Skip to main content

Advertisement

Log in

Tumor-infiltrating monocytic myeloid-derived suppressor cells contribute to the development of an immunosuppressive tumor microenvironment in gastric cancer

  • Original Article
  • Published:
Gastric Cancer Aims and scope Submit manuscript

Abstract

Background

Gastric cancer (GC) is characterized by an immunosuppressive and treatment-resistant tumor immune microenvironment (TIME). Here, we investigated the roles of different immunosuppressive cell types in the development of the GC TIME.

Methods

Single-cell RNA sequencing (scRNA-seq) and multiplex immunostaining of samples from untreated or immune checkpoint inhibitor (ICI)-resistant GC patients were used to examine the correlation between certain immunosuppressive cells and the prognosis of GC patients.

Results

The results of the scRNA-seq analysis revealed that tumor-infiltrating monocytic myeloid-derived suppressor cells (TI-M-MDSCs) expressed higher levels of genes with immunosuppressive functions than other immunosuppressive cell types. Additionally, M-MDSCs in GC tissues expressed significantly higher levels of these markers than adjacent normal tissues. The M-MDSCs were most enriched in GC tissues relative to adjacent normal tissues. Among the immunosuppressive cell types assessed, the M-MDSCs were most enriched in GC tissues relative to adjacent normal tissues; moreover, their presence was most strongly associated with a poor prognosis. Immediate early response 3 (IER3), which we identified as a differentially expressed gene between M-MDSCs of GC and adjacent normal tissues, was an independent poor prognostic factor in GC patients (P = 0.0003). IER3+ M-MDSCs expressed higher levels of genes with immunosuppressive functions than IER3 M-MDSCs and were abundant in treatment-resistant GC patients.

Conclusions

The present study suggests that TI-M-MDSCs, especially IER3+ ones, may play a predominant role in the development of the immunosuppressive and ICI-resistant GC TIME.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability and materials

The scRNA-seq data generated in this study are available from the GEO database under accession code GSE231540. The remaining data are available within the manuscript, Supplementary Information, or from the corresponding author upon reasonable request.

References

  1. Shitara K, Özgüroğlu M, Bang YJ, Di Bartolomeo M, Mandalà M, Ryu MH, et al. Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): a randomised, open-label, controlled, phase 3 trial. Lancet. 2018;392:123–33.

    Article  CAS  PubMed  Google Scholar 

  2. Kang YK, Boku N, Satoh T, Ryu MH, Chao Y, Kato K, et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;390:2461–71. https://doi.org/10.1016/S0140-6736(17)31827-5.

    Article  CAS  PubMed  Google Scholar 

  3. Eum HH, Kwon M, Ryu D, Jo A, Chung W, Kim N, et al. Tumor-promoting macrophages prevail in malignant ascites of advanced gastric cancer. Exp Mol Med. 2020;52:1976–88. https://doi.org/10.1038/s12276-020-00538-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sathe A, Grimes SM, Lau BT, Chen J, Suarez C, Huang RJ, Poultsides GJH. Single-cell genomic characterization reveals the cellular reprogramming of the gastric tumor microenvironment. Clin Cancer Res. 2020;26:2640–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fu K, Hui B, Wang Q, Lu C, Shi W, Zhang Z, et al. Single-cell RNA sequencing of immune cells in gastric cancer patients. Aging. 2020;12:2747–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9:239–52.

    Article  CAS  PubMed  Google Scholar 

  7. Movahedi K, Guilliams M, Van Den Bossche J, Van Den Bergh R, Gysemans C, Beschin A, et al. Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell suppressive activity. Blood. 2008;111:4233–44.

    Article  CAS  PubMed  Google Scholar 

  8. Dolcetti L, Peranzoni E, Ugel S, Marigo I, Gomez AF, Mesa C, et al. Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur J Immunol. 2010;40:22–35.

    Article  CAS  PubMed  Google Scholar 

  9. Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB, Greten TF, et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun. 2016;7:1–10. https://doi.org/10.1038/ncomms12150.

    Article  CAS  Google Scholar 

  10. Veglia F, Perego M, Gabrilovich D. Myeloid-derived suppressor cells coming of age review-article. Nat Immunol. 2018;19:108–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Corzo CA, Condamine T, Lu L, Cotter MJ, Youn JI, Cheng P, et al. HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med. 2010;207:2439–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Koh J, Hur JY, Lee KY, Kim MS, Heo JY, Ku BM, et al. Regulatory (FoxP3+) T cells and TGF-β predict the response to anti-PD-1 immunotherapy in patients with non-small cell lung cancer. Sci Rep. 2020. https://doi.org/10.1038/s41598-020-76130-1.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Filipazzi P, Valenti R, Huber V, Pilla L, Canese P, Iero M, et al. Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol. 2007;25:2546–53.

    Article  CAS  PubMed  Google Scholar 

  14. Cole KE, Ly QP, Hollingsworth MA, Cox JL, Padussis JC, Foster JM, et al. Human splenic myeloid derived suppressor cells: phenotypic and clustering analysis. Cell Immunol. 2021;363:104317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nefedova Y, Fishman M, Sherman S, Wang X, Beg AA, Gabrilovich DI. Mechanism of all-trans retinoic acid effect on tumor-associated myeloid-derived suppressor cells. Cancer Res. 2007;67:11021–8.

    Article  CAS  PubMed  Google Scholar 

  16. Kodumudi KN, Woan K, Gilvary DL, Sahakian E, Wei S, Djeu JY. A novel chemoimmunomodulating property of docetaxel: Suppression of myeloid-derived suppressor cells in tumor bearers. Clin Cancer Res. 2010;16:4583–94.

    Article  CAS  PubMed  Google Scholar 

  17. Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ. Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother. 2009;58:49–59.

    Article  CAS  PubMed  Google Scholar 

  18. Nestorowa S, Hamey FK, Sala BP, Diamanti E, Shepherd M, Laurenti E, et al. Plenary Paper HEMATOPOIESIS AND STEM CELLS e-Blood A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. 2016; Available from: https://www.r-project.org. Accessed 1 Dec 2023.

  19. Hafemeister C, Satija R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 2019;20:296. https://doi.org/10.1101/576827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McGinnis CS, Murrow LM, Gartner ZJ. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 2019;8:329-337.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Browaeys R, Saelens W, Saeys Y. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat Methods. 2020;17:159–62. https://doi.org/10.1038/s41592-019-0667-5.

    Article  CAS  PubMed  Google Scholar 

  22. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019. https://doi.org/10.1038/s41467-019-09234-6.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  24. Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47:W556–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Alshetaiwi H, Pervolarakis N, Mcintyre LL, Ma D, Rath JA, Nee K, et al. Defining the emergence of myeloid-derived suppressor cells in breast cancer using single-cell transcriptomics. Sci Immunol. 2020;5:eaay6017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Veglia F, Sanseviero E, Gabrilovich DI. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat Rev Immunol. 2021;21:485–98. https://doi.org/10.1038/s41577-020-00490-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Obradovic A, Graves D, Korrer M, Wang Y, Roy S, Naveed A, et al. Immunostimulatory cancer-associated fibroblast subpopulations can predict immunotherapy response in head and neck cancer. Clin Cancer Res. 2022;28:2094–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Togashi Y, Shitara K, Nishikawa H. Regulatory T cells in cancer immunosuppression—implications for anticancer therapy. Nat Rev Clin Oncol. 2019;16:356–71. https://doi.org/10.1038/s41571-019-0175-7.

    Article  CAS  PubMed  Google Scholar 

  29. Kumar V, Ramnarayanan K, Sundar R, Padmanabhan N, Srivastava S, Koiwa M, et al. Single-cell atlas of lineage states, tumor microenvironment, and subtype-specific expression programs in gastric cancer. Cancer Discov. 2022;12:670–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee HO, Hong Y, Etlioglu HE, Cho YB, Pomella V, Van den Bosch B, et al. Lineage-dependent gene expression programs influence the immune landscape of colorectal cancer. Nat Genet. 2020;52:594–603. https://doi.org/10.1038/s41588-020-0636-z.

    Article  CAS  PubMed  Google Scholar 

  31. Farshidpour M, Ahmed M, Junna S, Merchant JL. Myeloid-derived suppressor cells in gastrointestinal cancers: A systemic review. World J Gastrointest Oncol. 2021;13:1–11.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Xiao F, Dai Y, Hu Y, Lu M, Dai Q. Expression profile analysis identifies IER3 to predict overall survival and promote lymph node metastasis in tongue cancer. Cancer Cell Int. 2019;19:1–12. https://doi.org/10.1186/s12935-019-1028-2.

    Article  CAS  Google Scholar 

  33. Witcher M, Pettersson F, Dupéré-richer D, Padovani A, Summers-deluca L, Baldwin AS, et al. Retinoic acid modulates chromatin to potentiate tumor necrosis factor alpha signaling on the DIF2 promoter. Nucleic Acids Res. 2008;36:435–43.

    Article  CAS  PubMed  Google Scholar 

  34. Ostrand-Rosenberg S, Sinha P, Beury DW, Clements VK. Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. Semin Cancer Biol. 2012;25:275–81.

    Article  Google Scholar 

  35. Weber R, Fleming V, Hu X, Nagibin V, Groth C, Altevogt P, et al. Myeloid-derived suppressor cells hinder the anti-cancer activity of immune checkpoint inhibitors. Front Immunol. 2018;9:1310. https://doi.org/10.3389/fimmu.2018.01310.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kim W, Chu TH, Nienhüser H, Jiang Z, Del Portillo A, Remotti HE, et al. PD-1 signaling promotes tumor-infiltrating myeloid-derived suppressor cells and gastric tumorigenesis in mice. Gastroenterology. 2021;160:781–96.

    Article  CAS  PubMed  Google Scholar 

  37. Oliveira G, Stromhaug K, Klaeger S, Kula T, Frederick DT, Le PM, et al. Phenotype, specificity and avidity of antitumour CD8+ T cells in melanoma. Nature. 2021;596:119–25. https://doi.org/10.1038/s41586-021-03704-y.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  38. Miller BC, Sen DR, Al Abosy R, Bi K, Virkud YV, LaFleur MW, et al. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nat Immunol. 2019;20:326–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kumar V, Patel S, Tcyganov E, Gabrilovich DI. Virulence-associated characteristics of actinobacillus actinomycetemcomitans. Trends Immunol. 2016;37:208–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Arlt A, Schäfer H. Role of the immediate early response 3 (IER3) gene in cellular stress response, inflammation and tumorigenesis. Eur J Cell Biol. 2011;90:545–52. https://doi.org/10.1016/j.ejcb.2010.10.002.

    Article  CAS  PubMed  Google Scholar 

  41. Law AMK, Valdes-Mora F, Gallego-Ortega D. Myeloid-Derived Suppressor Cells as a Therapeutic Target for Cancer. Cells. NLM (Medline). 2020;9:561.

    CAS  Google Scholar 

  42. Zhang Y, Schlossman SF, Edwards RA, Ou CN, Gu J, Wu MX. Impaired apoptosis, extended duration of immune responses, and a lupus-like autoimmune disease in IEX-1-transgenic mice. Proc Natl Acad Sci USA. 2002;99:878–83.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  43. Caronni N, La Terza F, Vittoria FM, Barbiera G, Mezzanzanica L, Cuzzola V, et al. IL-1β+ macrophages fuel pathogenic inflammation in pancreatic cancer. Nature. 2023;623:415–22.

    Article  CAS  PubMed  ADS  Google Scholar 

  44. Hou J, Wang X, Zhang M, Wang M, Gao P, Jiang Y. Circulating CD14 + CD163 + CD209 + M2-like monocytes are associated with the severity of infection in Helicobacter pylori-positive patients. Mol Immunol. 2019;108:13–22.

    Article  CAS  PubMed  Google Scholar 

  45. Liu J, Zhang F, Zhang Z, Zheng C. Everolimus ameliorates Helicobacter pylori infection-induced inflammation in gastric epithelial cells. Bioengineered. 2022;13:11361–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to E. Manabe and S. Sadatomi (Kyushu University) for their expert technical assistance. We also thank Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

Funding

K. Ohuchida has received grants from JSPS KAKENHI (grant numbers JP20K17621, JP21K08800, JP21K07244, JP22H00480 and JP23H02770). C. Tsutsumi has received grants from JSPS Research Fellow DC2 (23KJ1698) and Support for Pioneering Research Initiated by the Next Generation (SPRING) “Future-Creation (MIRAI)” Course (JPMJSP2136). The other authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Contributions

CT designed and performed the experiments, analyzed the data, coordinated the research, and wrote the manuscript. KO designed the experiments, analyzed the data, wrote the manuscript, coordinated the research, and contributed to data interpretation and discussion. NK, YO, SN, and KO performed the experiments. CI, YM, NI, KN, EN, and TM contributed to data interpretation and discussion. KO, NT, KH, and KS obtained and prepared human samples. Immunohistochemically stained samples were analyzed by CT, YY, and YO. MN coordinated the research, wrote the manuscript, and contributed to data interpretation and discussion.

Corresponding author

Correspondence to Kenoki Ohuchida.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Ethical approval and consent to participate

Clinical data, including histopathological findings, were obtained from the patients’ electronic medical records. Written informed consent was obtained from all participating patients and the study was approved by the Ethics Committee of Kyushu University (approval number: 22002-00 and 2020-7882020-503) and conducted in accordance with the Ethical Guidelines for Human Genome/Gene Research enacted by the Japanese Government and the Declaration of Helsinki.

Consent for publication

All authors have read and agreed with the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsutsumi, C., Ohuchida, K., Katayama, N. et al. Tumor-infiltrating monocytic myeloid-derived suppressor cells contribute to the development of an immunosuppressive tumor microenvironment in gastric cancer. Gastric Cancer 27, 248–262 (2024). https://doi.org/10.1007/s10120-023-01456-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10120-023-01456-4

Keywords

Navigation