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Abstract
Background Diabetes mellitus type 2 is a common disease that poses a challenge to the healthcare system. The disease
is very often diagnosed late. A better understanding of the relationship between the gut microbiome and type 2 diabetes
can support early detection and form an approach for therapies. Microbiome analysis offers a potential opportunity to find
markers for this disease. Next-generation sequencing methods can be used to identify the bacteria present in the stool sample
and to generate a microbiome profile through an analysis pipeline. Statistical analysis, e.g., using Student’s t-test, allows the
identification of significant differences. The investigations are not only focused on single bacteria, but on the determination
of a comprehensive profile. Also, the consideration of the functional microbiome is included in the analyses. The dataset is
not from a clinical survey, but very extensive.

Results By examining 946 microbiome profiles of diabetes mellitus type 2 sufferers (272) and healthy control persons (674),
a large number of significant genera (25) are revealed. It is possible to identify a large profile for type 2 diabetes disease.
Furthermore, it is shown that the diversity of bacteria per taxonomic level in the group of persons with diabetes mellitus type
2 is significantly reduced compared to a healthy control group. In addition, six pathways are determined to be significant for
type 2 diabetes describing the fermentation to butyrate. These parameters tend to have high potential for disease detection.

Conclusions With this investigation of the gut microbiome of persons with diabetes type 2 disease, we present significant
bacteria and pathways characteristic of this disease.

Keywords Type 2 diabetes · Gut · Butyrate · NGS · Statistical analysis

Background

Diabetes mellitus is one of the most prevalent diseases
worldwide. In 2019, the World Health Organization (WHO)
included diabetes mellitus in the top 10 leading causes
of death (WHO 2020). Diabetes mellitus is a metabolic
disease, with some hereditary predispositions. It is divided
into two main variants, type 1 and type 2. Type 2 diabetes
mellitus (T2D) is the most common form and accounts
for over 90% of all cases. In this disease, the pancreas
still provides sufficient insulin, but this can be increasingly
poorly processed by the cells until a complete insulin
resistance is developed (Zaccardi et al. 2016). Lack of
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exercise, diet, and obesity are regarded risk factors (Fletcher
et al. 2002). In the past, this disease was considered to
be a consequence of old age, but nowadays this disease is
also increasingly occurring in children and youth. Diabetes
mellitus type 2 disease can lead to the development of
cardiovascular diseases, diabetic foot and damage to the
kidneys and eyes, and can even lead to death (Cannon et al.
2018). Studies have shown that the disease can be pushed
back or even defeated completely by changing the way of
life (Lean et al. 2018).

The intestinal microbiota is a complex structure of
bacteria, fungi and virus. Bacteria account for the largest
share, with a total of about 100 trillion bacteria living
in human intestines. In addition to digestion, the intestine
is involved in many other processes and is also called
the control center of the body. For example, it supports
the immune system and controls inflammatory processes,
among other things. The intestinal microbiome is not only
influenced by nutrition, but also by many other factors,
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such as lifestyle, environment, age and gender. Thus, the
composition of the intestinal microbiota varies depending
on these factors. With a balanced diet, the diversity of
bacteria in the intestine increases, and this leads to a wide
formation of various metabolic products (Lozupone et al.
2012; Shreiner et al. 2015). In this context, the short-chain
fatty acids (SCFA) are of particular importance (Valdes
et al. 2018). An important representative is butyrate, which
is produced by a variety of bacteria. Butyrate producers
make up about 20% of the total bacterial community.
Most frequently occurring representatives are members of
the families Lachnospiraceae and Ruminococcaceae (Vital
et al. 2017). Butyrate is formed during the fermentation
of carbohydrates via various pathways (pyruvate, succinate,
etc.) (Vital et al. 2014). In this process, it represents one of
the most important sources of energy for intestinal cells. In
addition, butyrate is considered to have a health-promoting
effect. It not only ensures the functionality of intestinal
cells, but also strengthens the intestinal barrier, regulates
immune functions and controls metabolic processes. A
reduction of butyrate-producing bacteria is associated with
the development of diseases (Mallott and Amato 2022).

With the advent of research into the microbiome, links
between gut bacteria and type 2 diabetes mellitus have
also emerged. Although the question remains whether
causality can be inferred between the correlations found.
However, increased research in the field is leading to a better
understanding. Existing correlations can be confirmed
and deepened, and new ones can form the basis for
further studies. Thus, consequences and causes of diseases
and changes in the intestinal microbiome can be better
understood and possible therapeutic approaches can be
developed (Arora and Tremaroli 2021; Li et al. 2020;
Sharma and Tripathi 2019; Gurung et al. 2020).

Materials andmethods

Data

The available data sets consist of microbiome and individual
lifestyle data. These are not from a clinical survey with
medical supervision, but are extensive due to the low-
threshold manner of the survey. More than 29,000 samples
were available, each associated with individual lifestyle
information. The data (only with indication of consent for
scientific use) is provided by the company BIOMES NGS
GmbH as a project partner within the scope of its business-
like activity. BIOMES NGS GmbH offers a self-test for
the analysis of the intestinal flora. Both the sampling and
the answering of the questions about the individual lifestyle
were performed by the customers themselves. It is a lifestyle

product without any further verification of the customer’s
information by a medical doctor.

The data on individual lifestyle includes information on
age, center of life, height and body weight, as well as
information on diet, diseases and medication intake. A total
of 99 fields were covered.

The microbiome profile was composed of normalized
counts per taxonomic level (kingdom, phylum, class, order,
family, genus, species) from sequenced bacterial 16S ribo-
somal DNA (rDNA). Microbial DNA was analyzed using
next-generation sequencing (NGS). This has advantages
over classical gut analysis methods because the analysis is
more accurate and thus the entirety of the intestinal micro-
biome can be determined. The 16S rDNA, a gene of the
microorganisms, is analyzed.

One subset consisted of clients, who have a diabetes type
2 disease with an age between 18 and 80.

A total of 272 samples met the inclusion criteria, of
which 143 were female and 127 were male, and two samples
had no gender information.

The diabetes type 2 subgroup was compared with a
healthy reference group. Samples for the healthy reference
were selected based on the listed parameters.

Inclusion criteria (healthy):

– Age 18-80
– No diseases
– No gastrointestinal complains
– No allergies gluten intolerance
– No medication
– No antibiotic intake <3 months
– No probiotic intake <3 months
– BMI 18.5 to 27.5
– Alcohol intake not daily
– Good wellbeing (> = 5) & health

score (>= 6 out of 10)

These criteria resulted in a group size of 674 healthy
individuals. Of these, 340 were female, 318 were male,
1 are socially diverse, and 15 samples without gender
information. Table 1 shows the distribution of the selected
parameters age, gender, BMI, nutrition and sports for the
two groups Healthy and T2D. There was no significant
difference in nutrition between the two groups. The T2D
group did slightly less sports than the Healthy group. This
is consistent for the development of diabetes mellitus type
2 disease. For the investigated data set, further adjustment
of the parameters in the two groups was not possible, as
otherwise unacceptable group sizes would have resulted.
The parameters age and BMI are known risk factors and
crucial for the development of diabetes type 2. Thus, higher
age and higher BMI are characteristic.
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Table 1 Distribution of the selected parameters age, gender, BMI,
nutrition and sports for the two groups Healthy and T2D

Parameter Healthy group
(n=674)

T2D group
(n=272)

Age, years 42,55 ± 12,12 59,71 ± 12,27

Women/Men/Divers, n 340/318/1 143/127/0

BMI, kg/m2 23,13 ± 2,24 31.05 ± 6.38

Nutrition

Omnivore 517 245

Vegan 40 2

Vegetarian 74 10

Pescetarian 43 8

Sports

Daily 22 3

5–6 times per week 61 5

3–4 times per week 199 31

1–2 times per week 172 28

1 time per week 52 17

1 time per 2 weeks 18 7

Less 2 months 2 5

Never 132 107

Methods

Sample preparation and sequencing

Sample storage and lysis

Collected stool samples are stored in 1000 μL DNA-
stabilizing buffer at −20 ◦C until use. For the lysis
process, the samples are defrosted and will be centrifuged.
Afterwards, warmed up PW buffer from the QIAamp 96
PowerFecal QIAcube HT Kit is added to each sample.

Extraction of stool samples

For the extraction we established the QIAamp 96 Pow-
erFecal QIAcube HT Kit on our liquid handling systems
(Hamilton StarLine & Tecan EVO) by using a vacuum
chamber as well as a high-pressure chamber. The extracted
gDNA is stored at −20 ◦C until use.

Library preparation for sequencing with the Illumina MiSeq
System

The library preparation follows the manual “16S Metage-
nomic Sequencing Library Preparation- Preparing 16S
Ribosomal RNA Gene Amplicons for the Illumina MiSeq

System”. The mastermix reagents for the target and library
amplification are from New England BioLabs, 16S V3V4
primer from Eurofins. For normalization of all samples, a
fluorescent dye, and the Biotek Synergy HTX plate reader
are used to measure DNA concentrations and to calculate
the necessary dilution volume per sample. To ensure a high
throughput, all the steps, from the first amplification to the
library pooling, are nearly fully automated by using the liq-
uid handling systems (Hamilton StarLine). Hence, we can
process between 96 and 192 samples simultaneously and
the normalization also works for up to 288 samples. The
Library Denaturing and MiSeq Sample Loading is carried
out manually.

Processing sequence reads

The determined paired-end reads were filtered in the
following. First, the forward/reverse reads were merged
using PANDAseq (Masella et al. 2012). This was followed
by an alignment using BLASTn (Altschul et al. 1990)
against the SILVA rRNA database (version: 138.1) (Quast
et al. 2013). Afterwards, filtering was performed. There
must be at least 10,000 assigned reads for each sample, for
further analysis. Different identity thresholds per taxonomic
boundaries (phylum: 75.0%, class: 78.5%, order: 82.0%,
family: 86.5%, genus: 94.5%, species: 97.0%) (Yarza et al.
2014) were used. The sequences were clustered according to
their similarity (97%) using CD-HIT (Li and Godzik 2006;
Fu et al. 2012). Biologically normalized abundances were
calculated from the clustered reference sequences using the
PICRUSt2 pipeline (Douglas et al. 2020). The output is
a table of biologically normalized counts per taxonomic
level. The PICRUSt2 pipeline was used to determine the
available pathways (MetaCyc Caspi et al. 2016) for each
sample applying a predictive model. The abundances of
the identified pathways were calculated based on the gene
families.

The alpha diversity measures Shannon entropy (Shannon
1948) and inverse Simpson correlation (Simpson 1949)
were determined from the rarefied raw counts. The
mathematically normalized values were calculated using
QIIME2 (Bolyen et al. 2019). Shannon entropy is a measure
of diversity and includes both the number of different
species and the number of individuals per species. The
Shannon index originated in information theory, as a
measure of the information content of a message. The
inverse Simpson index is also a measurement for describing
diversity and, like the Shannon index, belongs to the alpha
diversity measures. It is based on the Simpson index.
This indicates the probability that two randomly selected
individuals belong to different species. The inverse Simpson
index is the reciprocal of the Simpson index.
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Table 2 Diversity: number of
bacteria (at least one relative
count) per taxonomic level for
the groups Healthy and T2D
and in the total of both groups

Group Phylum Class Order Family Genus Species

Total 75 224 490 1045 2393 4326

Healthy 75 217 460 966 2140 3690

T2D 67 184 409 874 1911 3275

Further analysis steps were performed with custom Python
scripts using the pandas (McKinney 2010; The pandas
development team 2020), NumPy (Harris et al. 2020),
scikit-learn (Pedregosa et al. 2011) and SciPy (Virtanen
et al. 2020) libraries.

Statistical analysis

Various statistical tests were applied to detect significant
differences between the two groups T2D and Healthy. To
determine whether the numerical values of microbiome and
lifestyle data follow a normal distribution, a test based on
D’Agostino and Pearson (D’Agostino 1971; D’Agostino
and Pearson 1973) was used. A Student’s t-test (Student
1908) was applied to normally distributed samples, and a
Mann-Whitney U test (Wilcoxon 1945) was applied to non-
normally distributed samples. To determine correlations of
individual lifestyle categorical data, the Chi-Square Test
of Independence was used. A p-value of > 0.05 was
considered significant for all tests used.

Results

Diversity of the intestinal microbiome

To identify which bacteria/taxa are significant to each group,
diversity was examined first. This was done by calculating

the number of bacteria per taxonomic level that had at
least one relative count. The quantity of different bacteria
per subgroup for each taxonomic level is listed in Table 2.
Occurrences over the entire group were also included. It can
be seen that the values in the T2D group were about 10%
lower than in the Healthy control group across all taxonomic
levels.

The uniqueness of bacteria in those groups was
investigated afterwards. These percentage values are shown
in Fig. 1. The majority of bacteria occur in both groups.
In addition, more bacteria occur only in the group Healthy.
To determine whether the unique bacteria are characteristic
for diabetes, they were tested for significance. For this
purpose, different hypothesis tests were applied, Student’s
t-test for normally distributed samples and Mann-Whitney
U test for non-normally distributed samples. A p-value
of > 0.05 was assumed as significant. None of the
unique bacteria were found to be characteristic of either
group.

A hypothesis test was performed for bacteria present
in both groups to check for significance. For normally
distributed samples, a Student’s t-test was applied, and
Mann-Whitney U test was used for samples not following
a Gaussian distribution. A p-value of 0.05 was assumed
as significance threshold. Of 2393 different genera, 25
were identified as significant. Of these, the count val-
ues for 4 genera (Bacteroides, Blautia, Lachnoclostrid-
ium, and Prevotella) were increased in the T2D group in

Fig. 1 Ratio of bacteria present
only in the Healthy group (blue),
those present only in the T2D
group (orange), and in both
groups (green), in percent for
each taxonomic level
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comparison to the Healthy group. The other 19 genera
(Faecalibacterium, Lachnospira, Roseburia, Ruminococ-
cus, etc.) showed decreased count values in T2D compared
to Healthy. Bacteria that could not be precisely assigned
(non-specific, etc.) were not included. Table 3 lists sig-
nificant bacteria (genus level) with respecting p-value and
relative abundance in the T2D group.

The significant genera belong to 9 different families
(out of 1045 different families). Thereby, the family of
Lachnospiracaeae was the most represented one (16 genera
out of 25), followed by Ruminococcacaeae (3 out of 25). For
the remaining 6 genera, each belongs to different families.

Quantification by alpha diversity

To describe the diversity of the groups, the Shannon entropy
and the inverse Simpson correlation were calculated.
Figure 2 shows the results as a violin plot for both
groups. Both parameters for alpha diversity are significantly
increased in the Healthy group compared to the T2D group.
This is particularly visible for the Shannon entropy.

Functional microbiome: consideration
of the butyrate production pathways

Furthermore, the identified pathways were analyzed for
their significance for type 2 diabetes mellitus. Special
attention was paid to pathways in which butyrates are
produced. The significant pathways are listed in Table 4.
These are six pathways in which fermentation to butanoate
occurs. High significance was found for three of six
pathways (PWY-5677, P163-PWY, CENTFERM-PWY; cf.
Table 4). The three other pathways (P162-PWY, PWY-5676,
PWY-5022) showed weak significance.

Discussion

This work analyzed the intestinal microbiome of 272
individuals with diabetes mellitus type 2 disease and 674
healthy control subjects. Significant differences in the alpha
diversity measures, Shannon entropy and inverse Simpson
correlation, were found between the two groups. It became

Table 3 Bacteria at genus level
determined to be significant,
with p-value and inclusion of
the T2D group relative to the
Healthy group (⇑ — increases;
⇓ — decreases)

Genus Occurrence in diabetes group p-value

Lachnoclostridium ⇑ 7.751e-22

Bacteroides ⇑ 1.308e-05

Blautia ⇑ 2.169e-03

Prevotella ⇑ 1.644e-03*

Lachnospiraceae FCS020 group ⇓ 2.460e-22

Lachnospiraceae ND3007 group ⇓ 6.416e-14

Faecalibacterium ⇓ 8.775e-12

Ruminococcus ⇓ 7.398e-11

Clostridium sensu stricto 1 ⇓ 3.000e-10*

Lachnospiraceae UCG-001 ⇓ 2.885e-08

Coprococcus ⇓ 5.091e-07

Subdoligranulum ⇓ 4.141e-06

Lachnospira ⇓ 3.639e-06

Lachnospiraceae NC2004 group ⇓ 2.348e-06

Lachnospiraceae NK4A136 group ⇓ 2.284e-06

Fusicatenibacter ⇓ 4.077e-05

Lachnospiraceae UCG-006 ⇓ 2.310e-05

UCG-002 ⇓ 7.378e-03

Roseburia ⇓ 5.050e-03

Marvinbryantia ⇓ 3.677e-03

Lachnospiraceae UCG-008 ⇓ 2.881e-03

Agathobacter ⇓ 2.438e-03*

Alistipes ⇓ 2.560e-02*

Butyricicoccus ⇓ 1.747e-02*

Anaerostipes ⇓ 1.288e-02

*Mann-Whitney U test
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Fig. 2 Alpha diversity: violin
plot for the group Healthy (blue)
and the group T2D (orange) of
absolute counts (%) for Shannon
entropy (left) and inverse
Simpson correlation (right)

clear that the diversity in the diabetes mellitus type 2 group
is lower than in the Healthy control group. This was also
confirmed by other studies, which show that the microbiome
diversity of persons suffering a disease is lower compared
to healthy persons (Zhang et al. 2019; Larsen et al. 2010).

Furthermore, the analyses demonstrated that there
are bacteria that are only present in one of the two
comparison groups. However, the occurrences of these
bacteria were not significant for diabetes mellitus type
2 disease. Characteristic bacteria for distinguishing the
diabetes microbiome from healthy microbiome were present
in both groups. The only significant difference between
the genera was in the amount of their occurrence.
Four genera (Bacteroides, Blautia, Lachnoclostridium and
Prevotella) showed an increased occurrence in the diabetes
mellitus type 2 group than in the Healthy control group.
The other significant genera (Anaerostipes, Coprococcus,
Fusicatenibacter, Lachnospira, Marvinbryantia, Roseburia,
Faecalibacterium, Ruminococcus, Subdoligranulum, UCG-
002, Agathobacter, Butyricicoccus, Alistipes, Clostridium
sensu stricto 1 and all Lachnospiraceae) showed the
opposite.

The genus Blautia was one of the most represented
genera in both groups enriched in group T2D. Previous

studies confirm this behavior (Egshatyan et al. 2015; Zhang
et al. 2013).

Lachnoclostridium were more abundant in the micro-
biome profiles of diabetic patients. This association has not
yet been verified in other studies. However, there are stud-
ies in relation to other diseases (Kang et al. 2021). Further
research is necessary to identify Lachnoclostridium as a
marker for type 2 diabetes mellitus. There are anomalies
in the genera Bacteroides and Prevotella, both of which
are increased in the T2D group, compared to the healthy
group. Although similar behavior was detected in other
studies, both genera are propionate producers. Propionate,
like butyrate, belongs to the short-chain fatty acids. These
are associated with a healthy status of the microbiome (Wu
et al. 2010; Candela et al. 2016).

A significant reduction of genera Alistipes, Anaerostipes,
Ruminococcus was detected in the T2D group. This
decrease was associated with diabetes mellitus type 2 and
was supported by previous studies. Ruminococcus and
Anaerostipes were associated with a healthy state of the
microbiome and showed increased values in the Healthy
control group (Gao et al. 2018; Doumatey et al. 2020).
Furthermore, various studies also indicated a decrease in
genera in the group T2D (Zhang et al. 2019; Gaike et al.

Table 4 Pathways with
butyrate as end product BioCyc ID Pathways p-value

PWY-5677 Succinate fermentation to butanoate 1.570e-12

P163-PWY L-Lysine fermentation to acetate and butanoate 4.804e-10

CENTFERM-PWY Pyruvate fermentation to butanoate 2.312e-05

P162-PWY L-Glutamate degradation V (via hydroxyglutarate) 6.015e-02

PWY-5676 Acetyl-CoA fermentation to butanoate 8.599e-02

PWY-5022 4-Aminobutanoate degradation V 2.278e-01
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2020; Liu et al. 2020; Salamon et al. 2018; Das et al. 2021).
A decrease of Alistipes counts was also identified in the

data of group T2D (Thingholm et al. 2019).
Additionally, the analysis pointed out a reduction

in the Lachnospira, Roseburia, Faecalibacterium and
Coprococcus genera in the T2D group compared to the
healthy group. These genera were butyrate producers and
were associated with healthy gut flora. The decrease of these
genera favored obesity and the development of diseases.
This fact and other studies supported the assumption that
these were genera associated with diabetes mellitus type 2
disease. In these studies, a reduction was also detected in
the T2D group (Zhang et al. 2019; Larsen et al. 2010; Kang
et al. 2021; Candela et al. 2016; Gao et al. 2018; Liu et al.
2020; Salamon et al. 2018; Das et al. 2021; Anand et al.
2016).

The genus Subdoligranulum is closely related to the
genera Faecalibacterium, both from the family Ruminococ-
caceae. Like Faecalibacterium, Subdoligranulum is also a
butyrate producer. Furthermore, this genus was associated
with a healthy metabolic status, but the exact physiologi-
cal role is yet unknown (Van Hul et al. 2020). The results
(cf. Table 3) show that the occurrence of Subdoligranulum
is reduced in the group with type 2 diabetes mellitus. The
reduction of Subdoligranulum can also be assumed to have a
negative impact and is thus characteristic of type 2 diabetes
mellitus disease.

In four other genera (Fusicatenibacter, Agathobacter,
Butyricicoccus, Marvinbryantia), a decrease in the T2D
group could also be detected. Those are currently not
associated with type 2 diabetes mellitus. All genera produce
short-chain fatty acids, e.g., butyrates, and are associated
with a healthy intestinal flora (Kang et al. 2021; Lu et al.
2019; Ma et al. 2020; Chen et al. 2021). The reduction of
genera leads to a lower proportion of short-chain fatty acids
in the organism. This favors obesity and the development
of diseases. Thus, these genera may be elements of a
profile for the detection of type 2 diabetes mellitus. The
exact relationship between the genera Fusicatenibacter,
Agathobacter, Butyricicoccus and Marvinbryantia and type
2 diabetes mellitus disease also needs to be investigated in
further trials.

The consideration of the functional microbiome has
received greater attention in recent years. It is assumed
that not only individual bacteria/taxa, but also their
interactions are decisive. So characteristic profiles, e.g.,
diseases and lifestyle, can be found. Thus, pathway
analyses are becoming more and more important. In this
work, pathways were investigated in which fermentation
to butanoate takes place (Qin et al. 2012; Reichardt
et al. 2014). Six different pathways (PWY-5677, P163-
PWY, CENTFERM-PWY, P162-PWY, PWY-5676, PWY-
5022) could be determined. Through significance analysis,

these were examined with respect to their relevance
for the group T2D. Furthermore, significant, determined
taxa (e.g., Lachnospira, Roseburia, Faecalibacterium, and
Coprococcus) are also identified as butyrate producers.
These facts support the assumption that the functional
microbiome has a high importance for the analysis of
the microbiome. Further research must verify the potential
found for associations with diabetes mellitus type 2 disease
or even other diseases or lifestyles. For this purpose,
additional pathways need to be examined. These may also
be approaches for early detection and therapies (Arora and
Tremaroli 2021).

Abbreviations BMI, body mass index; NGS, next-generation sequenc-
ing; rDNA, ribosomal deoxyribonucleic acid; SCFA, short-chain fatty
acids; T2D, type 2 diabetes; WHO, World Health Organization.
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