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Abstract
Background Immune checkpoint inhibitors (ICI) are now standard-of-care treatment for patients with metastatic gastric 
cancer (GC). To guide patient selection for ICI therapy, programmed death ligand-1 (PD-L1) biomarker expression is rou-
tinely assessed via immunohistochemistry (IHC). However, with an increasing number of approved ICIs, each paired with 
a different PD-L1 antibody IHC assay used in their respective landmark trials, there is an unmet clinical and logistical need 
for harmonization. We investigated the interchangeability between the Dako 22C3, Dako 28–8 and Ventana SP-142 assays 
in GC PD-L1 IHC.
Methods In this cross-sectional study, we scored 362 GC samples for PD-L1 combined positive score (CPS), tumor propor-
tion score (TPS) and immune cells (IC) using a multiplex immunohistochemistry/immunofluorescence technique. Samples 
were obtained via biopsy or resection of gastric cancer.
Results The percentage of PD-L1-positive samples at clinically relevant CPS ≥ 1, ≥ 5 and ≥ 10 cut-offs for the 28–8 assay 
were approximately two-fold higher than that of the 22C3 (CPS ≥ 1: 70.3 vs 49.4%, p < 0.001; CPS ≥ 5: 29.1 vs 13.4%, 
p < 0.001; CPS ≥ 10: 13.7 vs 7.0%, p = 0.004). The mean CPS score on 28–8 assay was nearly double that of the 22C3 
(6.39 ± 14.5 vs 3.46 ± 8.98, p < 0.001). At the clinically important CPS ≥ 5 cut-off, there was only moderate concordance 
between the 22C3 and 28–8 assays.
Conclusion Our findings suggest that scoring PD-L1 CPS with the 28–8 assay may result in higher PD-L1 scores and higher 
proportion of PD-L1 positivity compared to 22C3 and other assays. Until stronger evidence of inter-assay concordance is 
found, we urge caution in treating the assays as equivalent.
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Introduction

Immune checkpoint inhibitors targeting the programmed 
death-1 (PD-1)/programmed death ligand-1 (PD-L1) pathway 
are now standard of care for patients with various advanced 
and metastatic cancers, including gastric cancer (GC). Sev-
eral studies have demonstrated that GC with higher levels of 
PD-L1 expression tends to derive higher benefit from treat-
ment with anti-PD-1 blockade [1, 2]. Several randomized 
phase III trials with pembrolizumab (anti-PD-1 antibody) have 
been designed using the Dako 22C3 assay to select PD-L1 
positive populations [3, 4]. This has led to the Food and Drug 
Administration (FDA) approving pembrolizumab in these 
specific indications[5] along with the Dako 22C3 assay as a 
companion diagnostic [6]. Thus, evaluation of PD-L1 expres-
sion via immunohistochemistry (IHC) has become an integral 
part of the treatment algorithm for patients with metastatic 
gastric cancer.

Presently, various standardized IHC PD-L1 antibody assays 
(e.g. Dako 22C3, Dako 28–8 and Ventana SP-142) have been 
approved as companion diagnostics to predict treatment 
response to different ICIs in various other tumor types (pem-
brolizumab, nivolumab and atezolizumab) [7]. Each assay 
requires a different staining protocol, equipment and cut-offs, 
leading to a potential source of confusion among clinicians and 
pathologists, and a logistical hassle for laboratories and hospi-
tals. Importantly, CheckMate-649 was a randomized phase III 
trial that demonstrated the benefit of the addition of nivolumab 
to chemotherapy in the first-line treatment of metastatic gastric 
or esophageal adenocarcinoma [8]. The study analyzed various 
PD-L1 combined positive score (CPS) subgroups as primary 
and secondary endpoints. While the study demonstrated ben-
efit in the all-randomized CPS ≥ 1 and CPS ≥ 5 populations, 
there was significant controversy on the benefit in the PD-L1 
low expressing population (CPS < 5) [1, 2, 9]. This led to 
different regulatory approvals in various parts of the world, 
with the US Food and Drug Administration (FDA) approving 
nivolumab regardless of CPS score, and the European Medi-
cines Agency (EMA) approving nivolumab only for patients 
with a PD-L1 IHC score of CPS ≥ 5. To add further complex-
ity, the antibody used to score CPS in CheckMate-649 was 
the Dako 28–8 antibody [8]. Much uncertainty exists on the 
concordance of CPS scores between different PD-L1 assays. 
With an increasing number of approved ICIs and correspond-
ing companion IHC assays [1, 8], there is an unmet clinical 
need to demonstrate the concordance between these assays to 
allow interchangeable utilization in the clinic.

Materials and methods

Patients and tumors

This is a cross-sectional study using archival formalin-fixed, 
paraffin-embedded (FFPE) tissue samples from patients 
obtained via biopsy or resection of gastric cancer at the 
National University Hospital (NUH), Singapore, between 
1997 and 2019. A majority of the samples were developed 
into a tissue microarray (TMA) while some samples were 
used as whole-slides for orthogonal validation. All samples 
selected for the TMA were derived from surgical resection 
specimens. The samples selected for whole-slide analysis 
were obtained from gastric cancer patients treated with 
immune checkpoint inhibitor therapy, and consisted of both 
surgical resection specimens and biopsies. Cases recorded to 
be suitable for research and with sufficient tissue for analy-
sis were identified by the Department of Pathology, NUH. 
Clinicopathological data (including age at diagnosis, gender, 
ethnicity, disease stage, degree of differentiation and Lau-
ren classification) was annotated for eligible cases, and de-
identified. Sections from the tissue samples were prepared 
and submitted for conventional IHC and multiplex immu-
nohistochemistry/immunofluorescence (mIHC/IF) analysis.

Patient and public involvement

The National Healthcare Group Domain-Specific Review 
Board provided ethical approval for the use of patient 
materials in this study (reference number 2015/00209 and 
2020/00189). As this was not an interventional trial, we did 
not directly involve patients in the design or determination 
of outcome measures of this study.

mIHC/IF protocol

mIHC/IF was performed using an Opal Multiplex fIHC kit 
(Akoya Biosciences, California), as previously described 
[10–12]. In brief, FFPE tissue sections were cut onto Bond 
Plus slides (Leica Biosystems, Richmond) and heated at 
60  °C for 20 min. The tissue slides were subjected to 
deparaffinization, rehydration, and heat-induced epitope 
retrieval using a Leica Bond Max autostainer (Leica Bio-
systems, Melbourne) before endogenous peroxidase block-
ing (Leica Biosystems, Newcastle). Next, the slides were 
incubated with primary antibodies followed by incuba-
tion with polymeric HRP-conjugated secondary antibodies 
(Leica Biosystems, Newcastle) (Fig. 1 and Supplemen-
tary Table S2). The samples were incubated with Opal 
fluorophore-conjugated tyramide signal amplification 
(TSA) (Akoya Biosciences, California) at 1:100 dilution. 
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The slides were rinsed with wash buffer (BOND Wash 
Solution 10X Concentrate) after each step. Following TSA 
deposition, the slides were again subjected to heat-induced 
epitope retrieval to strip the tissue-bound primary/second-
ary antibody complexes before further labelling. These 
steps were repeated until the samples were labelled with all 
six markers and spectral DAPI (Akoya Biosciences, Cali-
fornia) at a 1:10 dilution. Finally, the slides were mounted 
in ProLong Diamond Anti-fade Mountant (Molecular 
Probes, Life Technologies, USA) and developed in the 

dark at room temperature for 24 h. Images were captured 
for each case under a Vectra 3 pathology imaging system 
microscope (Akoya Biosciences, California) and then ana-
lyzed and scored by a pathologist using inForm software 
(version 2.4.2; Akoya Biosciences), cellXpress software 
[13] and HALO™ (Indica Lab). Particularly for PD-L1 
scoring formula and algorithm, we followed a detailed 
protocol that our group previous reported to set up the 
mIHC/IF-based PD-L1 quantification for multiple PD-L1 
simultaneously across cancer types [14].

Fig. 1  Representative images of gastric cancer tissues stained using 
multiplex immunohistochemistry/immunofluorescence (mIHC/
IF) [DAPI (Blue), PD-L1 22C3 (Magenta), PD-L1 SP142 (Yellow), 

PD-L1 28–8 (Green), CK (Red)]. (Magnification, 200×), from two 
different patients (A) and (B)
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CPS, TPS and IC scoring

Consecutive tissue sections from tumors were labelled to 
allow for the separate quantification of CPS, tumor propor-
tion score (TPS) and immune cells (IC) using the EpCAM-
labelled sample as a reference to allow tumor cell counts 
quantification. CPS was calculated as the number of PD-L1 
staining tumor and immune cells divided by the total viable 
tumor cells multiplied by 100 with a maximum score of 100. 
TPS was calculated as the percentage of tumor cells showing 
staining relative to all tumor cells present in the sample. IC 
was calculated as the proportion of tumor area occupied by 
PD-L1-positive tumor infiltrating immune cells.

Analysis for sample‑degradation bias

To study the effect of sample-degradation bias, a sub-
group analysis was performed, based on the age of the tis-
sue sample. Samples were divided into two cohorts: those 
obtained in the last 15 years (2007–2021, new cohort) and 
those obtained more than 15 years ago (2006 and prior, old 
cohort).

Statistical analysis

Statistical analyses were performed using R, version 4.0.1 (R 
Foundation, Vienna, Austria) and SPSS, version 25.0 (IBM 
Corp., Armonk, United States). Contingency tables and χ2 
or Fisher’s exact tests (for categorical variables) and t test 
for comparison of means or Mann–Whitney U test for com-
parison of medians (for continuous variables) were used to 
investigate associations of PD-L1 IHC and mIHC/IF results 
with clinicopathological characteristics and outcomes. Cor-
relations between the three antibody assays (22C3, SP-142 
and 28–8) were analyzed using Spearman’s rank correla-
tions. Spearman’s coefficient varies from 0 (no correlation) 
to 1 (perfect correlation) [15], with ranges interpreted as fol-
lows: 0.01–0.30 (negligible correlation), 0.30–0.50 (weak), 
0.51–0.70 (moderate), 0.71–0.90 (strong) and 0.90–1.00 
(very strong correlation) [16]. Concordance between the 
three antibody assays (22C3, SP-142 and 28–8) for each of 
the scoring systems (CPS, TPS and IC) was assessed using 
Gwet’s kappa (to account for the paradox of unbalanced 
main diagonal), with the value of kappa ranging from 0 to 
1, with 0 representing total disagreement and 1 total agree-
ment [17]. Values of kappa are interpreted as follows: ≤ 0 
(no agreement), 0.01–0.20 (none to slight), 0.21–0.40 (fair), 
0.41–0.60 (moderate), 0.61–0.80 (substantial), 0.81–1.00 
(almost perfect agreement) [18]. At the same CPS cut-offs, 
we calculated the classification accuracy, defined as the 
number of correct predictions made (true positive + true 
negative) divided by the total number of predictions made. 
Survival analysis was conducted using the Kaplan–Meier 

method and compared between different PD-L1 expres-
sion groups using a Cox proportional hazards model. For 
analyses involving pairwise comparison between the anti-
body assays, the 22C3 assay was used as the reference for 
comparison with 28–8 and SP-142 assays, respectively. A 
p value < 0.05 was considered to indicate statistical signifi-
cance unless otherwise stated.

Results

Main cohort

Patient characteristics

We conducted primary analysis on the main cohort of 344 
patients which were analyzed on TMA. Most of the patients 
were males (236/344, 68.6%) and of Chinese ethnicity 
(291/344, 85.5%). The median age at diagnosis of the cohort 
was 68 years (IQR 16.25). Most of the patients had gastric 
cancer that were poorly differentiated (207/344, 60.2%), 
and of intestinal subtype based on Lauren classification 
(173/344, 50.3%). Based on a CPS ≥ 1 on the 22C3 assay, 
49.4% of the patients (170/344) were PD-L1 positive. When 
stratified by PD-L1 positivity status based on CPS ≥ 1 using 
the 22C3 assay, there was no statistically significant differ-
ence in median age or distribution based on gender, ethnic-
ity, stage of disease at diagnosis, degree of differentiation or 
Lauren classification subtype between both groups (Table 1).

Concordance of PD‑L1 status between different assays 
based on CPS cut‑offs

The concordance between the three PD-L1 antibody assays 
were analyzed at the clinically relevant CPS cut-offs of 1, 5 
and 10 [1, 2, 4, 8]. Between the 28–8 and 22C3 assays, scor-
ing with 28–8 assay consistently resulted in a higher propor-
tion of PD-L1 positive samples (70.3 vs 49.4%, p < 0.001 at 
CPS ≥ 1; 29.1 vs 13.4%, p < 0.001 at CPS ≥ 5; 13.7 vs 7.0%, 
p = 0.004 at CPS ≥ 10) (Table 2).

At CPS ≥ 1, the classification accuracy between the 22C3 
and 28–8 assays was 62.2% with only fair concordance 
(Gwet’s Kappa = 0.276). Notably, the classification accuracy 
(73.3 and 85.2%) and concordance (Gwet’s Kappa = 0.598 
and 0.818) improved with increasing CPS cut-off of CPS ≥ 5 
and CPS ≥ 10, respectively.

The classification accuracy and concordance between 
the 22C3 and SP142 assays was higher than that between 
the 22C3 and 28–8 assays at all CPS cut-offs (classifica-
tion accuracy: 65.2 vs 62.2% at CPS ≥ 1, 80.8 vs 73.3% at 
CPS ≥ 5, 89.8 vs 85.2% at CPS ≥ 10; Gwet’s Kappa: 0.302 vs 
0.276 at CPS ≥ 1, 0.735 vs 0.598 at CPS ≥ 5, 0.880 vs 0.818 
at CPS ≥ 10). Results are summarized in Table 3.



745Choice of PD‑L1 immunohistochemistry assay influences clinical eligibility for gastric cancer…

1 3

Mean difference in continuous CPS scores obtained 
from different PD‑L1 assays

The mean CPS score obtained from the 28–8 assay was sig-
nificantly higher than both the 22C3 assay (6.39 ± 14.5 vs 
3.46 ± 8.98, t(343) = − 4.083, p < 0.001) and the SP-142 assay 
(6.39 ± 14.5 vs 4.08 ± 10.3, t(343) = − 3.370, p = 0.001).

There was, however, no significant difference between 
mean CPS scores obtained on 22C3 and SP-142 (3.46 ± 8.98 
vs 4.08 ± 10.3, t(343) = − 1.130, p = 0.259) (Fig. 2A).

Correlation between continuous PD‑L1 scores obtained 
from different PD‑L1 assays

Between the 28–8 and 22C3 assays, the Spearman’s cor-
relation values were 0.392, 0.381 and 0.230 for CPS, TPS 
and IC scores, respectively, suggesting consistently weak 
correlation (Fig. 2B and Supplementary Table S1A).

The correlations between the 28–8 and SP-142 assay were 
also consistently weak (Spearman’s values of 0.213, 0.180 
and 0.133 for CPS, TPS, IC, respectively).

Similar to the trend in concordance analyses, correla-
tions between 22C3 and SP142 were noted to be marginally 
higher (Spearman’s values of 0.409, 0.417 and 0.347 for 
CPS, TPS, and IC, respectively).

A subgroup analysis was performed to study the effect of 
sample-degradation bias found that the inter-assay variabil-
ity between the various assays persisted across subgroups 
(Supplementary Tables S3–5), with similar differences in 
mean CPS scores obtained on the 28–8 and 22C3 assays in 
both the old (7.46 vs 3.72) and new (5.50 vs 3.23) cohorts, 
respectively.

Additional cohort

Patient characteristics

In this additional cohort of 18 ICI-treated GC patients (Sup-
plementary Table S6), CPS, TPS and IC scoring with the 
three assays were performed on whole-slide tissue sam-
ples, to compare with the TMA samples. 83.3% of patients 
(15/18) were treated with nivolumab, and the remaining 
16.7% (3/18) with pembrolizumab.

Orthogonal validation of PD‑L1 scores obtained 
from different PD‑L1 assays

Spearman’s value suggested weak correlation between the 
22C3 and 28–8 assays, similar to the trend observed in the 
main cohort. (Fig. 2C and Supplementary Table S1B).

Additionally, we assessed the correlation between PD-L1 
scores from the three antibody assays in a combined analysis 
comprising both the main and additional cohort (Supple-
mentary Table S1C). The correlations between CPS scores 
obtained on the 22C3 and 28–8 assays were similar across all 
three analyses (TMA only = 0.392, whole-slide only = 0.360, 
TMA and whole-slide combined = 0.414) (Supplementary 
Tables S1A–S1C). In this cohort, 11 (61.1%) samples were 
derived from endoscopic biopsy while the rest were derived 
from surgical resection. The proportion of PD-L1 positiv-
ity did not differ significantly between biopsy and resected 
specimens (Supplementary Table S7).

Table 1  Patient and sample characteristics stratified by programmed 
death-ligand 1 (PD-L1) status on multiplex immunohistochemistry 
using 22C3 assay in the main tissue microarray (TMA) cohort

Variables CPS < 1 
(n = 174)

CPS ≥ 1 (n = 170) p-value

Median age of 
patient (IQR)

70 (16) 68 (16) 0.48

Gender 0.75
Male 118 (67.8%) 118 (69.4%)
Female 56 (32.2%) 52 (30.6%)
Ethnicity 0.15
Chinese 144 (82.8%) 147 (86.5%)
Indian 5 (2.9%) 9 (5.3%)
Malay 8 (4.6%) 7 (4.1%)
Others 17 (9.8%) 7 (4.1%)
Stage at diag-

nosis
0.25

I 30 (17.2%) 38 (22.4%)
II 37 (21.3%) 27 (15.9%)
III 89 (51.1%) 80 (47.1%)
IV 18 (10.3%) 25 (14.7%)
Differentiation 0.17
Poorly differen-

tiated
103 (59.2%) 104 (61.2%)

Moderately dif-
ferentiated

48 (27.6%) 45 (26.5%)

Well differenti-
ated

3 (1.7%) 9 (5.3%)

NOS 20 (11.5%) 12 (7.1%)
Lauren Clas-

sification
0.3

Intestinal 91 (52.3%) 82 (48.2%)
Diffuse 53 (30.5%) 47 (27.6%)
Mixed 19 (10.9%) 31 (18.2%)
NOS 11 (6.3%) 10 (5.9%)
Median Age 

of Sample in 
months (IQR)

163 (82.5) 162 (51) 0.53
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Correlation between CPS scores and survival 
with immunotherapy treatment

In the main TMA cohort, CPS positivity status did not 
guide the treatment modality as this patient database pre-
dated the advent of mainstream immunotherapy in gastric 
adenocarcinoma treatment. Therefore, to assess any rela-
tion between PD-L1 status and survival, we also performed 

an exploratory survival analysis in this additional cohort 
of 18 ICI-treated patients.

In these patients treated with immunotherapy, though 
statistical significance was not observed in this small 
cohort, univariate Cox regression demonstrated a trend 
toward improved overall survival in PD-L1-positive 
patients at the CPS cut-off of ≥ 5 on the 22C3 and 28–8 
assays. (Supplementary Figure S1 and Supplementary 
Table S8).

Discussion

To address the interchangeability of the various commer-
cially available assays, we performed one of the largest com-
parisons of PD-L1 assays in gastric adenocarcinoma with 
more than 350 samples. To our knowledge, our study is the 
first large-scale study to harness mIHC to comprehensively 
score PD-L1 expression on a single slide and assess the 
interchangeability of the different PD-L1 assays in a gastric 
cancer dataset. Given the spatial heterogeneity of gastric 
cancer [19], there are advantages of performing mIHC on a 
single slide compared to conventional IHC on consecutive 
slides to study the various PD-L1 assays.

One of the first FDA approvals for ICI in GC was 
pembrolizumab as third-line treatment for GC patients 
with CPS ≥ 1. This was based on the results of the KEY-
NOTE-059 study, with the 22C3 assay approved as the com-
panion diagnostic [2]. More recently, the EMA approved 
nivolumab in combination with chemotherapy for the first-
line treatment of metastatic GC in patients with CPS ≥ 5. 
This approval was based on the results of the CheckMate 
649 study [8], which utilized the Dako 28–8 assay. As 
pathology labs across the globe were already performing 
GC PD-L1 CPS score using the 22C3 assay, we paid par-
ticular attention to the inter-assay concordance at CPS ≥ 5 
between 22C3 and 28–8 [20]. Considering the significantly 
higher PD-L1 positivity rate using 28–8 compared to 22C3 
especially at CPS ≥ 5, our findings suggest that using the 
22C3 assay in lieu of the 28–8 assay will likely result in 
fewer patients eligible for first-line nivolumab if prescribed 
as per EMA indication. However, it must be noted that there 
remains significant controversy on the use of ICI in PD-L1 
low expressing tumors (CPS < 10), and the clinical impact 
of this difference between assays needs to be established [9]. 

Table 2  Proportion of PD-L1 
positivity with different assays, 
at CPS cut-offs of 1,5,10 in the 
main cohort (n = 344)

Assay CPS ≥ 1 CPS ≥ 5 CPS ≥ 10

22C3 170 (49.4%) 46 (13.4%) 24 (7.0%)
28–8 242 (70.3%) 100 (29.1%) 47 (13.7%)
SP-142 170 (49.4%) 68 (19.8%) 33 (9.6%)

Table 3  Concordance of PD-L1 status between different assays, at 
CPS cut-offs of 1,5,10 in the main cohort (n = 344)

CPS cut-offs 22C3 assay

CPS < 1 CPS ≥ 1

28–8 assay CPS < 1 73 (21.2%) 29 (8.4%)
CPS ≥ 1 101 (29.4%) 141 

(41.0%)
Accuracy 62.2%
Gwet’s Kappa 0.276 (p < 0.001)

CPS < 5 CPS ≥ 5
CPS < 5 225 (65.4%) 19 (5.5%)
CPS ≥ 5 73 (21.2%) 27 (7.9%)
Accuracy 73.3%
Gwet’s Kappa 0.598 (p < 0.001)

CPS < 10 CPS ≥ 10
CPS < 10 283 (82.3%) 14 (4.1%)
CPS ≥ 10 37 (10.8%) 10 (2.9%)
Accuracy 85.2%
Gwet’s Kappa 0.818 (p < 0.001)

SP-142 assay CPS < 1 CPS ≥ 1
CPS < 1 114 (33.2%) 60 (17.4%)
CPS ≥ 1 60 (17.4%) 110 

(32.0%)
Accuracy 65.2%
Gwet’s Kappa 0.302 (p < 0.001)

CPS < 5 CPS ≥ 5
CPS < 5 254 (73.8%) 22(6.4%)
CPS ≥ 5 44 (12.8%) 24 (7.0%)
Accuracy 80.8%
Gwet’s Kappa 0.735 (p < 0.001)

CPS < 10 CPS ≥ 10
CPS < 10 298 (86.6%) 13 (3.8%)
CPS ≥ 10 22 (6.4%) 11 (3.2%)
Accuracy 89.8%
Gwet’s Kappa 0.880 (p < 0.001)
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This is probably best done by performing both the 22C3 and 
28–8 assays in the pivotal trials that have been conducted 
such as CheckMate-649 or KEYNOTE-590, a trial which led 
to the indication of first-line pembrolizumab in esophageal 
cancer in CPS ≥ 10, independent of histology and, therefore, 
includes adenocarcinomas of the gastro-esophageal junction 
[21].

This variability in PD-L1 scores observed between the 
different assays may thus present a dilemma for clinicians 
in determining patient eligibility for ICI therapy. This is 

confounded by the difference in the IHC antibody assays 
used in landmark clinical trials. Notably, trials utilizing dif-
ferent PD-L1 assays have reported PD-L1 positivity pro-
portions that are remarkably consistent with our study. The 
CheckMate 649 study, which used the 28–8 assay, reported 
double the prevalence (60%) of patients with CPS ≥ 5, com-
pared to the KEYNOTE-061 study (31%), which utilized the 
22C3 assay [2, 8].

Furthermore, in a recent smaller study by Ahn et al. 
(n = 55), though the 22C3 and 28–8 assays were found to be 

Fig. 2  PD-L1 scoring obtained from 22C3, 28 to 8 and SP-142 
assays. A Log-transformed violin plot of CPS scores on PD-L1 
obtained from 22C3, 28 to 8 and SP-142 assays among the main 
cohort of gastric cancer patients (n = 344). B Heat map representation 
of correlation between PD-L1 scoring of CPS, TPS and IC obtained 

from 22C3, 28 to 8 and SP-142 assays among the main cohort of 
gastric cancer patients (n = 344). C Heat map representation of cor-
relation between PD-L1 scoring of CPS, TPS and IC obtained from 
22C3, 28 to 8 and SP-142 assays among the additional cohort of ICI-
treated gastric cancer patients (n = 18)
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comparable at various CPS cut-offs, they similarly reported 
that the CPS scores on 28–8 assay was more frequently 
higher than that of the 22C3 assay, than vice versa (29% vs 
4%) and the 28–8 assay more often detected PD-L1 expres-
sion in immune cells [7]. While other factors such as het-
erogeneity in patient population and tumor characteristics 
may also play a role [22, 23], this phenomenon is likely 
explained by the analytical discordance between the various 
assays, especially since similar observations were made in 
other tumor types with the same antibody assays [24, 25].

Overall, these findings hence do not support the inter-
changeability of the assays in determining the PD-L1 status 
of gastric adenocarcinoma. Despite the logistical concerns 
associated with conducting different assays on the same 
patient, it may still be necessary to use the distinct assays 
as companion diagnostics to predict treatment response to 
their respective ICIs.

Some limitations of our study must be acknowledged. 
First, our main cohort mIHC analyses were conducted using 
TMA instead of whole slides. There may be concern that 
the small tumor area technique may not capture the true 
heterogeneity in biomarker expression as accurately as 
larger volume samples [26]. To mitigate this limitation, we 
included a second cohort of whole-slide mIHC analysis as 
an orthogonal validation, which reaffirmed the comparabil-
ity of TMA and whole-slide analyses in our study. Second, 
marker intensity measured via mIHC may be less robust 
compared to conventional IHC [27]. These drawbacks can 
be mitigated by a number of steps during mIHC use, includ-
ing (1) the confirmation of tumor classification activity, (2) 
the exclusion of abundant macrophage presence, (3) avoid-
ance of slides with large areas of spurious staining, and (4) 
confirmation of lower threshold sensitivity levels [28]. This 
is consistent with our group’s previous demonstration that 
PD-L1 scoring results obtained from mIHC are concordant 
to those obtained through conventional IHC methods [14]. 
Therefore, it is unlikely for the use of mIHC to have sub-
stantially biased our results. The age of tissue sample may 
play a role in sample-degradation bias. A study has previ-
ously reported that PD-L1 expression in freshly obtained 
biopsies (≤ 42 days) had higher positivity rates compared 
to older samples, in particular those > 900 days [29]. As the 
samples from our cohort were of varying ages, we performed 
a subgroup analysis, based on the age of the samples and 
confirmed that the inter-assay variability between the 22C3 
and 28–8 assays persisted across subgroups. Further, the fre-
quency of PD-L1 positivity in our cohort is not dissimilar 
to those reported in other studies and trials (CPS ≥ 1: our 
cohort 49 to 70%, CheckMate-649 [8] 60%, Ahn et al. [7] 
46 to 49%). However, as CheckMate-649 was a first-line 
study, it is likely the samples analyzed were freshly obtained 
which might explain the slightly higher PD-L1 positivity 
rates. Finally, inter-assay concordance may not necessarily 

translate to equivalent survival outcomes with immunother-
apy treatment—this should be investigated in future cohorts.

Conclusion

In a large cohort of gastric adenocarcinoma patients, the 
percentage of PD-L1-positive samples at various CPS cut-
offs for the 28–8 assay were approximately twofold higher 
than that of the 22C3 assay, with only moderate concordance 
between the 22C3 and 28–8 assays at CPS ≥ 5. These find-
ings do not support the interchangeability of the assays for 
determining the PD-L1 status of gastric adenocarcinoma, 
at the clinically relevant CPS cut-off of ≥ 5. Until stronger 
evidence of inter-assay concordance is found, we urge cau-
tion in treating the various assays as equivalent.
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