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Abstract
Background Although FDG-PET is widely used in cancer, its role in gastric cancer (GC) is still controversial due to variable 
 [18F]fluorodeoxyglucose  ([18F]FDG) uptake. Here, we sought to develop a genetic signature to predict high FDG-avid GC to 
plan individualized PET and investigate the molecular landscape of GC and its association with glucose metabolic profiles 
noninvasively evaluated by  [18F]FDG-PET.
Methods Based on a genetic signature, PETscore, representing  [18F]FDG avidity, was developed by imaging data acquired 
from thirty patient-derived xenografts (PDX). The PETscore was validated by  [18F]FDG-PET data and gene expression data of 
human GC. The PETscore was associated with genomic and transcriptomic profiles of GC using The Cancer Genome Atlas.
Results Five genes, PLS1, PYY, HBQ1, SLC6A5, and NAT16, were identified for the predictive model for  [18F]FDG uptake 
of GC. The PETscore was validated in independent PET data of human GC with qRT-PCR and RNA-sequencing. By apply-
ing PETscore on TCGA, a significant association between glucose uptake and tumor mutational burden as well as genomic 
alterations were identified.
Conclusion Our findings suggest that molecular characteristics are underlying the diverse metabolic profiles of GC. Diverse 
glucose metabolic profiles may apply to precise diagnostic and therapeutic approaches for GC.

Keywords Gastric cancer · Positron emission tomography · Patient-derived xenograft · Gene signature

Introduction

Gastric cancer (GC) is characterized by its tumor heteroge-
neity at molecular, histological, and phenotypic levels [1]. 
Precise molecular characterization as well as an accurate 
diagnosis is essential for the management of GC. For tumor 
staging, various medical imaging modalities including com-
puterized tomography (CT), Magnetic Resonance Imaging 
(MRI), endoscopic ultrasound imaging (EUS), and positron 
emission tomography (PET), are commonly used [2]. Unlike 
other imaging modalities, 2-Deoxy-2-[18F]fluoro-D-glucose 
 ([18F]FDG) PET has been established as a noninvasive tool 
for evaluating glucose metabolism of tumor based on the 
principle of high rate of glucose consumption in cancers [3]. 
However, the clinical utility of  [18F]FDG-PET in gastric can-
cer remains controversial because of the diversity in meta-
bolic profiles of GC [4]. The detection rate of  [18F]FDG-PET 
scan in GC lesion is less than 50% for early gastric cancers 
(EGC) and 62–98% for advanced gastric cancers (AGC) [5, 
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6]. Furthermore, prospective trials failed to predict treat-
ment response on gastric cancer by its  [18F]FDG-PET scan 
results [7]. One of the reasons for diagnostic inaccuracy is 
the presence of low  [18F]FDG-avid GC expressing the well-
known heterogeneity of this tumor entity. Low FDG-avid 
GC includes the diffuse type GC and signet ring cell type 
with high mucinous content and lower cellularity [8–10]. In 
other words, as GC includes various subtypes according to 
histology as well as underlying genomic alterations, hetero-
geneous metabolic profiles correspond to a broad range of 
 [18F]FDG avidity. Nonetheless, genomic and transcriptomic 
features associated with the variable glucose metabolic pro-
files have not yet been fully investigated. Understanding 
the glucose metabolic characteristics of GC is therefore of 
paramount importance to apply a rational selection on GC 
subtypes for  [18F]FDG-PET scan.

Here, we comprehensively interrogate the association 
between molecular landscape and glucose metabolic pro-
files non-invasively evaluated by PET of human gastric 
cancer patient-derived xenograft (PDX) models as well as 
human GC. It aims to understand the underlying molecular 
features associated with  [18F]FDG-PET imaging. Functional 
gene expression networks related to FDG avidity were iden-
tified and applied to develop a gene signature, PETscore. 
PETscore predicted FDG avidity of GC and was validated in 
independent datasets. Furthermore, we investigated genomic 
alterations and metabolic profiles associated with PETscore 
using The Cancer Genome Atlas (TCGA) data.

Materials and methods

Establishment of human gastric cancer PDX

Gastric cancer (GC) tissues were obtained from patients 
who underwent gastrectomies at Seoul National University 
Hospital in 2014 and 2017 with informed consent, and the 
study was approved by the institutional review board (IRB) 
of Seoul National University Hospital (No. 1402-054-555) 
in accordance with the Declaration of Helsinki. Establish-
ing GC PDXs was conducted in collaboration with the 
Jackson Laboratory and mice cared for according to insti-
tutional guidelines of the Institutional Animal Care and Use 
Committee of the Seoul National University (No. 14-0016-
C0A0). Immediately after the tissue acquisition, the human 
tissue samples were transferred to RPMI 1640 medium with 
1% penicillin/streptomycin (all from Thermo Fisher Scien-
tific, Waltham, MA, USA). The human tumor tissues were 
minced into pieces approximately 2 mm in size and subcuta-
neously injected into the flanks of 6-week-old female NOD.
Cg-Prkdcscid  Il2rgtm1Wjl/SzJ(NSG™) mice (The Jackson Lab-
oratory, Bar Harbor, ME, USA). The tumor volume and bod-
yweight of the mice were checked once or twice weekly. The 

volume was calculated as (length ×  width2)/2. When tumor 
volumes reached > 700 to 1000  mm3, mice were euthanized, 
and tumor tissues were excised and cryopreserved in liquid 
nitrogen to generate next passage PDXs. Each successful 
PDX line was assigned a unique ID (SNU-JAX-GXXX). 
Thirty cases among the established PDXs were available 
for the present study. The clinical characteristics of the PDX 
samples are summarized in Table 1.

Human  [18F]FDG PET imaging and analysis

PET imaging of patients was collected. According to the 
standard protocol of our hospital, patients were injected 
intravenously 5.18 MBq/kg of FDG after fasting for at least 
6 h with blood glucose level < 140 mg/kg. PET/CT scans 
were started 60 min after injection, using dedicated PET/
CT scanners or a PET/MR scanner (Biograph 40, mCT, 
and mMR, Siemens). An emission scan was acquired from 
the skull base to the proximal thigh. A CT scan was also 
obtained for attenuation correction. For PET/MR, attenu-
ation correction map was generated by DIXON sequence. 
PET images were reconstructed using an iterative algorithm 
(ordered-subset expectation maximization). All PET images 
were reviewed by the experienced nuclear medicine physi-
cian using commercial imaging software (Syngo.via, VA 30; 
Siemens Healthcare, Erlangen, Germany). To evaluate FDG 
uptake of tumors, spherical volume of interests (VOIs) was 
drawn for each patient. In each VOI, the maximum standard-
ized uptake value (SUVmax) was measured.

Small animal  [18F]FDG PET imaging and analysis

Six-week-old female BALB/c nu/nu mice (Orient Bio., 
Sungnam, Korea) were used to establish PDX tumor mouse 
models (n = 3 per PDX case). The mouse tumor modeling, 

Table 1  Characteristics of human gastric cancer PDX tissues

Variable n (%)

Total no. of PDX cases 30
Lauren classification
 Intestinal 10 (33.3%)
 Diffuse 9 (30%)
 Mixed 9 (30%)
 Undetermined 2 (6.7%)

WHO classification
 Well differentiated tubular adenocarcinoma 1 (3.3%)
 Moderately differentiated tubular adenocarcinoma 6 (20%)
 Poorly differentiated tubular adenocarcinoma 14 (46.7%)
 Signet-ring cell carcinoma 4 (13.3%)
 Others 4 (13.3%)
 Unknown 1 (3.3%)
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small animal  [18F]FDG PET/MR imaging, and analysis 
were conducted as previously described [11]. All proce-
dures involving in-vivo mouse studies were approved by the 
Institutional Animal Care and Use Committee (IACUC) at 
Seoul National University and complied with the Guide for 
the Care and Use of Laboratory Animals (SNU-170704-3).

Development of a  [18F]FDG‑avid tumor prediction 
model (PETscore)

RNA-seq data of 30 GC PDXs paired with animal  [18F]
FDG-PET data were utilized to develop a model predicting 
 [18F]FDG-avidity. We used Weighted Gene Co-expression 
Network Analysis (WGCNA) package [12] to identify gene 
network modules from the 30 PET-scanned PDXs (train-
ing set). The power—the key parameter for the weighted 
network—was selected to optimize both scale-free topology 
and sufficient node connectivity and we chose a threshold 
of 10 in this study. The correlation matrix was transformed 
into an adjacency matrix (matrix of connection strength) 
using the power function, and pair-wise topological overlap 
between genes was calculated. We identified network mod-
ules using a hierarchical clustering method with topological 
overlap dissimilarity as the distance measure. The modules 
were detected by the dynamic tree cut algorithm, defining 
a height cutoff value of 0.99, deep split as 4, and minimum 
module size cutoff value of 40. Genes that were not assigned 
to any module were classified to color gray (Figure S1).

We selected a gene signature related with SUVmax by 
the least absolute shrinkage and selection operator (Lasso) 
regression using glmnet R package [13]. The proposed  [18F]
FDG-avid tumor prediction model using the least absolute 
shrinkage and selection operator (Lasso) regression can be 
written as follows:

via minimizing 
∑n

i = 1
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where Y is actual SUVmax, Yʹ is predictive SUVmax in 
PDX, and X is RNA-seq read count for each gene. The n is 
the total number of PDX cases, p is the total number of 
genes in the module, and �
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  is the Lasso penalty 

term. β is the regression coefficient of each variable, which 
indicates how each gene explains the gene signature. The 
penalty regularization parameter λ was determined via the 
cross-validation routine cv.glmnet function (tenfold cross 
validation). The λ value was finalized by using lambda.1se, 
which gives the most regularized model such that error is 
within one standard error of the minimum (Figure S2). For 
developing of PETscore with the predictive SUVmax, we 
utilized min–max normalization which results in rescaling 
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the range of SUVmax values to scale the range in [0, 1]. The 
min–max normalization can be written as follows:

Here xi indicates SUVmax of i th samples and xʹi is its 
PETscore.

This model was assessed using RNA-seq data of 15 
patients who underwent FDG-PET in the training set and 
validated by RNA-seq data and qRT-PCR using GC tissues 
of patients paired with human  [18F]FDG PET data (valida-
tion set). The overall study flow is summarized in Fig. 1a.

Human tissue specimens for the prediction model 
validation

PET results and RNA-seq data of 8 GC patients were avail-
able for the model validation. Twenty fresh frozen tissues 
among GC patients who underwent FDG-PET scan were 
available for additional validation by real-time reverse tran-
scription PCR (qRT-PCR). The clinical characteristics of 
all patients are shown in Table 2. All tissue samples were 
obtained from Seoul National University Hospital and writ-
ten informed consent was obtained from all patients. The 
present retrospective validation was approved by the IRB of 
Seoul National University Hospital (No. 1910-045-1069). 
Each sample was named as follows: ‘R_’ stands for RNA-
seq validation, and ‘Q_’ stands for qRT-PCR validation.

Statistical analysis

The Spearman’s correlation analysis was performed between 
the predicted SUVmax (PETscore) and the actual SUVmax 
using ggplot2 R package [14]. Correlation coefficients and 
p-values were gained and used to sort statistically signifi-
cant features (p < 0.05). A confidence interval of 0.95 was 
depicted as gray shading. All statistical analyses were per-
formed in R (version 3.5.3).

The linear models for microarray data (limma) package 
[15] was utilized to identify genes associated with SUVmax. 
False discovery rate (FDR) < 0.05 was used for selecting the 
genes associated with SUVmax.

Results

Measurement of  [18F]FDG uptake in mouse tumor 
model bearing GC PDXs.

To evaluate FDG avidity in different PDX cases,  [18F]FDG-
PET imaging was performed for 30 PDX cases using a 
small-animal PET/MR scanner. Among 30 PDX cases, 15 
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Fig. 1  [18F]FDG uptake in mouse tumor model bearing gastric cancer PDX tissues. a Study design. b Representative  [18F]FDG-PET/MRI 
images. c Quantitative analysis of PET images of PDX tumors. d Correlation between parental tumors and corresponding PDXs
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cases had the baseline  [18F]FDG-PET images of the paren-
tal tumors to compare the  [18F]FDG avidity of the parental 
tumors and PDXs. Overall characteristics of GC PDXs are 
summarized in Table 1. The median value of the SUVmax 
of the PDX cases was 0.708 (range 0.453–1.433). Repre-
sentative images and FDG uptake measurement in tumors 
of each PDX case are shown in Fig. 1b and c. The SUVmax 
of PDX tumors were significantly correlated with those of 
their parental tumors (n = 15, Spearman r = 0.54, p = 0.04) 
(Fig. 1d). The FDG avidity of each PDX case was used to 
develop the prediction model.

A gene network module associated with  [18F]FDG 
uptake

We performed a WGCNA on the transcriptome data of 
PDX tumors. The gene co-expression network was con-
structed using preprocessed 16,927 genes of PDX. The 
connectivity between genes in the gene network met a 

scale-free network distribution with a soft threshold power 
of β = 10 (scale-free R2 = 0.90) (Figure S1a). After merg-
ing similar clusters, 19 co-expression network modules 
that contained groups of genes with similar patterns of 
connection strengths with other genes were identified (Fig-
ure S1b). The highest association was found between the 
midnightblue module and SUVmax (r =  − 0.92, p = 1.8e-
42) (Figure S1c and S1d). This module containing 102 
eigengenes was associated with SUVmax and had the 
highest significance across all modules.

To obtain a primary understanding of the molecular 
and biological relevance of the midnightblue module, 
GO enrichment analysis on the 102 genes was performed. 
From DAVID database, top five enrichment terms were 
acquired (Fig. 2a). This module was associated with cel-
lular membranes as well as cell–cell communications 
which control basic cellular activities [16]. In terms of 
the molecular function and cellular components, the mod-
ule associated with  [18F]FDG uptake included ‘cell adhe-
sion molecule binding’ and ‘cell–cell junction’, which are 
potentially related to diffuse type of GC [17].

PETscore as a  [18F]FDG avidity prediction model

Based on the result of WGCNA, the LASSO regression 
combined with tenfold cross validation was used to create 
a predictor for SUVmax in the 30 PDX cases (Figure S2). 
Accordingly, we chose five genes (PLS1, SLC6A5, NAT16, 
HBQ1, PYY) predicting SUVmax in the 30 PDX training 
set. A gene signature (PETscore) was derived to calculate 
SUVmax for each PET-scanned PDX based on the expres-
sion level of five genes. The predicted SUVmax showed 
a significantly positive correlation with actual SUVmax 
(Spearman r = 0.679, p < 1 ×  10–4) (Fig. 2b). For estima-
tion of the model performance in patients FDG PET, the 
PETscore was applied to 15 PET-scanned patients who 
were paired with the 15 PDXs in the training set. The 
SUVmax of these 15 patients was significantly correlated 
with the PETscore estimated by RNA-seq of the parental 
tumor (Spearman r = 0.557, p = 0.034) (Fig. 2c).

To validate the model in an independent cohort, we 
applied the model to twenty-eight PET-scanned patients 
(Table 2 and Fig. 3a). Eight patients among the patients 
were available to use RNA-seq data. Twenty patients 
were assessed with the expression of the five genes (PYY, 
SLC6A5, HBQ1, PLS1, NAT16) by qRT-PCR method. 
The prediction performed with RNA-seq data showed 
significant correlation with actual SUVmax (Spearman 
r = 0.905, p = 0.005) (Fig. 3b). The PETscore measured 
by qRT-PCR showed a significant positive correlation 
(Spearman r = 0.464, p = 0.039) with SUVmax in the 20  
patients (Fig. 3c).

Table 2  Characteristics of the PET-scanned advanced gastric cancer 
patients

a One patient is palliative gastro-jejunostomy bypass case in qRT-PCR 
validation group

Variable RNA-seq validation qRT-PCR validation

Total no. of patients n = 8 n = 20
Sex
 Male 6 16
 Female 2 4

Age, years
 Median (range) 60.5 (46–78) 70 (31–88)

SUVmax
 Median (range) 12.5 (3.91–19.2) 9.6 (3.7–27.3)

TNM stage
 IIa – 4
 IIb – 2
 IIIa – 2
 IIIb 1 7
 IIIc 5 1
 IV 2 4

Borrmann  typea

 I 1 3
 II – 4
 III 7 8
 IV – 3
 Unknown – 1

Lauren  classificationa

 Intestinal 4 10
 Diffuse 3 8
 Mixed – 1
 Unknown 1 –
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Genomic features associated with PETscore

To investigate the molecular characteristics in gastric cancer 
being associated with PETscore, it was applied to The Can-
cer Genome Atlas (TCGA) data. RNA-seq data of TCGA 
were used to estimate the PETscore of each GC subject. 
First, we compared PETscore with metabolic features of GC. 
The metabolic profiles of GC were estimated by single-sam-
ple gene set enrichment analysis [18]. The comprehensive 
relationship between metabolic landscape and PETscore is 
represented in Fig. 4. Most metabolic profiles showed a trend 
of positive correlation with PETscore (Figure S3). Gluco-
neogenesis was a molecular profile with the highest posi-
tive correlation with PETscore (r = 0.2793, p = 7.13E-09). 
However, glycogenolysis showed the lowest correlation with 
PETscore (r =  − 0.1390, p = 0.0045). Among metabolic fea-
tures, GLUTs and glycolysis enrichment scores are closely 
associated with FDG uptake in terms of the mechanism, we 
tested whether these two features were positively correlated 

with PETscore. The PETscore was positively correlated with 
GLUTs and glycolysis signatures (r = 0.26, p < 0.0001 for 
GLUT; Fig. 5a, r = 0.26, p < 0.0001 for glycolysis; Fig. 5b). 
In addition, as FDG uptake is lower in diffuse type GC 
in terms of microscopic morphological classification [9], 
PETscore according to the morphological types was com-
pared. We confirmed that patients with stomach adenocarci-
noma or tubular stomach adenocarcinoma had significantly 
higher PETscores than diffuse type gastric cancer patients 
(p = 0.0206 for stomach type, p = 0.0077 for tubular type; 
Figure S4).

PETscore tended to be associated with microsatellite 
instability (MSI) status. The PETscore of GC with MSI-high 
(MSI-H) was significantly higher than those of MSI-low 
(MSI-L) and MSS tumors (Fig. 5c). As MSI status affects 
tumor mutational burden (TMB), the correlation analysis 
between TMB and PETscore was performed. Accordingly, 
PETscore showed a significant positive correlation with 
TMB (r = 0.29, p = 2.1 ×  10–8) (Fig. 5d).

Fig. 2  Establishment of FDG avidity prediction model for gastric 
cancer. a GO analysis of the midnightblue module. b A prediction 
model based on expression levels of the five genes. The formula 
provided significantly positive correlation between actual SUVmax 

and predicted SUVmax in PDXs (Spearman r = 0.679, p = 5.693e-
05). c PETscore calculated based on the formula in 15 PET-scanned 
patients showed a positive correlation with actual SUVmax (Spear-
man r = 0.557, p = 0.034)
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Fig. 3  Validation of the prediction model in human. a Representa-
tive  [18F]FDG-PET/MRI images of 28 PET-scanned gastric cancer 
patients. b Heatmap displaying the z-scores of the expression levels 
on the five genes measured by RNA-seq. c Heatmap displaying the 

z-scores of the expression levels on the five genes measured by qRT-
PCR. Correlation between SUVmax and results by each validation 
method showed significantly positive (RNA-seq: Spearman r = 0.905, 
p = 0.005, qRT-PCR: Spearman r = 0.464, p = 0.039)
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Fig. 4  The comprehensive illustration showing the relationship 
between molecular characteristic landscape and PETscore. A heatmap 
depicting the metabolism enrichment scores of all samples. Grade, 

type by WHO classifications, MSI status, and total mutation are 
shown for each sample (above the heatmap)
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We identified genomic alterations associated with 
PETscore. Using the median value of PETscore, GC of 
TCGA were divided into two groups: tumors with high 
PETscore and low PETscore. Four genes (PLXNA3, 
EIF4G1, TRIO and PCNX) were identified as differentially 
mutated genes between PETscore high and low groups (Fig-
ure S5). These four genes were more common in GC tumors 
with high PETscore.

Discussion

[18F]FDG-PET is usually included in staging, response 
evaluation, and assessment of recurrence as it is an imag-
ing method that noninvasively characterizes tumor metabo-
lism related to biological aggressiveness of the tumor [19]. 
Because of the diversity of GC, heterogeneous FDG uptake 
in GC causes a limitation in the clinical application. To 
understand the metabolic tumor biology of GC affecting 
variable FDG uptake, we exploratively sought to find func-
tional gene modules potentially being associated with FDG 
uptake and developed a gene signature to predict FDG avid-
ity in GC. In addition, the association of genomic alterations 
and the gene signature-based PETscore were investigated to 

explain the variability of tumor metabolism of GC in terms 
of molecular features.

Tumor glucose metabolism on a gross-scale represented 
as FDG uptake is affected by multiple biological features 
of tumors such as cellularity, hypoxia, vasculature as well 
as cellular glucose metabolism [20]. Glycolysis is a vital 
metabolic pathway regulating oncogenes, tumor suppressor 
genes, and glycolytic enzymes as well as accelerating cell 
proliferation in malignancies [21]. Glycolytic gene expres-
sion is known to be correlated with FDG uptake features. In 
spite of the individual transcript-level correlation, how the 
functional gene networks systematically influence the heter-
ogeneous FDG avidity of GC has not been fully understood. 
WGCNA, a system biology approach aiming to investigate 
the relationships between genes and phenotype of samples, 
can be applied to identify complex biological mechanisms 
responsible for the target phenotypes. The unsupervised 
hierarchical clustering method selected by WGCNA avoided 
potential biases and subjective decisions attributed to the 
selection of the candidate genes previously reported asso-
ciated with FDG uptake in GC. We applied WGCNA to 
analyze PET-scanned human GC PDXs to identify genes 
associated with the SUVmax. The gene module associ-
ated with FDG uptake was related to the specific molecular 

Fig. 5  Molecular characteristic 
landscape of gastric cancer 
with PETscore. a Scatter plot 
of PETscore versus GLUTs 
signature. b Scatter plot of 
PETscore versus glycolysis 
signature. Both GLUTs and 
glycolysis signatures was 
positively correlated with 
PETsore by Pearson’s correla-
tion (R = 0.26, p < 0.0001). c 
The PETscore was significantly 
clustered between the MSI 
status. d Colored dots indicate 
MSI status of each sample, and 
it shows a trend that samples 
with high mutation burden are 
located within populations with 
high PETscore
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function and cellular components including cell adhesion 
and cell–cell junction. These molecular pathways are related 
to the diffuse type of GC [17], which is a clinically important 
GC subtype. In particular, the loss of function related to 
cell adhesion changes the cancer cell to have high epithe-
lia–mesenchymal transition [17, 22]. Furthermore, it is well 
known that diffuse type according to Lauren classification 
and poorly cohesive carcinoma according to WHO classifi-
cation showed low FDG uptake [23].

We identified a novel gene signature with five genes (Up-
regulated: PLS1, PYY, SLC6A5, HBQ1; Down-regulated: 
NAT16) associated with high SUVmax in GC. Among the 
five genes in our PETscore, PLS1 gene is overexpressed in 
colorectal cancer [24]. Peptide YY (PYY) is a gut hormone 
and has been identified in several carcinoid tumors includ-
ing rectal carcinoids [25], gastric, small bowel and cecal 
endocrine tumors [26, 27]. Solute Carrier Family 6 Mem-
ber 5 (SLC6A5) is known as the glycine transporter gene 
GLYT2 and it is associated with medulloblastoma [28], pros-
tate cancer [29], oral and pharyngeal cancer [30]. Borgan 
et al. reported that hemoglobin subunit theta 1 (HBQ1) was 
differentially expressed in breast cancer after combination 
of bevacizumab and doxorubicin [31]. N-Acetyltransferase 
16 (NAT16 or C7orf52), encodes histidine N-acetyltrans-
ferase. TCGA thyroid cancer data showed C7orf52 was one 
of differentially downregulated genes in papillary thyroid 
cancer patients with lymph node metastasis [32]. In sum-
mary, previous studies regarding these molecules consisting 
of PETscore associated with prognosis or aggressiveness 
in GCs are hardly found. Nonetheless, these gene sets may 
reflect the metabolic profile of GCs, suggesting that they 
can be novel molecular features related to various biologi-
cal features of GC. As a future study, the association with 
GC for each gene of the signature needs to be investigated.

The gene signature for PETscore could be used as an 
adaptive management strategy of GC. The suggested model 
could be extended to molecular profiles of GC to be used in 
the clinical setting to perform an individualized and rational 
approach for choosing imaging modality. If we could pre-
dict biological profiles of GC with high FDG uptake,  [18F]
FDG-PET in this context can be evaluated as a diagnostic, 
treatment response and recurrence monitor tool for selected 
patients. In this clinical setting, the reliability of  [18F]FDG-
PET precisely used according to the PETscore is expected 
to be increased significantly. If the primary GC has the char-
acteristics of high FDG uptake, FDG uptake will be high for 
recurrent or metastatic lesions, so predicting the biology of 
GC can lead to an individualized approach. Example cases 
are shown in (Figure S6a and S6b). A tumor that showed 
the low PETscore was also low FDG avidity in a recurred 
tumor at 1-year follow-up. On the other hand, another tumor 
with high PETscore showed hypermetabolism in recurred 
retroperitoneal LNs and peritoneal seeding lesions. The gene 

signature can be assessed by biopsy tissues, PETscore may 
be used for an individualized approach for imaging modal-
ity by predicting FDG-avidity of the tumor (Figure S6c). 
These findings provide the opportunity to include a rational 
selection process for GC  [18F]FDG-PET clinical evaluation.

GC with microsatellite instabilities high (MSI-H) was 
proposed as a distinct subgroup of GCs [33, 34]. Choi et al. 
reported that STAD (Stomach Adenocarcinoma) and COAD 
(Colon adenocarcinoma) showed a larger number of the 
metabolism-related genes than other cancer types investi-
gating the relationship between metabolic profiles and MSI 
status [18]. Notably, our results concordantly showed that 
MSI-H with a high PETscore had a hypermutation burden 
(Fig. 5d). MSI-H GCs are more likely to result in favorable 
survival than low-level MSI (MSI-L) or microsatellite stable 
(MSS) tumors and associated with both high Tumor-infil-
trating lymphocytes (TILs) and programmed death-ligand 
1 (PD-L1) [35]. MSI status is considered as a biomarker for 
therapeutics with immune-checkpoint inhibitors [36, 37]. In 
this regard, it is notable that the association between MSI 
status and PETscore can be further investigated to develop 
a predictive noninvasive bio-imaging marker for the assess-
ment of MSI-status. In the clinical setting, in order to decide 
MSI status, the results of FDG uptake could be used if FDG 
non-avid GC can exclude MSI-H even though a further well-
designed prospective study is needed.

Certain limitations should be noted for this study. 
Functional analysis and understanding of the genes being 
included in PETscore are pending as focus was put on inter-
nal and external validation of the score itself. Further inves-
tigations are addressing this question as it is necessary for 
a full understanding of the causal relationship of glucose 
metabolic pathways with these genes and its practical appli-
cation in GC. Second, larger and potentially international 
cohorts have to be used for further validation of the present 
findings’ proofing to also overcome the potential regional 
heterogeneities of GC. Application on the TCGA cohort can 
be seen as one important step in this manner.

Non-invasive prediction of FDG avidity is critical for 
developing better therapeutic strategies in terms of care and 
elucidating the underlying metabolic underpinnings of het-
erogeneous GC. This study identified a gene module associ-
ated with  [18F]FDG uptake. The module represented ‘cell 
adhesion molecule binding’ and ‘cell–cell junction’. Using 
gene sets in this module, we developed a five-gene signature 
for FDG avidity prediction in GC, PETscore. Association of 
the PETscore and MSI status was found by applying it to a 
multi-omics database (TCGA). As a novel aspect, this study 
analyzes the variable glucose metabolism in GC by integrat-
ing metabolic imaging in transcriptome and genomic data. 
These findings suggest that molecular characteristics are 
underlying the diverse metabolic profiles of GC, eventually 
leading to personalized diagnostic and therapeutic pathways.
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