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Abstract
Background Accurate pre-treatment prediction of neoadjuvant chemotherapy (NACT) resistance in patients with locally 
advanced gastric cancer (LAGC) is essential for timely surgeries and optimized treatments. We aim to evaluate the effec-
tiveness of deep learning (DL) on computed tomography (CT) images in predicting NACT resistance in LAGC patients.
Methods A total of 633 LAGC patients receiving NACT from three hospitals were included in this retrospective study. The 
training and internal validation cohorts were randomly selected from center 1, comprising 242 and 104 patients, respectively. 
The external validation cohort 1 comprised 128 patients from center 2, and the external validation cohort 2 comprised 159 
patients from center 3. First, a DL model was developed using ResNet-50 to predict NACT resistance in LAGC patients, 
and the gradient-weighted class activation mapping (Grad-CAM) was assessed for visualization. Then, an integrated model 
was constructed by combing the DL signature and clinical characteristics. Finally, the performance was tested in internal 
and external validation cohorts using area under the receiver operating characteristic (ROC) curves (AUC).
Results The DL model achieved AUCs of 0.808 (95% CI 0.724–0.893), 0.755 (95% CI 0.660–0.850), and 0.752 (95% CI 
0.678–0.825) in validation cohorts, respectively, which were higher than those of the clinical model. Furthermore, the inte-
grated model performed significantly better than the clinical model (P < 0.05).
Conclusions A CT-based model using DL showed promising performance for predicting NACT resistance in LAGC patients, 
which could provide valuable information in terms of individualized treatment.

Keywords Locally advanced gastric cancer · Neoadjuvant chemotherapy · Pre-treatment computed tomography · Deep 
learning
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Introduction

Gastric cancer (GC) is the second leading cause of cancer-
related deaths worldwide [1], and 80–90% of GC patients 
are in the advanced stages at their first visits [2, 3]. Surgery 
is the main treatment for locally advanced gastric cancer 
(LAGC); however, the 5 year survival rate is only 20–30% 
[3]. In recent years, neoadjuvant chemotherapy (NACT) has 
been adopted to improve the R0 resection and prognosis 
of LAGC patients [4]. Nevertheless, approximate 30% of 
LAGC patients tend to be resistant to neoadjuvant treatment 
[5], which leads to an increased risk of disease progression 
and unnecessary toxicity for those patients. Meanwhile, 
histopathological examination after surgery continues to be 
used as the reference standard for defining the therapeutic 
response; yet, this approach is invasive and hysteretic [6]. 
Hence, identifying patients with NACT resistance before 
treatment is of critical importance, as it may assure that they 
receive timely surgeries and optimized treatments.

Clinically, computed tomography (CT) is the preferred 
imaging examination used to evaluate the response to NACT 
among LAGC patients, usually by some conventional mor-
phologic metrics, such as the response evaluation criteria in 
solid tumors (RECIST) and CT volumetry, or some quan-
titative imaging parameters. However, these analyses tend 
to rely on imaging features extracted by naked eyes, where 
some microcosmic imaging features relevant to a patient out-
come might be ignored [7]. With the development of com-
puter-aided analysis, radiomics, which can convert medical 
images into mineable high-throughput quantitative features, 
and characterize tumors and their microenvironment [8], 
has been successfully applied to predict NACT response 
in LAGC patients [6, 9–11]. However, radiomics requires 
precise tumor delineation, which is the precondition for fea-
ture extraction and selection, and model building. Moreo-
ver, tumor delineations are subject to physician’s experience, 
which conversely affects prediction accuracy and also hin-
ders the application of radiomics in clinical practice.

Recently, deep learning (DL) has emerged as a power-
ful approach, which greatly reduced the difficulty of fea-
ture extraction by automatically learning the representa-
tion of key disease features directly from medical images 
[12–14]. In terms of GC, DL has been successfully applied 
in occult peritoneal metastasis identification [15] and lymph 
node metastases prediction [16, 17]. Still, to the best of our 
knowledge, DL has not yet been adopted for the prediction 
of resistance to NACT in LAGC patients. Therefore, we 
aimed to develop an end-to-end DL model based on pre-
treatment CT to predict NACT resistance in patients with 
LAGC and externally validate the predictive ability in two 
independent cohorts.

Methods

Patients selection

This retrospective multicenter study was approved by the 
Institution Ethics Review Boards of Shanxi Cancer Hospital 
(No. 202223), The Sixth Affiliated Hospital of Sun Yat-sen 
University (No. E2021088), and Yunnan Cancer Hospital 
(No. KY202034), and the need for informed consent was 
waived due to the retrospective nature of this study.

This retrospective multicenter study recruited the patients 
with LAGC who received NACT in the three centers. 
The inclusion criteria were as follows: (1) histologically 
(biopsy-) confirmed gastric adenocarcinoma; (2) diagnosed 
with non-metastatic locally advanced stage (cT2-4N0/+M0) 
determined by pre-treatment CT examination or laparo-
scopic laparotomy based on American Joint Committee on 
Cancer (AJCC) TNM Staging Manual (8th Edition) [18]; (3) 
underwent standard baseline contrast-enhanced CT before 
treatment; (4) received NACT followed by gastrectomy 
with lymph node dissection, after which tumor response 
was confirmed by postoperative pathological examination; 
and (5) clinicopathological characteristics were available. 
The exclusion criteria were the following: (1) unidentified 
primary tumor on CT or poor CT image quality to perform 
measurements; (2) suffered synchronous other malignant 
neoplasms; (3) received anticancer therapy before the base-
line CT scans; and (4) with incomplete clinicopathological 
data.

Baseline staging evaluations included CT, ultrasound 
endoscopy, and/or positron emission tomography (PET)/
CT, and neoadjuvant treatment was jointly decided by the 
multidisciplinary discussion with radiologists, surgeons, and 
oncologists for the patients with LAGC (cT2-4N0/+M0) in 
accordance with national guidelines. Finally, 633 LAGC 
patients were included in this study. Among them, 346 
patients from center 1 (Shanxi Cancer Hospital) were 
divided into a training cohort (n = 242) and an internal vali-
dation cohort (n = 104) at a ratio of 7:3 randomly between 
January 2017 and November 2020. Meanwhile, patients 
from center 2 (The Sixth Affiliated Hospital of Sun Yat-sen 
University) were grouped as external validation cohort 1 
(n = 128), and patients from center 3 (Yunnan Cancer Hos-
pital) were grouped as external validation cohort 2 (n = 159) 
between January 2016 and August 2020.

The details of the CT examination are described in the 
Supplementary File. All clinical characteristics before 
NACT were retrieved, including age, body mass index 
(BMI), gender, differentiation status, carcinoembryonic 
antigen (CEA) level, carbohydrate antigen (CA) 199 level, 
tumor location, clinical T stage, and clinical N stage.
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Pathological evaluation

According to national guidelines, all enrolled patients with 
LAGC received NACT. Chemotherapy regimens included 
XELOX (130 mg/m2 oxaliplatin as a 2 h infusion on day 1, 
followed by 1000 mg/m2 capecitabine twice daily for 14 con-
secutive days), SOX (S-1 was administered orally 80 mg/m2/
day on days 1–14, while 130 mg/m2 oxaliplatin was given 
intravenously 130 mg/m2 on day 1), and FOLFOX (130 mg/
m2 oxaliplatin as a 2 h infusion, 400 mg/m2 leucovorin, and 
a bolus of 400 mg/m2 5-fluorouracil on day 1, followed by 
a 46-h infusion of 2400 mg/m2 5-fluorouracil). The treat-
ment was repeated every 3 weeks. All patients received 2–4 
cycles of NACT before surgery, with adjustment to dosage 
or cycles based on effectiveness and patient tolerability, and 
gastrectomy was performed within 2 weeks after NACT. The 
response to NACT was assessed by the consensus of two 
expert gastrointestinal pathologists. Tumor regression grade 
(TRG) defined according to the latest National Comprehen-
sive Cancer Network (NCCN) guideline (version 4, 2021) 
[19] was adopted to evaluate NACT response. TRG 0 was 
defined as no viable cancer cell in the primary lesion or 
lymph nodes, and the presence of single cells or rare small 
groups of cancer cells was classified as TRG 1. The evident 
tumor regression, but more than single cells or a rare small 
group of cells, was defined as TRG 2; TRG 3 was defined as 
no evident tumor regression with extensive residual cancer. 
In this study, patients with TRG 0–2 were considered as 
NACT responsive and patients with TRG 3 as NACT resist-
ant [20–22].

Deep learning model building

The overall workflow for building a DL model for predicting 
NACT resistance is shown in Fig. 1. Portal venous-phase CT 
images were retrieved for further evaluation. The region of 
interest (ROI) was manually delineated on the center slice of 
CT images with the largest tumor using the Medical Imag-
ing Interaction Toolkit (MITK) software (version 2013.12.0; 
http:// www. mitk. org/) by a radiologist with 10 years of clini-
cal experience in abdominal CT interpretation and was then 
confirmed by a radiologist with 31 years of experience in 
abdominal CT interpretation.

The overall preprocessing procedure was as follows: a 
3D resampling process was done to regularize CT images 
to 1 × 1 × 1 mm per voxel, and for a high contrast view of the 
stomach and surrounding tissues, a window of [− 350, 450] 
HU was truncated. To ensure that the DL network’s atten-
tion focused on the most relevant part of the CT images, the 
slice with the largest tumor ROI and its delineation mask, as 
well as its ten adjacent slices (five superior and five inferior), 
were selected to compose a 12-layer image patch [16, 23], 
which means that the image patch contained 11 CT slices 
and one delineation mask. Meanwhile, a square covering 
the tumor ROI and located at the centroid of tumor ROI was 
used to extract the square region slice-by-slice, generating 
a 12-layer square image patch, which means that size of the 
image patch was determined by the tumor size. All patches 
were processed by z-score standardization, which consisted 
of subtracting the mean intensity and division by the stand-
ard deviation of intensity.

Fig. 1  Overall workflow for 
building a deep learning (DL) 
model for predicting neoadju-
vant chemotherapy (NACT) 
resistance

http://www.mitk.org/
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ResNet-50 architecture [24], a state-of-the-art convolu-
tional neural network (CNN), was used as the main back-
bone of the DL in the present study. This network demon-
strates significant improvements over traditional CNNs on 
highly competitive object recognition benchmark tasks while 
requiring less computational cost and having fewer param-
eters, thus conferring the model a smaller size and easier 
accessibility for application. The training of DL models is 
computationally expensive and requires tremendous images 
because of millions of learnable parameters to be estimated. 
To address the lack of data, we employed data augmenta-
tion [25], including image reflection along with the patient’s 
anterior/posterior or left/right directions, and image rota-
tion with 90°, 180°, and 270°, and transfer learning [26]. 
The detailed description of data augmentation and transfer 
learning is documented in the Supplementary File. The DL 
network was implemented using PyTorch [27] in Python. 
The pre-trained ResNet-50 model is available online, and 
the training details of the DL model are described in the 
Supplementary File.

For an intuitive understanding of the mechanisms of the 
DL model, the strategy of guided gradient-weighted class 
activation mapping (Grad-CAM) was used to generate heat 
maps that could give a coarse location of the image area 
relevant to tumor response [28]. The technical details of heat 
map generation are documented in the Supplementary File.

Integrated and clinical models development

To demonstrate the incremental value of the DL model for 
individualized prediction of tumor resistance to NACT, an 
integrated model was constructed by combing the DL sig-
nature and clinical factors. The DL signature, which pre-
sented the probability of NACT resistance and whose type 
was float, and all mentioned clinical candidate predictors 
were evaluated using univariable analysis, where variables 
with P < 0.05 were kept. Then, the multivariable stepwise 
logistic regression was used to develop the integrated model 
using the remaining characteristics as input in the training 
cohort. The optimal combinations of the characteristics were 
determined using the akaike information criterion (AIC) as 
the stopping rule in the backward stepwise procedure [29]. 
A clinical model was built by including only clinical char-
acteristics and used for comparison.

Performance evaluation

The DL, clinical, and integrated models built on the train-
ing cohort were independently validated using the internal 
and two external validation cohorts, while their prediction 
performances were evaluated using receiver operating char-
acteristic (ROC) curve analysis and quantified by area under 
curve (AUC) [30]. The DeLong test [31] was used for the 

comparison of the AUCs. The net reclassification improve-
ment (NRI) and integrated discrimination improvement 
(IDI) were also calculated to quantify the relative improve-
ments in prediction accuracy.

Statistical analysis

To compare the differences in the clinical characteris-
tics between patients in different groups or cohorts, the 
Mann–Whitney U test was used for numerical variables, and 
the Chi-square test was used for categorical variables. The R 
package “pROC” was used for ROC analysis. In addition, the 
predictive accuracy, sensitivity, specificity, positive predict 
value (PPV) and negative predict value (NPV) were meas-
ured based on the optimal cutoff value, which was obtained 
by used the maximum Youden index method. The multi-
variable stepwise logistic regression was used to develop the 
integrated model. All statistical tests were performed using 
R software (4.1.0), and a two-sided P < 0.05 was considered 
statistically significant.

Results

Baseline characteristics

The baseline characteristics of all 633 patients included in 
the four cohorts are summarized in Table 1 and S2. The 
tumor resistance rates in the four cohorts were 48.8%, 49.0%, 
23.4%, and 44.0%, respectively, indicating that patients were 
balanced for the efficacy of NACT (P > 0.05). Moreover, no 
significant difference was found between the tumor response 
and resistance groups in terms of the age, BMI, gender, dif-
ferentiation status, CEA, and CA199 level in all four cohorts 
(P > 0.05).

Prediction performance of deep learning model

After training for 100 epochs with a loss value of 0.3 in 
the training cohort, which reached a plateau, we proposed 
an end-to-end DL model for predicting tumor resistance to 
NACT in patients with LAGC based on a pre-treatment CT 
image. The trained DL model performed well on the predic-
tion task in all the validation cohorts. ROC curve analysis 
showed that the AUC was 0.808 (95% CI 0.724–0.893) in 
the internal validation cohort, with the sensitivity and speci-
ficity of 80.4% and 75.5%, respectively (Table 2 and S3). 
Similarly, the predictive performances were also confirmed 
in the two external validation cohorts, with AUCs of 0.755 
(95% CI 0.660–0.850) and 0.752 (95% CI 0.678–0.825), 
respectively.

Figure 2 shows an example of CT images with superim-
posed heat maps. The red part of the heat map shows the key 
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areas of interest in the model, and conversely, the regions 
in blue indicate the trivial portions. It was observed that the 
activation map was not uniform across the entire tumor, and 
only certain intratumoral regions were activated, indicating 
that the DL model was particularly responsive to certain 
tumoral regions.

Integrated model development and validation

The DL signature and clinical T stage, which were sig-
nificant predictors of tumor resistance to NACT (Table 3), 
were subsequently combined to establish the integrated 
model using the multivariable stepwise logistic regres-
sion method and build a nomogram (Fig. 3). For all the 
three validation cohorts, the C-indexes of the integrated 
model for tumor resistance prediction were 0.835 (95% CI 
0.759–0.912), 0.776 (95% CI 0.680–0.871), and 0.737 (95% 

CI 0.660–0.814), respectively, yielding slightly higher accu-
racy than the DL model.

Afterward, when the DL signature was removed from 
the nomogram, and only the clinical T stage was kept 
for building the clinical model, the C-indexes dropped 
to 0.733 (0.650–0.816), 0.633 (0.532–0.733), and 0.594 

Table 2  Performance of models

NRI net reclassification improvement, IDI integrated discrimination improvement
P values for deep learning model were derived from the DeLong test between the ROCs of deep learning model and clinical model. P values for 
integrated model were derived from the DeLong test between the ROCs of integrated model and clinical model
*P value < 0.05

Models C-index (95% CI)

Internal validation cohort P value External validation cohort 1 P value External validation cohort 2 P value

Clinical 0.733 (0.650–0.816) – 0.633 (0.532–0.733) – 0.594 (0.527–0.661) –
Deep learning 0.808 (0.724–0.893) 0.168 0.755 (0.660–0.850) 0.047* 0.752 (0.678–0.825)  < 0.001*
Integrated 0.835 (0.759–0.912) 0.001* 0.776 (0.680–0.871) 0.002* 0.737 (0.660–0.814)  < 0.001*
Integrated vs clinical
 NRI 0.526 (0.323–0.728)  < 0.001 0.346 (0.156–0.535)  < 0.001 0.224 (0.086–0.363) 0.002
 IDI 0.093 (0.055–0.132)  < 0.001 0.138 (0.078–0.198)  < 0.001 0.072 (0.046–0.099)  < 0.001

Fig. 2  Representative images 
for visualization of deep learn-
ing (DL) model prediction. a, d 
Original computed tomography 
(CT) images before neoadju-
vant chemotherapy (NACT) 
in patients with response and 
resistance, respectively. b, e 
Two-dimensional (2D) region 
of interest (ROI) segmentation 
in the axial CT plane. c, f Heat-
maps overlying on the original 
input CT images

Table 3  Related factors for tumor resistance detection in LAGC 

β is the regression coefficient
LAGC  locally advanced gastric cancer
*P value < 0.05

Intercept and variable β Odds ratio (95% CI) P value

Intercept − 1.261 – 0.949
Clinical T stages
 T2 + 3 Ref Ref 0.017
 T4a + 4b 0.658 1.930(1.128–3.333)

Deep learning model 2.337 10.348(2.133–56.489)  < 0.005
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(0.527–0.661) in all the three validation cohorts, respec-
tively. As shown in Fig. 4 and Table 2, the discrimination 
performances of the integrated model were significantly 
higher than the clinical model in all validation cohorts 
(P < 0.05). The calculated NRI and IDI further revealed 
that the integration of the DL signature into the nomogram 
performed satisfactorily in all validation cohorts, indicating 
improved classification accuracy for tumor resistance than 
the clinical model.

Discussion

In this study, we first developed an end-to-end DL model 
to predict NACT resistance in patients with LAGC using 
pre-treatment CT images, after which we independently 
validated its predictive performance in multicenter cohorts. 
Notably, the developed DL model showed robust and 
improved prediction performance in predicting NACT resist-
ance compared to the clinical model.

In clinical practice, it is crucial to reliably identify NACT 
resistance in patients with LAGC for making personalized 
treatment decisions in the pre-treatment setting [32]. Given 
the wide accessibility of pre-treatment CT images, some 
previous studies have developed pre-treatment CT-based 

Fig. 3  Integrated model built 
with deep learning (DL) model 
output and the clinical T stage

Fig. 4  Receiver operating characteristic (ROC) curves of clinical, deep learning (DL), and integrated models for neoadjuvant chemotherapy 
(NACT) resistance on the a internal validation cohort, b external validation cohort 1, and c external validation cohort 2, respectively
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models using radiomics to evaluate the NACT response 
for LAGC patients [6, 9–11]. The inspiring findings were 
mainly obtained due to the precise tumor ROI delineation 
and complex feature selection, making it difficult to apply 
these models in clinical practice. In contrast, we used DL 
to directly extract features from images and automatically 
select predictive features to build an end-to-end model based 
on pre-treatment CT.

Inspired by the studies mentioned above, we used the 
ResNet-50 architecture to build the end-to-end DL model. 
Then, we used the 12-layer image patch as the input data 
for the DL network instead of the 1-layer image patch only 
containing the largest tumor region, which made the DL 
network extracting more spatial heterogeneity information 
of the tumor. Moreover, in our study, the image patch size 
for each patient was determined by the patient’s tumor size 
instead of a fixed value used for all patients, which made the 
DL network focus more on the tumor region. Accordingly, 
our DL model successfully predicted NACT resistance with 
AUCs larger than 0.75 in all internal and external validation 
cohorts.

Furthermore, to gain insight into how the developed DL 
model produced an output, we used Grad-CAM to visualize 
what regions were highlighted, finding that the activation 
map was not uniform and only certain intratumoral regions 
were activated (Fig. 2). We presumed that intratumoral het-
erogeneity might be an important factor for determining 
NACT resistance, which is consistent with previous studies 
[33, 34] arguing that imaging heterogeneity of tumor pheno-
types has been associated with aggressive biology and poor 
prognosis in cancers.

Notably, we found that the integrated model showed far 
better prediction ability of NACT resistance than the clinical 
model in all validation cohorts (P < 0.05). Some previous 
studies have found that the clinical characteristics can be 
used for early diagnosis and prognostic evaluation of GC 
[35–37]. However, the value of clinical characteristics for 
predicting the resistance to NACT still remains unclear 
[38, 39]. A previous study showed that a high pre-treatment 
CA199 level was associated with a higher risk of death [39]. 
In our study, we found that the CA199 level was not associ-
ated with NACT resistance (P ˃ 0.05), but the T stage was 
associated with NACT resistance (P < 0.05). Nevertheless, 
the AUCs of the clinical model in all validation cohorts 
were significantly lower compared to the integrated model 
(P < 0.05). This finding mainly suggests that the DL model 
can mine high-dimensional imaging features, which can 
achieve a more comprehensive quantification of intratumor 
heterogeneity by combining with the clinical characteristic. 
Moreover, the improved NRI and IDI also confirmed that 
the combination of DL signature and clinical characteristics 
could lead to much better performance in predicting NACT 
resistance.

The present study has some limitations that should be 
pointed out. First, as this was a retrospective study, inher-
ent biases were inevitable, although a large number of 
LAGC patients in three centers were included. Second, 
in this study, the 12-layer image patch was fed into the 
DL network using an image with 12 channels, enabling 
the network to extract some spatial information about 
the tumor for NACT resistance prediction; however, the 
whole spatial information was still not fully depicted. In 
our subsequent studies, a 3D DL network, extracting the 
whole spatial information of the tumor, will be consid-
ered to achieve a better NACT resistance prediction per-
formance. Finally, the model was developed and validated 
by only using data from East Asian patients. Ideally, our 
findings should be validated by conducting a prospective 
randomized trial incorporating more diverse populations 
in future work.

Conclusions

In conclusion, we developed and validated a CT-based 
model using DL for the pre-treatment prediction of resist-
ance to NACT in patients with LAGC. The proposed model 
could identify LAGC patients with resistance before treat-
ment, which provided valuable information and was of great 
application potential in clinical practice in terms of indi-
vidual treatment.
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