Skip to main content
Log in

Ethnic-specific associations between body mass index and gastric cancer: a Mendelian randomization study in European and Korean populations

  • Original Article
  • Published:
Gastric Cancer Aims and scope Submit manuscript

A Letter to the Editor to this article was published on 18 March 2024

Abstract

Background

Given the uncertainties surrounding the associations in previous epidemiological studies, we conducted linear and nonlinear Mendelian randomization (MR) studies to evaluate whether body mass index (BMI) associated with gastric cancer (GC) risk in European and Korean.

Methods

Genome-wide association study-summary statistics were used from the Pan-UK Biobank, the Genetic Investigation of Anthropometric Traits consortium, the K-CHIP consortium, and BioBank Japan. BMI-associated single nucleotide polymorphisms (SNPs) were used as instrumental variables (IVs) in MR to identify the association between BMI and GC. Both linear and nonlinear MR analyses were performed. Sensitivity analyses were also conducted for individuals below or above a BMI of 24 kg/m2.

Results

The study used 22 and 55 SNPs as IVs for BMI in European and Korean populations, respectively. Genetically predicted BMI was positively associated with GC risk in the European population (Odds ratio per 1 kg/m2 increase; 95% CI = 1.17; 1.01–1.36 using simple median method), but no significant association was observed in the Korean population. However, the nonlinear MR identified a U-shaped association between BMI and GC in the Korean population, with both low and high BMIs associated with increased GC risk. A BMI of 24 kg/m2 presented the lowest risk. Sensitivity analyses did not yield any genome-wide significant SNPs.

Conclusion

While MR analysis suggests a linear association between BMI and GC in those of European ancestry, nonlinear MR hints at a U-shaped association in Koreans. This suggests the association between BMI and GC risk may vary according to ethnic ancestry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The K-CHIP consortium genotype data are available upon request under the data sharing policy of the National Research Institute of Health, Korea (https://www.koreanchip.org/blank-8). Other data supporting our findings are available from the corresponding author upon reasonable request.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. 2018;68:394–424.

    PubMed  Google Scholar 

  2. Colquhoun A, Arnold M, Ferlay J, Goodman K, Forman D, Soerjomataram I. Global patterns of cardia and non-cardia gastric cancer incidence in 2012. Gut. 2015;64:1881–8.

    Article  CAS  PubMed  Google Scholar 

  3. Olefson S, Moss SF. Obesity and related risk factors in gastric cardia adenocarcinoma. Gastric Cancer. 2015;18:23–32.

    Article  PubMed  Google Scholar 

  4. Cancer IAFRO. IARC working group on the evaluation of carcinogenic risks to humans. IARC Monogr Eval Carcinog Risks Hum. 1994;61:45–119.

    Google Scholar 

  5. Jang J, Lee S, Ko KP, Abe SK, Rahman MS, Saito E, et al. Association between body mass index and risk of gastric cancer by anatomic and histologic subtypes in over 500,000 east and southeast Asian cohort participants. Cancer Epidemiol Biomarkers Prev. 2022;31:1727–34.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Didelez V, Sheehan N. Mendelian randomization as an instrumental variable approach to causal inference. Stat Methods Med Res. 2007;16:309–30.

    Article  MathSciNet  PubMed  Google Scholar 

  7. Burgess S, Butterworth AS, Thompson JR. Beyond Mendelian randomization: how to interpret evidence of shared genetic predictors. J Clin Epidemiol. 2016;69:208–16.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sebro R, Peloso GM, Dupuis J, Risch NJ. Structured mating: patterns and implications. PLoS Genet. 2017;13: e1006655.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Emdin CA, Khera AV, Kathiresan S. Mendelian randomization. JAMA. 2017;318:1925–6.

    Article  PubMed  Google Scholar 

  10. Staley JR, Burgess S. Semiparametric methods for estimation of a nonlinear exposure-outcome relationship using instrumental variables with application to Mendelian randomization. Genet Epidemiol. 2017;41:341–52.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Team PU. Pan UKBB 2022 [cited 2023 Jul 2]. Available from: https://pan.ukbb.broadinstitute.org/.

  12. Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR, Weedon MN, et al. Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry. Hum Mol Genet. 2018;27:3641–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sakaue S, Kanai M, Tanigawa Y, Karjalainen J, Kurki M, Koshiba S, et al. A cross-population atlas of genetic associations for 220 human phenotypes. Nat Genet. 2021;53:1415–24.

    Article  CAS  PubMed  Google Scholar 

  14. Nam K, Kim J, Lee S. Genome-wide study on 72,298 individuals in Korean biobank data for 76 traits. Cell Genom. 2022;2: 100189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moon S, Kim YJ, Han S, Hwang MY, Shin DM, Park MY, et al. The Korea biobank array: design and identification of coding variants associated with blood biochemical traits. Sci Rep. 2019;9:1–11.

    Article  Google Scholar 

  16. Delaneau O, Marchini J, Zagury J-F. A linear complexity phasing method for thousands of genomes. Nat Methods. 2012;9:179–81.

    Article  CAS  Google Scholar 

  17. Fuchsberger C, Abecasis GR, Hinds DA. minimac2: faster genotype imputation. Bioinformatics. 2015;31:782–4.

    Article  CAS  PubMed  Google Scholar 

  18. Sollis E, Mosaku A, Abid A, Buniello A, Cerezo M, Gil L, et al. The NHGRI-EBI GWAS Catalog: knowledgebase and deposition resource. Nucleic Acids Res. 2023;51:D977–85.

    Article  CAS  PubMed  Google Scholar 

  19. Beck T, Shorter T, Brookes AJ. GWAS Central: a comprehensive resource for the discovery and comparison of genotype and phenotype data from genome-wide association studies. Nucleic Acids Res. 2020;48:D933–40.

    CAS  PubMed  Google Scholar 

  20. Lawlor DA. Commentary: two-sample Mendelian randomization: opportunities and challenges. Int J Epidemiol. 2016;45:908.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol. 2013;37:658–65.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44:512–25.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40:304–14.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Burgess S, Davies NM, Thompson SG. Instrumental variable analysis with a nonlinear exposure–outcome relationship. Epidemiology. 2014;25:877.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife. 2018;7: e34408.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhou W, Nielsen JB, Fritsche LG, Dey R, Gabrielsen ME, Wolford BN, et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat Genet. 2018;50:1335–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Oscanoa J, Sivapalan L, Gadaleta E, Dayem Ullah AZ, Lemoine NR, Chelala C. SNPnexus: a web server for functional annotation of human genome sequence variation (2020 update). Nucleic Acids Res. 2020. https://doi.org/10.1093/nar/gkaa420.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38: e164-e.

    Article  Google Scholar 

  29. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, et al. The ensembl variant effect predictor. Genome Biol. 2016;17:122.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jang J, Cho E-J, Hwang Y, Weiderpass E, Ahn C, Choi J, et al. Association between body mass index and gastric cancer risk according to effect modification by helicobacter pylori infection. Cancer Res Treatment. 2019;51:1107.

    Article  CAS  Google Scholar 

  31. Jang J, Wang T, Cai H, Ye F, Murphy G, Shimazu T, et al. The U-shaped association between body mass index and gastric cancer risk in the Helicobacter pylori Biomarker Cohort Consortium: a nested case–control study from eight East Asian cohort studies. Int J Cancer. 2020;147:777–84.

    Article  CAS  PubMed  Google Scholar 

  32. Fund WCR. Body fatness and weight gain and the risk of cancer. WCRF. 2018.

  33. Yang P, Zhou Y, Chen B, Wan HW, Jia GQ, Bai HL, et al. Overweight, obesity and gastric cancer risk: results from a meta-analysis of cohort studies. Eur J Cancer. 2009;45:2867–73.

    Article  PubMed  Google Scholar 

  34. Chen Y, Liu L, Wang X, Wang J, Yan Z, Cheng J, et al. Body mass index and risk of gastric cancer: a meta-analysis of a population with more than ten million from 24 prospective studies. Cancer Epidemiol Biomarkers Prev. 2013;22:1395–408.

    Article  PubMed  Google Scholar 

  35. Lin X-J, Wang C-P, Liu X-D, Yan K-K, Li S, Bao H-H, et al. Body mass index and risk of gastric cancer: a meta-analysis. Jpn J Clin Oncol. 2014;44:783–91.

    Article  PubMed  Google Scholar 

  36. Bhaskaran K, Douglas I, Forbes H, dos Santos-Silva I, Leon DA, Smeeth L. Body-mass index and risk of 22 specific cancers: a population-based cohort study of 5·24 million UK adults. Lancet. 2014;384:755–65.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Fan J, Wang J, Wang S, Abnet CC, Qiao Y, Taylor PR. Body mass index and risk of gastric cancer: a 30-year follow-up study in the Linxian general population trial cohort. Cancer Sci. 2017;108:1667–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. World Health Organization Regional Office for the Western Pacific. The Asia-Pacific perspective: redefining obesity and its treatment. Sydney: Health Communications Australia; 2000.

  39. Honda M, Wong SL, Healy MA, Nakajima T, Watanabe M, Fukuma S, et al. Long-term trends in primary sites of gastric adenocarcinoma in Japan and the United States. J Cancer. 2017;8:1935.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pollak M. Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer. 2008;8:915–28.

    Article  CAS  PubMed  Google Scholar 

  41. Greer KB, Thompson CL, Brenner L, Bednarchik B, Dawson D, Willis J, et al. Association of insulin and insulin-like growth factors with Barrett’s oesophagus. Gut. 2012;61:665–72.

    Article  CAS  PubMed  Google Scholar 

  42. Franciosi CM, Piacentini MG, Conti M, Romano F, Musco F, Caprotti R, et al. IGF-1 and IGF-1BP3 in gastric adenocarcinoma. Preliminary Study Hepato-Gastroenterol. 2003;50:297–300.

    Google Scholar 

  43. Ishikawa M, Kitayama J, Kazama S, Hiramatsu T, Hatano K, Nagawa H. Plasma adiponectin and gastric cancer. Clin Cancer Res. 2005;11:466–72.

    Article  CAS  PubMed  Google Scholar 

  44. Huang Y-K, Kang W-M, Ma Z-Q, Liu Y-Q, Zhou L, Yu J-C. Body mass index, serum total cholesterol, and risk of gastric high-grade dysplasia: a case–control study among Chinese adults. Medicine. 2016. https://doi.org/10.1097/MD.0000000000004730.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Joo Y-E, Park H-K, Myung D-S, Baik G-H, Shin J-E, Seo G-S, et al. Prevalence and risk factors of atrophic gastritis and intestinal metaplasia: a nationwide multicenter prospective study in Korea. Gut and liver. 2013;7:303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bourke CD, Berkley JA, Prendergast AJ. Immune dysfunction as a cause and consequence of malnutrition. Trends Immunol. 2016;37:386–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bird JK, Murphy RA, Ciappio ED, McBurney MI. Risk of deficiency in multiple concurrent micronutrients in children and adults in the United States. Nutrients. 2017;9:655.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Monteiro R, Azevedo I. Chronic inflammation in obesity and the metabolic syndrome. Mediators Inflamm. 2010. https://doi.org/10.1155/2010/289645.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gröber U, Holzhauer P, Kisters K, Holick MF, Adamietz IA. Micronutrients in oncological intervention. Nutrients. 2016;8:163.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lee H, Lee IS, Choue R. Obesity, inflammation and diet. Pediatr Gastroenterol Hepatol Nutr. 2013;16:143–52.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radical Biol Med. 2010;49:1603–16.

    Article  CAS  Google Scholar 

  52. Correa P, Piazuelo MB. The gastric precancerous cascade. J Dig Dis. 2012;13:2–9.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Joo YE, Park HK, Myung DS, Baik GH, Shin JE, Seo GS, et al. Prevalence and risk factors of atrophic gastritis and intestinal metaplasia: a nationwide multicenter prospective study in Korea. Gut Liver. 2013;7:303–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kim HJ, Yoo TW, Park DI, Park JH, Cho YK, Sohn CI, et al. Influence of overweight and obesity on upper endoscopic findings. J Gastroenterol Hepatol. 2007;22:477–81.

    Article  PubMed  Google Scholar 

  55. Watabe H, Mitsushima T, Derakhshan MH, Yamaji Y, Okamoto M, Kawabe T, et al. Study of association between atrophic gastritis and body mass index: a cross-sectional study in 10,197 Japanese subjects. Dig Dis Sci. 2009;54:988–95.

    Article  PubMed  Google Scholar 

  56. Smith GD, Ebrahim S. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 2003;32:1–22.

    Article  PubMed  Google Scholar 

  57. Burgess S, Bowden J, Fall T, Ingelsson E, Thompson SG. Sensitivity analyses for robust causal inference from Mendelian randomization analyses with multiple genetic variants. Epidemiology. 2017;28:30–42.

    Article  PubMed  Google Scholar 

  58. Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol. 2017;46:1985–98.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Burgess S, Thompson SG, Collaboration CCG. Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol. 2011;40:755–64.

    Article  PubMed  Google Scholar 

  60. Evans DM, Davey SG. Mendelian randomization: new applications in the coming age of hypothesis-free causality. Annu Rev Genomics Hum Genet. 2015;16:327–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was conducted with bioresources from National Biobank of Korea, the Korea Disease Control and Prevention Agency, Republic of Korea (KBN-2022-056).

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (NRF-2016R1A2B4014552); the Bio & Medical Technology Development Program of the National Research Foundation (NRF) & funded by the Korean government (MSIT) (2020M3C9A5086234).

Author information

Authors and Affiliations

Authors

Contributions

SL and SKP had the study conception and designed the study. SL analyzed the data. SL and SKP interpreted data. SL and SKP drafted the article. SKP revised the article critically for important intellectual content. All authors approved the final manuscript for submission.

Corresponding author

Correspondence to Sue K. Park.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval and informed consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1964 and later versions. The Institutional Review Boards of Seoul National University Hospital (2211-119-1380) approved this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 52 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Park, S.K. Ethnic-specific associations between body mass index and gastric cancer: a Mendelian randomization study in European and Korean populations. Gastric Cancer 27, 19–27 (2024). https://doi.org/10.1007/s10120-023-01439-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10120-023-01439-5

Keywords

Navigation