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Abstract
Objective  Patients with gastric atrophy and intestinal metaplasia (IM) were at risk for gastric cancer, necessitating an accurate 
risk assessment. We aimed to establish and validate a diagnostic approach for gastric biopsy specimens using deep learning 
and OLGA/OLGIM for individual gastric cancer risk classification.
Methods  In this study, we prospectively enrolled 545 patients suspected of atrophic gastritis during endoscopy from 13 
tertiary hospitals between December 22, 2017, to September 25, 2020, with a total of 2725 whole-slide images (WSIs). 
Patients were randomly divided into a training set (n = 349), an internal validation set (n = 87), and an external validation set 
(n = 109). Sixty patients from the external validation set were randomly selected and divided into two groups for an observer 
study, one with the assistance of algorithm results and the other without. We proposed a semi-supervised deep learning 
algorithm to diagnose and grade IM and atrophy, and we compared it with the assessments of 10 pathologists. The model’s 
performance was evaluated based on the area under the curve (AUC), sensitivity, specificity, and weighted kappa value.
Results  The algorithm, named GasMIL, was established and demonstrated encouraging performance in diagnosing IM (AUC 
0.884, 95% CI 0.862–0.902) and atrophy (AUC 0.877, 95% CI 0.855–0.897) in the external test set. In the observer study, 
GasMIL achieved an 80% sensitivity, 85% specificity, a weighted kappa value of 0.61, and an AUC of 0.953, surpassing 
the performance of all ten pathologists in diagnosing atrophy. Among the 10 pathologists, GasMIL’s AUC ranked second 
in OLGA (0.729, 95% CI 0.625–0.833) and fifth in OLGIM (0.792, 95% CI 0.688–0.896). With the assistance of GasMIL, 
pathologists demonstrated improved AUC (p = 0.013), sensitivity (p = 0.014), and weighted kappa (p = 0.016) in diagnosing 
IM, and improved specificity (p = 0.007) in diagnosing atrophy compared to pathologists working alone.
Conclusion  GasMIL shows the best overall performance in diagnosing IM and atrophy when compared to pathologists, 
significantly enhancing their diagnostic capabilities.

Keywords  Atrophic gastritis · Semi-supervised deep learning · Diagnose · The operative link for gastric intestinal 
metaplasia assessment · The operative link for gastritis assessment

Introduction

Gastric cancer (GC) is a major global health concern, rank-
ing as the fifth most commonly diagnosed malignant tumor 
and the fourth leading cause of cancer-related deaths world-
wide [1]. More than 95% of GC are adenocarcinomas [2], of 

which intestinal adenocarcinoma is the most common type 
[3].

Several pathologies of chronic atrophic gastritis (CAG), 
including atrophy, intestinal metaplasia (IM), and dysplasia, 
are important pathways for the development of intestinal-
type adenocarcinoma from normal mucosa (also known as 
the “Correa cascade”) [4]. The GC risk in CAG patients 
gradually increases with the progression of the Correa cas-
cade. Recent studies [5, 6] have shown that the annual inci-
dence rates of gastric cancer for atrophy, intestinal meta-
plasia, and dysplasia are 0.1%, 0.12–0.25%, and 0.6–6%, 
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respectively. The operative link for gastric intestinal meta-
plasia assessment (OLGIM) [7] and operative link for gas-
tritis assessment (OLGA) [8] by integrating the IM/atro-
phy score and the topography [9] have been advocated by 
international guidelines [3, 10, 11] for risk stratification of 
individuals diagnosed with gastric precancerous conditions. 
However, accurately assessing pathological IM and atrophy 
and stratifying OLGIM/OLGA risk have been difficult for 
pathologists.

Since the Sydney system was updated in 1994 [12], 
pathologists have continuously pointed out that the diag-
nostic system can be challenging in clinical practice [5]. The 
diagnosis of atrophic gastritis needs grading the severity of 
gland loss, which is difficult to evaluate quantitatively with 
accuracy, resulting in poor precision [11]. To overcome this 
difficulty, pathologists have tried various methods, includ-
ing holding meetings to unify conceptual terminology [13], 
cycling a group of pathological pictures for repeated training 
[14], and proposing some intuitive measurement methods 
[15], etc. However, these efforts have failed to effectively 
improve accuracy, or the methods were difficult to apply 
widely. So far, the consistency and accuracy of pathological 
histology in patients with CAG for diagnosis and GC risk 
stratification remain limited [3, 6, 10, 11].

Deep learning has shown potential in medical image 
analysis. Automatic recognition technology based on deep 
learning has also achieved outstanding results in the diag-
nosis of digital pathological images, such as breast cancer, 
lung cancer, colorectal cancer, and prostate cancer [16–21]. 
Under certain conditions, the diagnostic performance of 
these artificial intelligence models is not inferior to that 
of human experts. However, these studies often use fully 
supervised learning, requiring pathologists to manually label 
lesions for pixel-level training, which is easily affected by 
various factors. Deep learning based on weak supervision 

can automatically mine suspicious lesions only with accurate 
category information. It is suitable for situations that are 
highly affected by subjective factors or difficult to obtain 
manual annotations. It is expected to be applied to com-
putational pathology to further improve the accuracy and 
consistency of diagnosis [22–24].

In this study, 2725 whole-slide images (WSIs) were col-
lected continuously from 545 endoscopic suspected CAG 
patients in a multi-center trial to establish a deep neural 
network-based diagnostic model named GasMIL. The ran-
domized observer study was conducted to verify the accu-
racy and consistency of the diagnoses made by pathologists 
assisted with GasMIL. We aimed to establish and validate 
a convolutional neural network algorithm to diagnose and 
risk stratification of individuals diagnosed with precancer-
ous gastric mucosal changes.

Methods

Study design

The data sets of this study were obtained from a multicen-
tre, prospective trial registered at https://​clini​caltr​ials.​gov/ 
(register number: NCT02955134). All authors had access 
to the study data, reviewed, and approved the final manu-
script. From December 22, 2017, to September 25, 2020, 
545 patients suspected of having atrophic gastritis were 
consecutively included during endoscopy at 13 tertiary 
hospitals. According to a 4:1 ratio, patients were randomly 
divided into a model construction set and a test set. The part 
used for model construction was further randomly divided 
into a training set and a validation set according to a ratio 
of 4:1 (Fig. 1).

Fig. 1   Study flowchart

https://clinicaltrials.gov/
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The ethics committees of the 13 tertiary hospitals 
approved the trial protocol, and all participants signed 
informed consent forms. An independent data safety moni-
toring committee was responsible for monitoring the pro-
gress and safety of the trial.

Participants and biopsy assessment

The inclusion criteria were patients aged 40–65 years sus-
pected of having chronic atrophic gastritis during endos-
copy. The exclusion criteria included autoimmune gastritis, 
gastric or duodenal ulcers, upper gastrointestinal bleeding, 
high-grade intraepithelial neoplasia in the gastric mucosa, 
or suspected malignant transformation based on histological 
diagnosis.

For patients meeting the inclusion and exclusion criteria, 
specimens were taken from 5 sites in the stomach, including 
two from the lesser and the greater curvature of the antrum 
(both within 2–3 cm from the pylorus), one from the lesser 
curvature of the corpus (about 4 cm proximal to the angu-
lus), one from the middle portion of the greater curvature of 
the corpus (approximately 8 cm from the cardia), and one 
from the incisura angularis. The tissues were sliced, scanned 
using MoticEasyScan Pro, and then uploaded to the online 
diagnostic system.

WSIs were reviewed by two pathologists, and the super-
ficial slices were removed for the follow-up study. Three 
experienced pathologists independently graded diagnoses 
according to the New Sydney system [12] (see Supplemen-
tary Figure S1 for diagnostic criteria), and the final diagnosis 
result was obtained after discussing any inconsistencies.

Model development

We proposed a deep neural network named GasMIL (Fig. 2) 
to predict the degree of atrophy/IM of gastric tissue slice 
images. Based on the pathological slice images from five 
parts of each patient, a patient-level grading prediction was 
comprehensively obtained. We apply weakly supervised 
learning in our algorithmic framework, specifically multiple 
instance learning (MIL). Unlike traditional deep convolu-
tional neural networks, MIL only requires coarse-grained 
labels for the pathological diagnosis of each image, avoiding 
the need for complicated manual annotations by doctors. 
Additionally, we constructed MIL features for pathological 
images of different resolutions and performed multi-scale 
aggregation. The basic principle of this design is that shal-
low low-level features (such as local edges and textures) and 
deep high-level features (such as severe disease appearance) 
contain useful information for grade prediction and extract-
ing and integrating comprehensive multi-scale image fea-
tures helps in making the best grade decision.

Self‑supervised learning for learning patch embedding

We cropped each WSI into non-overlapping blocks at resolu-
tions of 224 × 224 with a field of view of 0.5 µm per pixel 
(MPP) and 2.0 MPP, respectively. Before multi-instance 
learning, we pre-learn embedding for each cut patch using 
SimCLR [25] proposed by “Hinton’s team”. This simple 
framework for contrastive learning was employed to learn 
robust image representations without manual labeling. For 
each original patch, we applied several data augmentation 
operations (including random rotation, random color dis-
tortion, etc.) to generate sub-images and performed feature 
extraction through a resnet18-based encoder. We then con-
structed a contrastive loss to minimize the distance between 
these sub-images from the same original image in feature 
space. The output of the trained encoder was used for down-
stream MIL tasks.

Construction of multi‑scale patch embedding

For both 0.5 MPP and 2.0 MPP magnifications, we con-
structed single-scale WSI classifiers. The patch embedding 
under 2.0 MPP magnification was spliced with the embed-
ding corresponding to the physical 0.5 MPP magnification 
position to obtain a comprehensive patch embedding.

Using WSI classifier to select key patches

In the MIL hypothesis, when a WSI is marked as positive 
(label > 0), at least one patch is the target lesion area; if the 
mark is negative, all patch labels should be negative. Based 
on this assumption, we used the MLP network as a classi-
fier to feed multi-scale patch embeddings. After completing 
the training of the patch-level classifier, we could obtain 
the probability of all patches in the current WSI being pre-
dicted as lesion areas and sort them to obtain the patches 
that should be the most focused on. We uniformly selected 
the top 20 patches with the highest ranking for each WSI to 
input into the downstream aggregator.

Apply the transformer to the aggregation of patches

The traditional MIL uses pooling algorithms to comprehen-
sively evaluate the prediction probability of the top patches 
and obtain the prediction degree of WSI. However, these 
CV-based pooling algorithms ignore the correlation infor-
mation between patches. Considering the potential model 
enhancements from these correlations, we introduced the 
transformer into the aggregation stage. The 100 most critical 
(most likely to be lesion area) patch vectors obtained from 
each WSI through the first step were sequentially passed to 
the transformer classifier to predict the entire rank prob-
ability of WSI.
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Patient‑level prediction model construction

For the WSI of five gastric parts in the same patient, we 
obtained five prediction grades through the WSI-level pre-
diction model. According to the OLGA and OLGIM, we 
could then obtain the final patient-level prediction grade.

Observer study

Sixty patients from the test set were randomly selected for 
observational studies. All clinical information was concealed 
and randomly divided into two groups: one with the aid of 
GasMIL diagnostic results and the other without. The digital 
WSIs were distributed to 10 pathologists for diagnosis, and 
the diagnosis results were recorded. The AUC, sensitivity, 
specificity, and consistency of the two groups of slides diag-
nosed by 10 pathologists were obtained.

Statistical analysis

We employed a combination of statistical tests, including 
the T-test and Wilcoxon signed-rank test, to examine the 
impact of age at baseline and a combination of the Chi-
square test, Fisher’s exact test, continuously corrected Chi-
square test, and signed-rank test to analyze gender. The Wil-
coxon signed-rank test was also used to compare baseline 
histological data.

Receiver operating characteristic (ROC) curves and area 
under the curve (AUC) were analyzed using the machine 
learning Python package sci-kit-learn to quantify diagnos-
tic classifier performance, as well as accuracy, sensitivity, 
and specificity. The cutoff value of the ROC curve was set 
at 0.5. Cohen’s kappa coefficient was used to assess inter-
observer agreement between diagnostic models and human 

pathologists. Python and Pytorch were used to build WSI 
algorithms.

Results

Baseline characteristics

Between December 2017 and September 2020, up to 609 
potentially eligible patients from 13 Chinese tertiary hos-
pitals were enrolled in this study. Among them, 64 patients 
were excluded because the biopsy samples were superficial. 
Thus, 545 patients with 2725 WSIs were finally enrolled for 
analysis (Fig. 1).

After randomization of these patients, 349 patients with 
1745 WSIs were assigned to the training set, 87 patients 
with 435 WSIs were assigned to the validation set, and the 
other 109 patients with 545 WSIs composed the test set. 
Their characteristics are summarized in Table 1. There 
were no significant differences in all baseline characteristics 
(p > 0.05) or the distribution of patients among OLGA and 
OLGIM stages (p > 0.05) between the training, validation, 
and test sets 2). 

Performance of the model on the training, 
validation, and test set

In the diagnostic model we built, the data set has a total of 
546 patients and was randomly divided. To avoid model 
prediction bias caused by differences in the data distribu-
tion of each cohort, we used stratified sampling to divide 
the data set according to the true atrophy grade of the 
patients. We split patients into a training cohort and an 

Table 1   Baseline characters of included patients

Characteristics All patients (N = 546) Training set (N = 348) Validation set (N = 88) Test set (N = 110) p value

Age (years) 54.20 ± 9.73 54.21 ± 9.38 54.19 ± 10.81 54.08 ± 9.90 0.993
Female (%) 252 (46.15%) 157 (45.11%) 45 (51.14%) 50 (45.45%) 0.953
OLGA (%) 0.999
 0 125 (22.89%) 80 (22.99%) 20 (22.73%) 25 (22.73%)
 1 137 (25.09%) 87 (25.00%) 22 (25.00%) 28 (25.45%)
 2 104 (19.05%) 66 (18.97%) 17 (19.32%) 21 (19.09%)
 3 111 (20.33%) 71 (20.40%) 18 (20.45%) 22 (20.00%)
 4 69 (12.64%) 44 (12.64%) 11 (12.50%) 14 (12.73%)

OLGIM (%) 0.852
 0 119 (21.79%) 79 (22.70%) 20 (22.73%) 20 (18.18%)
 1 136 (24.91%) 82 (23.56%) 23 (26.14%) 31 (28.18%)
 2 101 (18.50%) 67 (19.25%) 15 (17.05%) 19 (17.27%)
 3 118 (21.61%) 74 (21.26%) 19 (21.59%) 25 (22.73%)
 4 72 (13.19%) 46 (13.22%) 11 (12.50%) 15 (13.64%)
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external testing cohort in a ratio of 4:1. In the training 
cohort, 20% of the patients were used for internal valida-
tion of the model.

We use AUC to measure the ability of GasMIL to pre-
dict pathological images of different grades. Table 2 shows 
the model’s AUC, sensitivity, and specificity in the training, 
internal validation, and independent test cohorts. At the WSI 
level, GasMIL achieves good diagnostic performance in the 
independent test cohort (AUC​Inflammation: 0.970; AUC​Activity: 
0.981; AUC​IM: 0.884; AUC​Atrophy: 0.877). The representa-
tive heat map images with varying atrophy/IM grades are 
shown in Fig. 3A and B. For a certain problem, we referred 
to OLGA and OLGIM to convert the WSI prediction grade 
for different stomachs of the same patient to the final pre-
diction grade for that patient. At the patient level, the good 
predictive performance of the diagnostic model carried over 
(AUC​OLGIM: 0.792; AUC​OLGA: 0.729).

As demonstrated in the cross-tabulation of GasMIL 
results with the gold standard (see Figure S1-4), among 
the 150 WSIs, two initially categorized as normal/mild 
atrophy were misdiagnosed as severe atrophy, and two 
initially labeled as severe atrophy were misdiagnosed as 
mild atrophy. Moreover, one case initially classified as 
normal was misdiagnosed as severe IM, and four initially 
categorized as severe IM were misdiagnosed as normal/
mild IM. Retrieve the original image, we found that severe 
cases were often misdiagnosed as normal/mild due to sig-
nificant inflammation and structural distortion (Fig. 3C). 
Additionally, when pathology sections intersected blood 
vessels or were excessively thin, normal/mild conditions 
were frequently misdiagnosed as severe (Fig. 3D).

Fig. 2   Workflow for the 
prognostic analysis of atrophic 
gastritis with deep learning
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Results of the observer study compared with 10 
pathologists

The diagnostic results of GasMIL were compared with 
those of 10 pathologists on 30 patients with 150 WSIs. 
At the slide level, the ROC of the GasMIL for inflam-
mation, activity, IM, and atrophy were 0.970 (95% CI 
0.947–0.986), 0.970 (95% CI 0.941–0.998), 0.949 (95% 
CI 0.918–0.972) and 0.953 (95% CI 0.927–0.976), respec-
tively (Fig. 4A–D), and were higher than those of 10 
pathologists. The diagnostic sensitivity, specificity, and 
weighted kappa value of the GasMIL for inflammation, 
activity, IM, and atrophy were also higher than those of 
most pathologists (supplementary table S5).

The ROC for the OLGIM model was 0.792, which 
was higher than 6 out of 10 pathologists. For OLGA, 
GasMIL’s ROC was 0.729, ranking second among the 
10 pathologists (Fig. 4E, F). The diagnostic sensitivity, 
specificity, and weighted kappa value of the artificial 
intelligence diagnostic model for OLGA and OLGIM are 
also higher than those of most pathologists (supplemen-
tary table S5).

The results of GasMIL‑assisted diagnosis compared 
with pathologist‑independent diagnosis

We compared the results of pathologists with and without 
GasMIL assistance on two groups of 30 patients with 150 
WSIs. For IM, pathologists have higher AUC, sensitiv-
ity, and weighted kappa (p = 0.013, 0.014, 0.016, respec-
tively, Fig. 5A, B, D) with the assistance of GasMIL, but 
there was no statistical difference in specificity (p > 0.05, 
Fig. 5C). For atrophy, pathologists had higher specificity 
with the assistance of GasMIL (p = 0.007, Fig. 5G), but 
there was no statistical difference in AUC, sensitivity, and 
weighted kappa (p > 0.05, Fig. 5E, F, H).

At the patient level, whether pathologists were assisted 
with GasMIL or not, the AUC, sensitivity, specificity, and 
weighted kappa of OLGIM and OLGA showed no statisti-
cal difference (p > 0.05, Fig. 5I–P), but there was a trend 
of improvement.

Table 2   Performance of the 
GasMIL on the training, 
validation, and test set

n AUC​ Sensitivity Specificity Weighted kappa

Inflammation (slides)
 Training 1740 0.965 [0.959, 0.970] 0.86 [0.84, 0.88] 0.86 [0.84, 0.88] 0.65 [0.61, 0.68]
 Validation 440 0.967 [0.955, 0.978] 0.87 [0.84, 0.90] 0.87 [0.84, 0.90] 0.67 [0.59, 0.73]
 Test 550 0.970 [0.959, 0.980] 0.86 [0.83, 0.89] 0.86 [0.83, 0.89] 0.58 [0.50, 0.65]

Activity (slides)
 Training 1740 0.982 [0.978, 0.985] 0.87 [0.85, 0.88] 0.87 [0.85, 0.88] 0.48 [0.42, 0.54]
 Validation 440 0.987 [0.980, 0.992] 0.90 [0.87, 0.93] 0.90 [0.87, 0.93] 0.43 [0.29, 0.57]
 Test 550 0.981 [0.973, 0.988] 0.90 [0.87, 0.92] 0.90 [0.87, 0.92] 0.48 [0.36, 0.60]

IM (slides)
 Training 1740 0.915 [0.906, 0.924] 0.74 [0.72, 0.76] 0.74 [0.72, 0.76] 0.80 [0.77, 0.82]
 Validation 440 0.912 [0.895, 0.930] 0.77 [0.73, 0.81] 0.77 [0.73, 0.81] 0.82 [0.77, 0.87]
 Test 550 0.884 [0.862, 0.902] 0.69 [0.65, 0.72] 0.69 [0.65, 0.72] 0.70 [0.63, 0.76]

Atrophy (slides)
 Training 1740 0.914 [0.904, 0.922] 0.83 [0.82, 0.85] 0.83 [0.82, 0.85] 0.88 [0.86, 0.90]
 Validation 440 0.919 [0.899, 0.936] 0.84 [0.80, 0.87] 0.84 [0.80, 0.87] 0.89 [0.85, 0.92]
 Test 550 0.877 [0.855, 0.897] 0.70 [0.66, 0.74] 0.70 [0.66, 0.74] 0.62 [0.54, 0.68]

OLGIM
 Training 348 0.829 [0.799, 0.858] 0.73 [0.68, 0.77] 0.73 [0.68, 0.77] 0.88 [0.85, 0.91]
 Validation 88 0.830 [0.773, 0.886] 0.73 [0.64, 0.82] 0.73 [0.62, 0.81] 0.88 [0.81, 0.93]
 Test 110 0.790 [0.733, 0.841] 0.66 [0.57, 0.75] 0.66 [0.57, 0.75] 0.81 [0.72, 0.88]

OLGA
 Training 348 0.829 [0.801, 0.860] 0.73 [0.68, 0.78] 0.73 [0.68, 0.78] 0.88 [0.84, 0.91]
 Validation 88 0.830 [0.773, 0.886] 0.73 [0.62, 0.82] 0.73 [0.62, 0.82] 0.88 [0.80, 0.93]
 Test 110 0.790 [0.727, 0.847] 0.66 [0.57, 0.75] 0.66 [0.57, 0.75] 0.85 [0.78, 0.90]
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Discussion

Recent studies have shown that deep learning-based algo-
rithms were promising in classifying and grading pathologi-
cal lesions in digitized H&E slides [26, 27]. Regarding the 
poor diagnostic accuracy and increasing diagnostic workload 
of endoscopic biopsy specimens call for a high-performance 
algorithm with high sensitivity and specificity [28].

In this study, we developed an algorithm named Gas-
MIL to diagnose inflammation, activity, atrophy, and IM in 
gastric biopsy specimens and demonstrated superb perfor-
mance better than all ten pathologists. Especially concern-
ing atrophy, the concept is represented by the discrepancy 
between the expected glands and what is actually observed 
at the histologic exam [29], which can be subjective and 
pathologists are most likely to be inconsistent with [30, 31]. 
Accurately diagnosing atrophy was considered crucial for 
the prevention of gastric cancer, as a study found that 37.2% 

of patients who developed gastric cancer had been diagnosed 
with indefinite atrophy previously [32]. In the present study, 
the GasMIL showed an 80% sensitivity, 85% specificity, and 
0.61 weighted kappa value on the observer study, which was 
higher than that of pathologists trained through four rounds 
of reading (kappa = 0.46) [14]. Therefore, at the slide level, 
GasMIL has the potential to serve as a tool for supervising 
pathologists to process the sheer number of samples in lim-
ited clinical working hours.

To estimate whether the GasMIL model can accurately 
stratify GC risk in CAG patients as well, OLGIM and OLGA 
were obtained by combining the results of 5 WSIs. In the 
observer study, GasMIL showed the second-highest diag-
nostic accuracy in OLGA and fifth in OLGIM among the 
ten pathologists, with AUCs of 0.72 and 0.79, respectively. 
In contrast to OLGA, OLGIM reports a high interobserver 
concordance, consistent with our observer study [7, 33]. 
However, OLGIM staging was considered less sensitive 

Fig. 3   The representative histologic images, including both success-
ful inferences and failures. A Representative heat map images with 
varying atrophy grades. B Representative heat map images with dif-
ferent intestinal metaplasia grades. C Instances of misdiagnosis by 

the GasMIL (marked incorrectly diagnosed as mild or normal). D 
Instances of misdiagnosis by the GasMIL (mild or normal incorrectly 
diagnosed as marked)
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than OLGA staging for it downgrades high-risk patients to 
low-risk groups [34]. Obtaining both OLGA and OLGIM 
information on the same pathological slide is beneficial for 
the secondary prevention of GC [9, 35]. At the patient level, 
high overall accuracy for the GasMIL in GC risk stratifica-
tion was observed, suggesting that it can assist clinicians in 
individual GC risk stratification.

In addition, we conducted an observer study to investigate 
whether GasMIL can help pathologists improve diagnos-
tic accuracy. The results revealed that with the assistance 
of GasMIL, the accuracy of pathologists in diagnosing IM 
significantly improved, as did the diagnostic specificity of 
atrophy. However, its accuracy in diagnosing OLGIM and 
OLGA did not significantly improve. Since the sample size 
analysis for the observer study was based on slides [36], 
the sample size of 30 patients may be too small to detect 
a statistical difference between OLGIM and OLGA. How-
ever, an increasing trend can be observed in Fig. 4 for their 
higher median with the assistance of GasMIL, and a follow-
up observer study with a larger sample size is needed to 
evaluate its role in helping diagnose OLGIM and OLGA.

To the best of our knowledge, this is the first study that 
aimed to establish and validate a convolutional neural net-
work algorithm to diagnose and grade OLGA and OLGIM 

based on the updated Sydney protocol. The AGA [3] recom-
mends that gastric biopsies according to the updated Sydney 
system should become standard in the diagnostic workup 
for dyspepsia and gastritis, a step that has been shown to 
increase the detection rate of H. pylori and IM [37]. After 
a standard biopsy, it is essential to ensure that the patholo-
gist has histologic scoring of gastric biopsy (for OLGA/
OLGIM staging), avoiding the possibility of a secondary 
staging exam to determine risk level. However, in the grad-
ing of the biopsy IM and atrophy, many pathologists world-
wide do not report severity scoring routinely [38]. The pos-
sible reason is that the judgment of severity scoring is quite 
subjective based on the proportion, making it difficult for 
pathologists to give an accurate and consistent result [13, 
39, 40]. Therefore, we built a classification model for atro-
phy and IM using artificial intelligence techniques that can 
help quantify severity scores. High-quality multi-center data 
with strict quality control of all image acquisitions and histo-
logical analysis for every individual were used in this study, 
and a reliable gold standard diagnosis was jointly made by 
three experienced pathologists. Furthermore, GasMIL was 
fully validated, including the test set validation, compared 
with ten pathologists, and GasMIL auxiliary diagnosis com-
pared with pathologists alone to investigate the robustness 

Fig. 4   Comparison of receiver operating characteristic (ROC) curves 
between GasMIL and 10 pathologists. A Inflammation, B activity, C 
intestinal metaplasia, D atrophy; patient, E operative link for gastric 

intestinal metaplasia assessment (OLGIM), F operative link for gas-
tritis assessment (OLGA)
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and reliability of GasMIL. The results proved that apply-
ing GasMIL for the quantitative analysis of WSIs offered 
valuable benefits for diagnosing atrophy and IM as well as 
GC risk in patients with CAG. Once the GasMIL model is 
established, pathologists only need to review and confirm 
the results of the model classification in the daily workflow, 
which is extremely easy for clinical applications.

Some studies have applied Convolutional Neuronal 
Networks technology to diagnose gastritis on biopsy H&E 
images. Panagiotis et al. reported a digital pathology frame-
work for gastric gland segmentation and classification that 
achieved object dice scores equal to 0.908 and 0.967, respec-
tively, in a dataset consisting of 20 patients with 85 WSIs of 
normal, gastric atrophy, and IM [41]. Georg et al. reported a 

convolutional neuronal network-based algorithm to classify 
gastritis into autoimmune, bacterial, and chemical subtypes, 
achieving an overall accuracy of 84% in a data set of 135 
patients [42]. However, their digital pathology framework 
and study design were fundamentally different from ours. 
We focus on the problem that pathologists are having dif-
ficulty reaching a consensus when making diagnoses accord-
ing to the updated Sydney system, we established an algo-
rithm that can precisely grade the severity of atrophy and 
IM and can calculate the GC risk accordingly which is also 
beneficial to determine follow-up intervals.

Our study has some limitations. First, our model is inde-
pendently developed and verified based on different gastric 
problems. This approach will increase machine memory 

Fig. 5   The scatterplot of GasMIL-assisted diagnosis compared with 
pathologist-independent diagnosis. A–D The area under the curve 
(AUC), sensitivity, specificity, and weighted kappa of the two groups 
of slides intestinal metaplasia was diagnosed by 10 pathologists. E–H 

Ten pathologists diagnosed the atrophy of two groups of slides. I–L 
Ten pathologists diagnosed the OLGIM of two groups of patients. 
M–P Ten pathologists diagnosed the OLGA of two groups of patients
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overhead and does not further consider the relationship 
between image representations of different gastric problems. 
Secondly, as a black box model, the interpretability of the 
deep learning model is still poor. We tried to observe the 
model’s attention to different areas in the form of a heat 
map, but it is still difficult to explain how the model learns. 
Thirdly, the sample size of the observer study was insuf-
ficient for detecting the statistical difference between Gas-
MIL auxiliary diagnosis and pathologists alone to diagnose 
OLGIM and OLGA, a larger sample size study is needed.

In conclusion, GasMIL shows the best overall perfor-
mance in diagnosing inflammation, activity, IM, and atrophy, 
ranking fifth in diagnosing OLGIM and second in OLGA 
compared to ten pathologists. GasMIL-assisted significantly 
improves the performance of pathologists in diagnosing IM 
and atrophy. All of this suggested a clinical application 
potential of GasMIL for accurate pathological grading and 
GC risk stratification in atrophic gastritis patients.
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