014 0.238 ± 0.011 0.305 ± 0.017 0.365 ± 0.013 0.374 ± 0.014

CNN 0.392 ± 0.012 0.145 ± 0.015 0.207 ± 0.014 0.211 ± 0.016 0.283 ± 0.015 0.350 ± 0.014 0.412 ± 0.012

Maximum difference
(percent of the difference)

0.035 (8.8%) 0.050 (24.2%) 0.039 (16.1%) 0.058 (24.4%) 0.034 (10.7%) 0.05 (12.5%) 0.038 (9.2%)

Table 1 Statistical results for phenotypic data for seven traits

Trait Male Female 371 individuals

Number Mean ± S.D. Number Mean ± S.D. σg
2 ± S.E. σe

2 ± S.E. h2 ± S.E.

BL 183 211.80 ± 15.45 mm** 188 221.46 ± 16.08 237.123 ± 59.328 44.210 ± 39.475 0.843 ± 0.150

LHR 183 2.99 ± 0.21 (−) 188 2.99 ± 0.22 0.015 ± 0.007 0.032 ± 0.006 0.309 ± 0.140

SBI 183 0.72 ± 0.30%* 188 0.62 ± 0.42 556.844 ± 251.654 830.842 ± 200.971 0.401 ± 0.162

SBW 183 1.56 ± 0.68 g (−) 188 1.52 ± 0.84 0.301 ± 0.120 0.330 ± 0.092 0.477 ± 0.165

BT 183 35.81 ± 4.05 mm * 188 37.30 ± 3.98 11.923 ± 3.377 5.498 ± 2.379 0.684 ± 0.151

BH 183 71.14 ± 6.68 mm* 188 74.42 ± 5.95 29.656 ± 7.939 12.449 ± 5.540 0.704 ± 0.145

GWI 183 1.11 ± 0.43 %** 188 0.91 ± 0.25 0.104 ± 0.025 0.030 ± 0.017 0.773 ± 0.140

*, ** Significant differences between sex at the 0.01 and 0.001 levels, respectively

Mar Biotechnol (2019) 21:806–812 809



Fig. 1 Predictive abilities under different numbers of GWAS informative SNPs and SNPs randomly selected by GBLUP
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hard to get for yellow drum and they are also less accurate than
using SNPs. The heritability estimates of BL, BH, and GWI,
are 0.843, 0.704, and 0.773, respectively, and it seems that
they are higher than expected value (0.4~0.6). Nevertheless,
the 99% confidence intervals of the estimates are (0.457, 1),
(0.330, 1), and (0.412, 1), respectively (obtained from the
estimated heritability plus andminus two times of the standard
error), showing that they include the expected value (0.4~0.6),
suggesting the estimated heritability is within a statistically
acceptable scope. In another hand, we only used a small num-
ber of fish (371) in this study and they were the offspring of
several parents, maybe not representative for the whole pop-
ulation, and may lead to biased estimates for the heritability.
The ideal population for the estimates of the heritability is a
balanced population that consists as many families with sim-
ilar number of offspring.

We also tested the prediction performance of different
methods, including Bayesian methods, GBLUP (Vanraden
2008), and modified CNN method of Ma et al. (2018), but
none always gave the highest predictive ability for all the
traits. This suggests that when applying genomic selection
for genetic breeding, we need to evaluate various methods
and then choose the most suitable one for a specific trait
(Dong et al. 2016b).

The size of the population is the most important factor
affecting the predictive abilities. In this research, we only gen-
erated very small reference population (~ 334 fish), which led
to low predictive abilities. The research inferred the size of the
reference population using the method from Daetwyler et al.
(2008). We fi t the l inear equation mentioned in
Supplementary Table 2 of this paper and found that if we
aim to achieve 0.8 of the prediction accuracy, then it needs
3773, 4206, 3621, 4606, 1640, 1702, and 2116 fish for BL,
LHR, SBI, SBW, BT, BH, and GWI, respectively (see
supplementary for detailed calculation). Another factor that
affects the prediction ability is the genotyping methods. We
used the GBS technique for SNP genotyping and generated ~
50,000 SNPs, but it is still not dense enough to cover causal
mutations. Compared with it, whole-genome sequencing is
probably able to further increase the prediction abilities. The
last factor that affects the prediction accuracy is the statistical
methods; we have applied seven statistical methods for geno-
mic selection in this study, and the results showed that the
performance among methods (ranging from 8.8 to 24.4%)
varied greatly. This suggests that statistical method has an
ineligible effect on genomic selection. Hopefully, some so-
phisticated methods will be developed in the future that is able
to further increase the predictive ability and suitable for more
traits.

To conveniently evaluate the performance of SNP sets for
genomic selection, we only investigated on the GBLUPmeth-
od (Vanraden 2008). We compared the GWAS-informative
SNPs to randomly selected SNPs and showed that GWAS-

informative SNPs could bring predictive abilities as close as
those using whole-genome SNPs, and the number of
informative SNPs required ranged from 5 to 3000 depending
on the traits. This conclusion is generally consistent with that
of Abed et al. (2018) and Dassonneville et al. (2011), suggest-
ing that one can use only a small number of informative SNPs
rather than whole-genome SNPs for selection, which would
dramatically reduce breeding costs (Habier et al. 2009; Dong
et al. 2016a; Song et al. 2019).
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