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Abstract
Background Peritoneal metastasis (PM) frequently occurs in patients with gastric cancer (GC) and is a major cause of 
mortality. Risk stratification for PM can optimize decision making in GC treatment.
Methods A total of 25 GC patients (13 with synchronous, 6 with metachronous PM and 6 PM-free) were included in this 
study. Quantitative proteomics by high-depth tandem mass tags labeling and whole-exome sequencing were conducted in 
primary GC and PM samples. Proteomic signature and prognostic model were established by machine learning algorithms 
in PM and PM-free GC, then validated in two external cohorts. Tumor-infiltrating immune cells in GC were analyzed by 
CIBERSORT.
Results Heterogeneity between paired primary and PM samples was observed at both genomic and proteomic levels. Com-
pared to primary GC, proteome of PM samples was enriched in RNA binding and extracellular exosomes. 641 differently 
expressed proteins (DEPs) between primary GC of PM group and PM-free group were screened, which were enriched in 
extracellular exosome and cell adhesion pathways. Subsequently, a ten-protein signature was derived based on DEPs by 
machine learning. This signature was significantly associated with patient prognosis in internal cohort and two external 
proteomic datasets of diffuse and mixed type GC. Tumor-infiltrating immune cell analysis showed that the signature was 
associated with immune microenvironment of GC.
Conclusions We characterized proteomic features that were informative for PM progression of GC. A protein signature 
associated with immune microenvironment and patient outcome was derived, and it could guide risk stratification and indi-
vidualized treatment.
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Background

Gastric cancer (GC) is the fifth most commonly diagnosed 
malignancy and the fourth leading cause of cancer-related 
mortality worldwide [1]. Peritoneal metastasis (PM) of 
GC is an aggressive disease with poor prognosis, having 
limited response to palliative chemotherapy [2]. PM is 
occasionally found at the time of initial GC diagnosis or 
during intended radical surgery (synchronous PM). Even 
after radical surgery, PM occurs as peritoneal recurrence 
(metachronous PM), accounting for up to 50% of all recur-
rences [3, 4]. Emerging intraperitoneal treatment could 
provide survival benefit in locally advanced GC or GC 
patients with PM [5]. Nevertheless, considering the poten-
tial complications of these treatments, more precise evalu-
ation of PM risk in GC patients is crucial to identify those 
who would benefit from intraperitoneal treatment, optimiz-
ing decision making to balance benefits and overtreatment.

Next-generation sequencing enables the high-through-
put and systematic analysis of genetic alterations, offer-
ing novel insights into molecular basis of oncogenesis 
and heterogeneity. Importantly, The Cancer Genome Atlas 
(TCGA) classified GC as four subtypes: Epstein-Barr virus 
(EBV), microsatellite instability (MSI), chromosomal 
instability (CIN), and genomically stable (GS) [6]. Our 
team previously purposed a molecular classification that 
differentiates GC subtypes associated with prognosis and 
metastasis patterns towards liver metastasis or PM [7]. 
However, genomic heterogeneity between primary and 
metastatic tumor in GC could be extensive [8]. Therefore, 
to investigate the molecular background of PM propensity 
and to identify patients with high PM risk, study including 
primary lesions and corresponding peritoneal metastases 
remain required.

As proteins are regarded as “executors of life”, prot-
eomic studies provided insight into cancer mechanisms 
and potential clinical implications. Proteomic profiling of 
diffuse GC identified three subtypes with different prog-
nosis [9]. Li et al. uncovered proteomic signatures for 
progression of gastric lesions and risk of early GC [10]. 
Recent proteomic study of GC undergoing chemotherapy 
or targeted therapy identified proteomic features to predict 
therapeutic response [11]. Nevertheless, proteomic charac-
teristics of GC with PM and their clinical relevance have 
not been extensively studied.

In recent years, cancer immunotherapy using immune 
checkpoint inhibitors (ICIs) has emerged as promising 
treatment for specific subgroups of GC [12, 13]. How-
ever, the clinical efficacy of ICIs against PM of GC is 
still unclear. Previous studies have suggested that the 
response to anti-PD-1 therapy tended to be less promi-
nent in GC with PM [14, 15]. Since the tumor immune 

microenvironment (TIM) is highly associated with immu-
notherapy response and prognosis [16], investigation of 
TIM of GC with PM could potentially reveal relevance to 
ICI response.

In this study, we sought to investigate the molecular fea-
tures of GC with PM based on in-depth proteome profiling 
and whole-exome sequencing of GC. By machine learning, 
we identified a proteomic signature associated with PM and 
subsequently generated a prognostic signature, which was 
validated in external proteomic datasets. This proteomic 
signature was also associated with TIM and potentially pre-
dictive for immunotherapy response. Our findings may have 
translational significance for guiding decision making in GC 
management.

Methods

Patient samples

A total of 25 GC patients who underwent gastrectomy at 
the First Affiliated Hospital of Zhejiang University School 
of Medicine between January 2018 and January 2022 were 
retrospectively enrolled. 13 patients with synchronous PM 
underwent palliative surgery for GI bleeding or obstruc-
tion. 12 patients underwent curative surgery, among whom 
6 developed peritoneal recurrence (metachronous) as the 
first metastatic site, 6 did not develop PM within 24 months 
(non-PM group). Patients received standard adjuvant 
chemotherapy or perioperative systemic treatment (with or 
without immunotherapy). Follow-up data were obtained by 
phone and the out-patient clinical database (last follow-up, 
November 2022). Patient-written consents were obtained 
from study participants, informing the use for proteomic 
and genomic profiling and publication. Fresh-frozen, FFPE 
samples and malignant ascites were collected in accordance 
with ethical guidelines in the First Affiliated Hospital, Zhe-
jiang University School of Medicine.

DNA extraction and whole‑exome sequencing

For fresh-frozen samples, QIAamp DNA Mini Kit (Qiagen) 
was used to isolate genomic DNA from tumor tissues and 
matched normal mucosa according to the manufacturer’s 
instructions. For FFPE tumor tissues, DNA was extracted 
using QIAamp DNA FFPE Tissue Kit (Qiagen). DNA deg-
radation and contamination were monitored on 1% agarose 
gels.  Qubit® DNA Assay Kit in  Qubit® 2.0 Flurometer (Inv-
itrogen, USA) was used to quantify DNA concentration. For 
malignant ascites, tumor content was centrifuged for 20 min 
at 2000g and sediment tumor cells were used for DNA and 
protein extraction.
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Whole-exome library construction was generated using 
the Agilent SureSelect Human All Exon V6 Kit (Agilent 
Technologies, Santa Clara, CA, USA). The index-coded 
samples were clustered on a cBot Cluster Generation System 
using Hiseq PE Cluster Kit (Illumina). The DNA libraries 
were sequenced on Illumina Hiseq platform (Illumina, San 
Diego, California, USA) and 150 bp paired-end reads were 
generated. We first conducted data quality control and then 
performed all downstream bioinformatics analyses based on 
the high-quality clean data. The paired-end clean reads were 
aligned to the Human Genome Reference Consortium build 
37 (GRCh37) using BWA v.0.7.8 [17]. Mapped reads were 
then de-duplicated using Sambamba tools (v0.4.7) [18].

Identification of somatic single-nucleotide variants 
(SNVs) was conducted by muTect (v1.1.4), and the somatic 
InDels were detected by Strelka (v1.0.13). ANNOVAR 
(ANNOVAR_2015Mar22) was used to annotate variant call 
format files [19].

Protein extraction and quantitative proteome 
profiling

The protein extraction was performed according to Zhang 
et al. [20]. Samples were minced and lysed in lysis buffer 
(8 M Urea, 100 mM Tris Hydrochloride, pH 8.0) contain-
ing protease and phosphatase Inhibitors (Thermo Scientific) 
followed by sonication. The lysate was centrifuged and 
the supernatant was collected. Extracts from sample was 
reduced with 10 mM dithiothreitol at 56 °C for 60 min and 
alkylated with 10 mM iodoacetamide at room temperature 
in the dark for additional 60 min. The samples were digested 
with trypsin. The digested peptides were desalinated using 
C18 column (50% acetonitrile and 0.1% formic acid) and 
resolved in 100 mM triethylamine buffer. Finally, the sam-
ples were labeled using the  TMT® Mass Tagging Kits and 
Reagents (Thermo scientific, USA) following the manufac-
turer’s instructions.

Mass Spectrometry (MS) detection was carried out as 
previously described [20]. Digested samples were analyzed 
on Q Exactive HF-X Hybrid Quadrupole-Orbitrap Mass 
Spectrometer (Thermo Scientific, USA) coupled with a high-
performance liquid chromatography system (EASY nLC 
1200, Thermo Fisher). MS raw files generated by LC–MS/
MS were searched against the NCBI human Refseq protein 
database using Proteome Discoverer 2.4 (PD2.4, Thermo) 
software. Then peptide spectrum matches with reliabil-
ity > 99%, or proteins containing at least one unique peptide, 
with FDR < 1% were identified.

Copy number analysis

Somatic copy number variations (SCNVs) were identified 
using CNVkit [21]. Then GISTIC 2.0 (v 2.0.22) [22] was 

used to identify the genome regions with significant altera-
tions and screen out the recurrent CNV region.

Analysis of clonal architecture

The R package SciClone [23] was used to infer the clonal 
and subclonal architecture of somatic mutations by analyz-
ing the variant allele frequencies in an individual sample 
using the Bayesian binomial mixture model.

Identification of differentially expressed proteins

Analysis of differently expressed proteins (DEPs) between 
tumor and normal was conducted by (a) R package samr 
(v3.0) with an FDR threshold at 0.05 and a fold change (FC) 
threshold at 1.5. The results were run under 100 times per-
mutations resampling and visualized by VolcaNoseR [24]; 
(b) Referring to GFold [25], the DEPs of each sample pair 
were derived by the following steps. First, for each sample 
pair, log foldchanges of each gene were fitted to t-distribu-
tion. Two-tail test was performed to get DEPs with a P value 
threshold of 0.05. The overlaps of (a) and (b) were regarded 
as the final DEPs.

Identification of PM‑associated proteins

Our previously developed tool MATTE (v1.2.3) [26] was 
used to identify the differentiated module between PM sam-
ples and without-PM samples based on DEPs. After cluster-
ing, all differentially expressed modules were compared by 
their signal-to-noises (SNRs). The module with the highest 
SNR was thought as the PM-associated module. External 
transcriptome data [27] was used for filtering proteins. The 
classifier for PM samples identification was built by Xgboost 
(v1.7) [28] and simplified by scikit-learn (v1.2) [29]. Spe-
cifically, we first fitted GB-tree classifier by data with previ-
ously filtered proteins. By taking the area under the curve 
(AUC) in fivefold cross validation as the metric, 32 proteins 
got best score. To further simplify the model, we listed all 
combinations of proteins and scored them as previously. 
Each protein’s frequency in the top 500 protein combinations 
of all was ranked. Ten proteins with the highest frequency in 
the combinations were selected for the final model.

Establishment of prognostic model

For previously selected ten proteins, a GB-linear classifier 
was fitted in our cohort. Then weight of each protein was 
extracted. The sum of weighted protein expression was cal-
culated as PM risk score. Subjects were stratified into high, 
moderate and low-risk levels by PM risk score.
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Immune cells infiltration enumerations

Estimation of immune cell types infiltration level was based 
on sample-level normalization proteome data. Then, the esti-
mation was performed by TIMER web server [30] and the 
result of CIBERSORT algorithm [31] was used for analysis.

Statistical analysis

The statistical analysis was performed by SPSS 21.0 soft-
ware. Two continuous variables were compared using Stu-
dent’s t test. Survival data was analyzed by Kaplan–Meier 
curves with log-rank test. Univariate and multivariate Cox 
regression analysis were performed to calculate the hazard 
ratio and 95% confidence interval. A P value of < 0.05 was 
considered significant.

Results

Patient characteristics, proteome profiling 
and whole exome sequencing

We enrolled 19 GC patients who developed synchronous 
(n = 13) or metachronous (n = 6) PM without other distant 
metastasis, and 6 GC patients with stage IIIB or IIIC dis-
ease who did not develop peritoneal recurrence for at least 
24 months after curative surgery (PM-free group). Primary 
tumor tissue (T), peritoneal metastases (M), and their match-
ing adjacent normal tissues (N) were collected for proteome 
profiling and/or whole-exome sequencing (Fig. 1A). The 
overall survival showed significant difference between 
PM and PM-free groups (Fig. 1B). The detailed informa-
tion is shown in Table S1. By high-depth tandem mass tags 
(TMT) labeling for quantitative proteomics, a total of 20 
pairs of tumor and normal tissues were measured and the 
results showed good consistency in proteome identification 
and quantification (Fig. S1), resulting in the identification 
of 9852 proteins. To increase reliability, we selected 6799 
proteins that were detected with at least 2 unique peptides 
and normalization to fraction of total (FOT) >  10−5. Z-score 
normalization  (log2 of relative abundance scaled by subjects’ 
SD) was performed for comparative analysis.

To obtain genetic background of our cohort, we con-
ducted whole-exome sequencing. The mean coverage of 
sequencing was 263-fold in tumor and 122-fold in normal 
samples. A total of 3439 somatic non-synonymous muta-
tions were detected in all sequenced cases. TP53 (63%), 
SPTA1 (21%), PREX2 (16%), ZFHX4(21%), LRP1B (21%) 
were identified as significantly mutated genes (Fig. 1C). All 
GC cases were identified as microsatellite stable.

Genomic and proteomic features in PM 
in comparison with primary GC

To investigate the heterogeneity between primary GC and 
PM, we compared multiple genomic features in 9 pairs of 
samples. All paired samples shared some alterations, con-
firming that they had the same tumor origin. The propor-
tions of somatic mutations shared with paired PM ranged 
from 9 to 62% in primary GC (Fig. S2). Mutations of TP53 
and ZFHX4 amplifications were generally shared between 
primary tumor and PM, while CSMD3 mutations, CNVs 
were frequently discrepant, such as potentially targetable 
amplifications of CCNE1, MYC and KRAS (Fig. 1D). Nota-
bly, compared with primary tumor, PM samples harbored 
more recurrent CNV (Fig. 1E). Mutational signature and 
neoantigen were generally concordant in paired primary and 
PM samples (Figs. S3–4). The number of subclones was fre-
quently discrepant in PM and primary GC, reflecting differ-
ent intratumor heterogeneity. Notably, number of subclones 
in PM increased in 4 out of 5 patients with metachronous 
PM (Fig. 1F). The above results confirmed high genomic 
heterogeneity between primary GC and PM samples.

Four PM samples derived from malignant ascites were 
analyzed at proteome level (two samples were collected 
from Meta-3 at different timepoints). The protein abun-
dance between paired primary GC/PM tissue showed rela-
tively low correlation (Fig. 2A). Compared with primary GC 
samples, we identified 118 proteins enriched in PM samples 
(Table S2). A large number of these proteins distributed in 
extracellular region, including exosome and secretary gran-
ule (Fig. 2B). Pathway analysis revealed that these proteins 
were enriched in RNA binding, polysomal ribosome and 
extracellular exosome (Fig. 2C). We further focused on 
proteins that showed the same expression trend in primary 
and PM samples. PLG, SP1 and FABP3 were consistently 
up- or downregulated in two pairs of primary GC/PM, and 
there were multiple altered pathways overlapped across 
cases, including focal adhesion and complement pathway 
(Fig. 2D). Specifically, Meta-3M2 (24 months after radi-
cal surgery, during second-line treatment) had more altered 
proteins associated with signaling pathways than Meta-3M1 
(10 months after radical surgery, first-line chemotherapy 
completed), suggesting that more mechanical changes 
might be induced through tumor progression and additional 
treatment.

Characteristic alterations in proteome of GC 
associated with PM propensity

As illustrated in Fig. 3A, to screen the candidate proteins 
associated with PM propensity in primary GC, we first 
selected proteins differentially expressed between tumor 
and normal tissues (n = 20), and then compared their 
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Fig. 1  Genomic background of primary GC and paired PM samples. 
A Clinicopathological information and molecular classifications of 
GC cohort; Circles represent available data. (Dual circles represent 
two samples collected at different timepoints), B Survival analysis of 
three patient groups, C Landscape of somatic mutations of the cohort. 
Genes with variants in at least 3 patients were depicted. Bars on top 
and to the right of the graph show the number of non-synonymous 

mutations in each subject and gene, respectively, D Comparison of 
key somatic mutations and CNV between paired primary GC and 
PM, E Somatic CNV of primary GC and PM samples, F Number of 
subclones of each paired primary GC/PM. Syn synchronous metasta-
sis, Meta metachronous metastasis, Con control group, WES whole-
exome sequencing, TMT tandem mass tags
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expression between GC with PM (n = 14) and without PM 
(n = 6), resulting in 641 differentially expressed proteins 
(DEPs, Fig. 3B). In addition, we analyzed significantly 
altered proteins in GC with PM (n = 14). Upregulated pro-
teins included CNN1, SMTN, DES and FN1, and down-
regulated proteins included MZB1, SPCS1, CD38 and 
CA3 (Fig. 3C). GO analysis of the 641 DEPs revealed 
that extracellular exosome and extracellular space were 
two most significant annotations ranked by FDR (Fig. 3D, 
Table S3), and other significant annotations included focal 
adhesion and adherens junction, suggesting that GC with 
PM propensity were enriched in expressional changes of 
tumor microenvironment components. KEGG analysis 
revealed that these DEPs were significantly enriched in 
integrin binding/focal adhesion, cytoskeleton regulation 

and complement activation pathways (Fig.  3E and F, 
Table S3).

Identification and validation of a proteomic 
signature associated with PM propensity 
and prognosis

We then attempted to obtain a protein signature associated 
with PM propensity in GC. First, based on our previously 
developed clustering method MATTE, we conducted clus-
ter analysis that derive a PM-related module, and selected 
the proteins in the module with the highest signal-to-noise 
(Fig. 4A, n = 20). Subsequently, an external transcriptome-
based expressional data [27] was used for further screen-
ing and verification. By performing dimension reduction 
of expression data, PM and PM-free samples were roughly 

RNA binding

Polysomal ribosome

Extracellular exosome

Nucleoplasm

Extracellular region

Ficolin-1-rich granule lumen

Fatty acid binding

Secretory granule lumen

Cytoplasmic translation

Innate immune response

B

Extracellular exosomes (34)

Extracellular region (28)

Cytosol (47)

Nucleus (49)

Polysomal ribosome (7)

Secretory granule lumen (6)

D

A

Fig. 2  Proteomic features of paired primary GC and PM. A Scatter-
plot showing correlation of protein abundance in paired primary GC/
PM samples, B Top ranked pathways that are significantly enriched in 
PM as compared with primary GC, C Subcellular distribution of pro-

teins enriched in PM annotated with Gene Ontology, D Venn diagram 
presenting altered proteins (up- or downregulated in both primary and 
PM samples) in each subject and relevant pathways (for Meta-3M, 
proteins altered in superscript samples)
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discriminated (Fig. 4B). 10 proteins (DUOXA2, ITGA7, 
LIMS1, MSRB3, PLCB1, RAB6B, SEMA3C, SMTN, 
TADA1, TBC1D14) from the PM-related module were 
selected to predict whether PM occurred (Fig. 4C, the selec-
tion method described in Methods). The results showed that 
under the fivefold cross validation, the AUC of the average 

ROC curve reached 0.83 in the cohort (Fig. 4D), suggesting 
high accuracy of PM prediction.

The prognostic value of the 10-protein signature was 
further evaluated. By machine learning algorithms, a PM 
risk score was generated in internal cohort (Fig. S5, the 
weights of each protein in Tables S4). Next, we validated 
the model in diffuse and mixed type GC cases from two 

A B

C

D

E

F

Fig. 3  Proteomic features of GC with PM. A Workflow of proteomic 
analysis, signature screening and model construction, B Volcano plot 
of differentially expressed proteins (DEPs), C Top DEPs between 
tumor and normal that are significantly altered in GC with PM; upper 
panel, upregulated proteins; lower panel, downregulated proteins, D 

Subcellular distribution of DEPs annotated with Gene Ontology, E 
Top ranked pathways of DEPs, annotated with Gene Ontology and 
KEGG, F Expression of key DEPs in altered pathways in control 
(Con), metachronous PM (Meta) and synchronous PM (Syn) groups
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external cohorts, Ge-2018 [9] (n = 82) and Li-2022 [11] 
cohort (n = 86). Patients were divided as high risk (high-
est quartile), moderate-risk and low risk (lowest quartile) 
groups according to the PM risk score, and those in high-
risk group had significantly shorter overall survival than 
low-risk group in both cohorts (P = 0.013 in Ge-2018 and 
P = 0.025 in Li-2022, Fig. 4E and F). Multivariate Cox 
regression showed that after adjusting for clinical features 
such as age and AJCC staging, high PM risk score still sig-
nificantly correlated to poor survival (HR = 6.555, 95% CI 
1.424–30.177, P = 0.016 in Ge-2018 and HR = 3.686, 95% 
CI 1.324–10.257, P = 0.012 in Li-2022) (Fig. 4G and H), 
suggesting this signature was an independent prognos-
ticator for overall survival. Interestingly, this prognostic 

significance was absent in the whole Li-2022 cohort includ-
ing Lauren intestinal subtype (Fig. S6, n = 206). These find-
ings emphasized that the 10-protein signature was predictive 
of PM-associated prognosis.

10‑protein signature is associated with TIM 
and treatment response

To explore the relevance between our prognostic model and 
TIM, we compared the proteome-based immune cell infiltra-
tion of GC samples of high-risk group and low-risk group 
by CIBERSORT analysis (Fig. 5A). In 22 immune cell frac-
tions, plasma B cell, CD4 + naïve T cell and eosinophil were 
significantly more abundant in low-risk group, whereas M2 

A

Variable

Age 
(≥ 50 vs. < 50 yrs)

AJCC stage
(III/IV vs. I/II)

Subtype
(SRC vs. non-SRC)

PM risk score

   High risk

   Moderate risk

   Low risk

HR (95% CI)

2.903 (0.777,10.843)

9.252 (1.235,69.285)

1.435 (0.572,3.603)

3.202 (0.674, 15.218)

P

0.113

0.030

0.442

0.016

  0.50   1.0   2.0   4.0   8.0  16.0  32.0  64.0 128.0

6.555 (1.424, 30.177)

0.143

Reference

Hazard ratio Variable

Age 
(≥ 50 vs. < 50 yrs)

AJCC stage
(III/IV vs. I/II)

HER2 status
(positive vs. negative)

PM risk score

   High risk

   Moderate risk

   Low risk

HR (95% CI)

1.810 (0.682, 4.804)

P

0.0123.686 (1.324, 10.257)

0.233

Reference

Hazard ratio

1.675 (0.666,4.217)

1.168 (0.496,2.750)

0.528 (0.257,1.084)

0.273

0.722

0.082

0.25 0.50 1.0 2.0 4.0 8.0 16.0

D
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P = 0.013

P = 0.025

Ge-2018 Li-2022

Ge-2018 Li-2022

GC without PM GC with PM
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Fig. 4  Establishment of PM-associated proteomic signature and 
external validation. A MATTE clustering of PM-associated module, 
B Heatmap depicting expression of ten proteins in GC with or with-
out PM in ACRG cohort, C Dimension reduction of expression data 

in ACRG cohort; each dot represents one sample, D ROC curve of 
prediction model using Xgboost classifier, E–F Kaplan–Meier plot of 
Ge-2018 (E) and Li-2022 (F) cohort, G–H Forrest plot of multivari-
ate Cox regression of Ge-2018 (G) and Li-2022 (H) cohort
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macrophage, regulatory T cell and resting CD4 + memory T 
cell were more abundant in high-risk group (Fig. 5B). Other 
cell fractions such as CD8 + T cell was not significantly dif-
ferent between two groups. These results indicated that PM 
risk score was associated with TIM and might be predictive 
for immunotherapy response.

The clinical relevance of PM risk score was shown in 
representative cases (Fig. 5C). Case Meta-1, 69 years old, 
male, evaluated as high risk, who received radical surgery 
and the pathological staging was pT3N3aM0, then received 
8 cycles of SOX (oxaliplatin plus S-1) adjuvant chemo-
therapy. 7 months after surgery, tumor relapsed as large 
amount of malignant ascites, and responded poorly to the 
second-line treatment including chemotherapy and PD-1 
inhibitor. The overall survival was 11 months. Case Syn-
5, 70 years old, male, evaluated as low risk, whose clini-
cal stage was cT4N2M1 (with PM) at baseline, received 
first-line SOX chemotherapy plus PD-1 inhibitor. 4 cycles 
later, the patient developed GI bleeding, and the radiologi-
cal evaluation of tumor response was partial response. Then 
the patient received palliative surgery, in which peritoneal 
metastases were observed, and the pathological staging was 
ypT4bN2M1. After surgery the patient received another 4 
cycles of SOX plus ICI and maintained stable disease, until 
the tumor progressed 14 months after surgery, presenting as 
minor pelvic ascites. The overall survival was 25 months. 
These cases suggested that the PM risk score might not only 
be associated with aggressiveness of GC, but also with treat-
ment response.

Discussion

In the present study, we comprehensively confirmed 
genomic and proteomic heterogeneity between primary 
GC and PM, analyzed the distinct proteomic characteristics 
associated with PM progression, and then established a pro-
teomic signature associated with the risk of PM and progno-
sis. This signature was also potentially associated with TIM 
and immunotherapy response in GC patients.

Currently, PM risk was estimated mainly according to 
TNM staging, especially T stage (T3-T4 were usually con-
sidered as with high risk), and GC of Lauren diffuse type 
was reported to have a significant tendency of developing 
PM [32]. However, due to the high heterogeneity within GC, 
clinicopathological features might not fully depict its aggres-
siveness and metastasis pattern. Our proteome-based predic-
tion model would optimize the risk stratification of PM, as 
a tool for improving clinical management for GC patients.

In recent years, there are evolving multi-omics studies for 
PM of GC. Wang et al. described the genomic and immune 
landscape of peritoneal carcinomatosis of GC based on 
43 PM cases, revealing two subtypes with discriminating 

response rates to chemotherapy [33]. A subsequent study 
used single-cell transcriptome profiling of peritoneal carci-
nomatosis to reveal two subtypes with different intra-tumoral 
heterogeneity [34]. A multi-omics analysis of malignant 
ascitic fluid samples and tumor cell lines from 98 patients, 
stratified ascites-disseminated GC into two distinct molecu-
lar subtypes: “non-EMT” subtype displaying active super 
enhancers (SEs), and “EMT” subtype bearing TGF-β path-
way activation and high expression of TEAD-1 [35]. Unlike 
the above studies, our study mainly focused on proteomics 
of primary GC with PM, attempting to reveal key proteomic 
features associated with PM propensity and PM-related 
aggressiveness.

Consistent with previous study [8], extensive genomic 
heterogeneity in somatic mutations, CNVs and subclone 
structure was observed between primary GC and paired PM, 
which could be a barrier to precision medicine. The prot-
eomic difference between paired primary GC/PM was partly 
due to different extracellular components such as stromal 
content and exosomes. Proteins enriched in PM tissues were 
involved in RNA binding and polysomal ribosome, suggest-
ing more active protein synthesis in metastases.

By comparing proteomic profiles between different sam-
ple groups, we observed distinct features associated with PM 
progression. Enriched pathways in PM samples (compared 
with primary GC) included RNA binding, extracellular exo-
some and focal adhesion. Meanwhile, DEPs between pri-
mary GC of PM group and non-PM group were enriched 
in extracellular  exosome, focal adhesion, cytoskeleton 
regulation and complement activation pathways. The over-
lapped pathways of the two analyses suggested key biologi-
cal processes of PM. Exosomes are biologically functional 
extracellular vesicles comprising active factors. They can 
mediate metastasis of GC by promoting EMT, cancer-asso-
ciated fibroblast formation, pre-metastatic niche formation 
and immunosuppression [36]. Focal adhesion are anchoring 
units and interacts between the cell-extracellular matrix and 
cell cytoskeleton, associated with multiple oncogenic pro-
cesses such as cell proliferation, cell cycle regulation migra-
tion and chemoresistance in cancer cells [37].

The Asian Cancer Research Group (ACRG) categorizes 
GC into four subtypes using expression data. The MSS/EMT 
subtype, having the worst prognosis, was characterized by 
a gene expression signature correlated with EMT and a dis-
tinct tendency to develop PM [27]. It was the first large-
scale transcriptional study that contains a considerably large 
number of subjects with PM. A large multi-omic study of 
early onset GC revealed that genes with significant survival 
differences showed stronger mRNA-protein correlations 
than genes with non-significant survival differences [38]. 
Therefore, although the data of ACRG was transcriptome-
based, it is considerable to combine this dataset with our 
proteome-based data to screen key proteins with significant 
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clinical implications, as these proteins were likely to have 
high mRNA-protein correlation. By this combination, we 
screened proteins associated with PM propensity, and the 
internal validation resulted in high accuracy.

Most proteins in our signature were involved in cancer-
related mechanisms. For instance, ITGA7 was associated 
with cancer stemness in esophageal squamous cell carci-
noma and correlates with poor prognosis in hepatocellu-
lar carcinoma [39, 40]. DUOXA2 was maturation factor 
of an oxidative protein DUOX2, which promotes invasion 
and metastasis of colorectal cancer [41, 42]. MSRB3 was 
reported to promote cancer by regulating genome stabil-
ity and endoplasmic reticulum stress [43]. Upregulation of 
TADA1 was reported to promote lung squamous cell carci-
noma progression [44]. RAB6B regulates intracellular mem-
brane trafficking pathways, and its silence inhibited AKT/
JNK signaling in GC [45, 46]. SEMA3C was reported to be 
an oncogene in multiple tumors [47]. TBC1D14 was found 
to inhibit lymph node metastasis by regulating autophagy in 
head and neck squamous cell carcinoma [48]. The biologi-
cal functions of these proteins in PM progression of GC are 
promising aspects in future research.

Our prognostic model was derived from a PM-associated 
protein signature by machine learning, intending to stratify 
GC patients by PM-related survival. It is well established 
that Lauren subtype was significantly correlated to metasta-
sis or recurrence pattern [32]. Therefore, we validated our 
prognostic model using two independent external proteomic 
datasets of diffuse/mixed GC, in which the OS could reflect 
PM risk to some extent. Ge-2018 was a proteomic study of 
84 diffuse GC, in which 8 patients had available report of 
first recurrence site of peritoneal seeding. Li-2022 was a 
proteomic study including 206 GC patients (86 with diffuse/
mixed type GC) undergoing chemotherapy or HER2 targeted 
therapy. Although the two cohorts had discrepant inclusion 
criteria, validation of our prognostic model yielded consist-
ent results, suggesting the robustness of this model. The 
prognostic value of this model was absent in intestinal GC 
or the whole cohort, because intestinal GC is more likely to 
develop hematogenous metastasis, which highly affects OS. 
The predictive value of this model for PM-related survival 
in intestinal type GC still requires further cohort validation.

Tumor-infiltrating immune cells are correlated with the 
progression of cancer and patients’ outcome, and also affect 
tumor responses to immunotherapy [49]. The infiltration 
of macrophages M2 and Tregs was significantly negatively 

correlated with prognosis of colorectal cancer patients [50]. 
Infiltration of plasma cells as effectors of humoral immune 
response, were correlated with longer survival in GC [51] 
and breast cancer [52]. Activated CD4 + memory cells, 
rather than resting cells, play important role in anti-tumor 
immunity. Taken together, our findings revealed that GC 
with high PM risk tended to harbor a more immunosup-
pressive microenvironment, and might respond poorly to 
immunotherapy. Although preoperative chemotherapy could 
remodel TIM [53], no significant difference was observed 
between GC with and without preoperative chemotherapy 
in our cohort (Fig. S7). The two representative cases both 
received combined chemotherapy and immunotherapy. 
Meta-1 was predicted as high PM risk, and was diagnosed 
as locally advanced stage, but peritoneal recurrence devel-
oped shortly after radical surgery, leading to a poor survival. 
In contrast, Syn-5, predicted as low PM risk, although first 
diagnosed as advanced stage, had a much longer survival. 
The distinct prognosis might be partly due to their different 
TIM and responses to immunotherapy.

Strengths of our study included proteomic profiling of 
both primary GC and PM samples, machine learning and 
modeling integrating large-scale expressional data, and a 
panel of proteins associated with both PM propensity and 
patient outcome, which was validated at protein level in two 
independent cohorts. We acknowledge several limitations. 
First, attempting to reveal key features associated with PM, 
our proteomic data had a small sample size, especially that 
of PM samples, because the clinical scenario to acquire both 
primary and PM samples was rare. Second, lacking required 
clinical information, we have not been able to obtain exter-
nal proteomic data to directly validate the predictive value of 
our model to PM risk or PM-free survival, but only validated 
its prognostic value in diffuse/mixed type GC. Although PM 
is the most frequent metastatic pattern in diffuse/mixed type 
GC, future studies of large cohorts including all Lauren sub-
types of GC are warranted to validate the model.

In summary, we depicted molecular features of primary 
GC and PM tissues by multidimensional proteomic and 
genomic analysis, and characterized proteomic features 
that were informative for the mechanisms of PM progres-
sion. A proteomic signature was derived by machine learn-
ing algorithms to predict PM propensity and prognosis in 
GC. The signature was associated with TIM and potentially 
with immunotherapy response. Our findings could guide 
prophylactic intraperitoneal treatment in locally advanced 
GC patients with high PM risk and improve individualized 
disease management.
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