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Abstract
Epstein–Barr virus-positive gastric cancer [EBV (+) GC] is associated with EBV infection and is one of the GC subtypes 
defined by the Cancer Genome Atlas. EBV (+) GC has several distinct genomic or epigenomic features and clinicopatho-
logical characteristics compared with other molecular subtypes of GC. Here, we summarize the unique features of EBV 
(+) GC including the clinical and histopathological features, and discuss associated genetic and epigenetic aberrations. We 
also discuss noncoding RNAs [EBV-encoded RNAs and EBV-encoded microRNAs (miRNAs)] derived from EBV-infected 
cells, which have not been described in detail previously. These noncoding RNAs are defined by their roles; for example, 
EBV-encoded miRNAs play pivotal roles in oncogenesis and tumor progression in EBV (+) GC. We also discuss recent 
advances in therapeutic modalities for EBV (+) GC, as well as the potential of EBV infection as a predictive biomarker of 
the response to anti-PD-1 therapy with immune checkpoint inhibitors. We introduce our recent studies focusing on AT-rich 
interactive domain 1A gene mutations and programmed death ligand-1 overexpression/CD274 copy-number amplification, 
which are recurrently identified in EBV (+) GC. Finally, based on those findings, we propose potential therapeutic options 
using candidate-targeted therapies against EBV (+) GC.
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Introduction

A recent large-scale genome sequencing study conducted 
by The Cancer Genome Atlas (TCGA) revealed significant 
heterogeneity in gastric cancer (GC), resulting in the clas-
sification of GC into four molecular subtypes: microsatel-
lite instability (MSI), genomically stable (GS), chromo-
somal instability (CIN), and Epstein–Barr virus-positive 
gastric cancer [EBV (+) GC] [1]. Among them, EBV (+) 
GC is defined by infection with EBV, which is a human 
herpes virus 4, and by several unique molecular features 
[2]. EBV acts as an oncogenic virus in GC as well as in 
Hodgkin’s lymphoma, Burkitt lymphoma, and nasopharyn-
geal carcinoma, and its presence is clinically demonstrated 
using EBV-encoded small RNA 1 (EBER-1) in situ hybridi-
zation (ISH) [2, 3]. Although EBV is associated with GC, 

the mechanisms of gastric carcinogenesis induced by EBV 
infection are not yet fully understood. EBV (+) GC is asso-
ciated with the monoclonal proliferation of EBV-infected 
cells and shows several distinct genomic or epigenomic 
characteristics compared with other molecular subtypes of 
GC, suggesting that EBV infection contributes to the malig-
nant transformation of normal cells in GC [1, 4–6]. Here, 
we summarize various features of EBV (+) GC and discuss 
the clinical and histopathological features of EBV (+) GC 
(Fig. 1). Furthermore, we describe in more detail the genetic 
and epigenetic modifications and unique characteristics of 
EBV (+) GC [1, 4, 6, 7]. We introduce several recent find-
ings of genomic or epigenomic modifications in EBV (+) 
GC, focusing on AT-rich interactive domain 1A (ARID1A) 
gene mutations and programmed death ligand-1 (PD-L1) 
overexpression/CD274 copy-number amplification [8–13].

Clinical and histopathological features of EBV (+) GC

EBV (+) GC accounts for 2–20% of total GC cases, with 
a worldwide average of < 10% of total GC cases [1, 2, 11]. 
Geographical and environmental factors may affect the 
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incidence rate, as EBV (+) GC is slightly more prevalent in 
Caucasians than in Asians [2]. EBV (+) GC predominantly 
occurs in men and at a relatively young age, and it local-
izes to the upper part of the stomach [2]. Consistent with 
previous studies, our analysis of a Japanese cohort, which 
included 401 GC tumors, identified 27 (6.7%) EBV (+) 
cases, which predominantly occurred in men, with a rela-
tively early onset, and were located in the upper part of the 
stomach [11]. Typical macroscopic features of EBV (+) GC 
on endoscopic observation include superficial, depressed, 
ulcerated, or saucer-like tumors, as well as marked thick-
ening of the gastric wall [5]. Typical microscopic features 
of EBV (+) GC include moderately-to-poorly differentiated 
adenocarcinoma with lymphocyte infiltration and a lace 
pattern within the mucosa [2, 5]. However, certain EBV 
(+) GCs manifest as conventional-type adenocarcinomas, 
namely, well-to-moderately differentiated adenocarcinoma 
without lymphocyte infiltration and a lace pattern. These 
cases are difficult to diagnose as EBV (+) GC without per-
forming EBER-ISH.

Latent EBV infection

When EBV infects normal gastric epithelial cells, EBV-
infected cells grow clonally, resulting in the development of 
EBV (+) GC. During the development of EBV-associated 
cancers, EBV infection is maintained in a latent form, and 
three types of latency states have been identified [2, 14]. 
EBV (+) GC belongs to latency I and II, in which EBERs 
(EBER-1 and EBER-2), EBV-determined nuclear antigen 1 
(EBNA-1), BamHI-A rightward transcripts (BARTs), and 
BART microRNAs (miRNAs) are expressed and signifi-
cantly associated with gastric tumorigenesis.

EBERs are the most abundantly expressed small noncod-
ing RNAs in latent EBV-infected cells, and their involvement 
in malignant processes was reported previously [15, 16]. 

EBERs stimulate Tool-like receptor 3 (TLR3) and RIG-I in 
the TLR and RIG-I signaling pathways, respectively, includ-
ing TANK-binding kinase 1 (TBK1) [14]. TBK1 is a serine/
threonine protein kinase that plays essential roles in innate 
immunity, regulating inflammatory responses, and oncogen-
esis through the activation of the interferon regulatory factor 
3 (IRF3) and IRF7 transcription factors. IRF is a family of 
transcriptional factors activating IFNs and regulating a dif-
ferentiation and maturation of T cells, B cells, and plasma 
cells [17]. While IRF3 mediates immune response against 
viral infections, IRF3 is a key downstream transcriptional 
effector involved in inflammation and immunity in EBV-
infected tumors. It is known that, in addition to TLR and 
RIG-I signaling pathways, TBK1 and IRF3 are involved in 
the cyclic GMP-AMP (cGAMP) synthase (cGAS)-STING 
signaling pathway, which is associated with the innate 
immune system. We recently identified a novel mechanism 
by which phosphorylated IRF3 induces PD-L1 overexpres-
sion in EBV (+) GC (discussed later) [11]. EBER-1, a highly 
expressed latency gene in EBV-infected tumors, can be used 
for the diagnosis of EBV infection by EBER-1-ISH.

Genetic aberrations in EBV (+) GC

Common genetic features of EBV (+) GC include fre-
quent mutations in phosphatidylinositol-4,5-bisphosphate 
3-kinase catalytic subunit alpha (PIK3CA) and ARID1A and 
copy-number amplifications of Janus kinase 2 (JAK2) and 
CD274/PDCD1LG2.

Somatic mutations

ARID1A, a subunit of the Switch/Sucrose Non-fermentable 
(SWI/SNF) chromatin remodeling complex, is frequently 
mutated in GC [1, 9, 18]. ARID1A is a tumor suppressor 
gene and driver oncogene in GC, and most of the identi-
fied ARID1A mutations are truncating mutations that result 
in loss of ARID1A protein expression [1]. We and others 
reported that ARID1A protein expression is a useful prog-
nostic indicator in GC or undifferentiated GC, and negative 
expression of ARID1A is associated with worse overall sur-
vival [8, 12, 19, 20]. According to a TCGA study, ARID1A is 
recurrently mutated in EBV (+) and MSI GC [1]. Analysis 
of the relation between ARID1A gene mutations and protein 
expression shows that most of the cases with ARID1A pro-
tein loss harbor ARID1A truncating mutations in MSI GC 
[18]. By contrast, cases with ARID1A protein loss despite 
the absence of ARID1A truncating mutations are detected in 
EBV (+) GC. These findings suggest that epigenetic modifi-
cations contribute to the loss of ARID1A protein expression 
in EBV (+) GC (discussed later).

PIK3CA, a p110α catalytic subunit of PI3K, is an onco-
gene in various cancers including GC [21, 22]. According 

Fig. 1  Summary of clinical features, macroscopic and microscopic 
features, and genetic and epigenetic features in Epstein–Barr virus-
positive gastric cancer [EBV (+) GC]
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to TCGA data, nonsynonymous mutations of PIK3CA are 
detected in 12% of total GC and are preferentially detected 
in 80% of EBV (+) GC [1]. PIK3CA mutations in EBV (+) 
GC are mainly localized in the kinase domain (exon 20), 
suggesting that the efficacy of PI3K inhibitors should be 
higher in patients with EBV (+) GC.

Another genetic feature of EBV (+) GC is lack of TP53 
mutations. The TP53 tumor suppressor is the most recur-
rently mutated gene in GC; however, TP53 mutations are not 
frequent in EBV (+) GC among the GC subtypes classified 
by TCGA [1, 23, 24].

Somatic copy‑number alterations

Somatic copy-number alterations are observed in various 
cancers and have critical roles via activating oncogenes 
and in inactivating tumor suppressors [25, 26]. Unique 
copy-number alterations with commonly amplified loci, 
such as 9p24.1, 17q12, and 11p13, or deleted loci, such as 
16q23.1, 7q31.1, 9p24.1, 4q22.1, 10q23.31, and 20p12.1, 
are detected in EBV (+) GC [1, 27]. The most remarkable 
copy-number aberration in EBV (+) GC is focal chromo-
some 9p24.1 amplification, which includes JAK2, CD274, 
and PDCD1LG2, leading to constitutive expression of JAK2, 
PD-L1, and PD-L2, respectively [1]. Among these, we 
focused on elucidating the mechanism underlying PD-L1/
CD274 overexpression in EBV (+) GC. The results showed 
that higher PD-L1 overexpression in EBV (+) GC tumor 
cells is due to high levels of CD274 focal amplification, 
whereas CD274 copy-number alteration is not observed in 
EBV (+) or EBV (−) GC tumor cells with lower PD-L1 
overexpression [11]. These findings are in line with our 
previous report that focal and high-level amplification of 
CD274 results in higher PD-L1 overexpression in a small 
subset of small cell lung cancers, which is related to the 
mechanism inducing PD-L1 overexpression in EBV (+) GC. 
Detailed analysis of infiltrating immune cells in EBV (+) GC 
showed that, in contrast to EBV (+) GC tumors with higher 
PD-L1 overexpression due to focal CD274 amplification, 
those with lower PD-L1 overexpression are associated with 
the presence of CD8 T cells [11]. In addition, we elucidated 
a unique mechanism of PD-L1 overexpression in EBV (+) 
GC by which EBV infection activates IRF3, driving PD-L1 
overexpression via interferon-γ (IFN-γ) [11, 28, 29]. TCGA 
data confirmed that EBV (+) GC tumors with focal CD274 
amplification show higher PD-L1 overexpression, whereas 
those without CD274 copy-number aberrations show lower 
PD-L1 overexpression without infiltration of CD8 + lympho-
cytes [11]. These results indicate that copy-number altera-
tions related to PD-L1 overexpression are associated with 
complex inflammatory signals in the tumor microenviron-
ment of EBV (+) GC, suggesting the activation of unique 
innate antiviral immune responses to EBV infection.

Epigenetic aberrations in EBV (+) GC

Common epigenetic features of EBV (+) GC include exten-
sive DNA promoter hypermethylation and altered expression 
of EBV-encoded miRNAs.

Methylation

DNA methylation has also known to have critical roles in 
tumorigenesis in the control of certain tissue-specific gene 
activity [30, 31]. Aberrant CpG hypermethylation in pro-
moter and non-promoter CpG islands is a unique epige-
netic aberration in EBV (+) GC. DNA hypermethylation 
of CDKN2A, but not the MLH1 promoter, is a distinct epi-
genetic feature of EBV (+) GC [1]. Many genes involved 
in cell cycle regulation, DNA repair, and apoptosis show 
hypermethylation in the CpG DNA promoter, which sup-
presses their expression in EBV (+) GC [2, 7]. A TCGA 
study identified several methylation-related silencing genes 
(RCOR2, RHOF, TMEM52, CLDN3, and HOXA10) in EBV 
(+) GC [27]. Recent work from our group identified mark-
edly hypermethylated genes (ACE, SLC7A9, and TUBA8) 
in EBV (+) GC using the microarray dataset GSE31789, 
including CpG site methylation data for EBV (+) GC and 
EBV (−) GC [7, 10]. Consistently, EBV infection of MKN7 
GC cells induces hypermethylation of EBV (+) marker 
genes and suppresses their expression, confirming that EBV 
infection-induced epigenetic modifications play a pivotal 
role in the oncogenesis and tumor progression of EBV (+) 
GC [7].

EBV‑encoded miRNAs

EBV is the first virus shown to encode its own miRNAs. 
MiRNAs are small noncoding RNA molecules of approxi-
mately 21–25 nucleotides in length that interact with the 3′ 
untranslated region (UTR) of target mRNAs. MiRNAs thus 
regulate target gene expression at the post-transcriptional 
level through translational repression or by inducing the deg-
radation of the target mRNA [32–34]. EBV-encoded miR-
NAs are divided into two major clusters, BamHI fragment H 
rightward open reading flame 1 (BHRF1) and BART miR-
NAs [2, 35]. Several predicted targets of EBV-encoded miR-
NAs were detected by computational prediction, and some of 
these were functionally investigated using an in vitro assay 
[36]. BHRF1 miRNAs, which encode three pri-miRNAs, 
show almost undetectable expression in EBV (+) GC; thus, 
their functional roles in lytic infection, in regulating host 
cell cycle and viral infection, and in progeny production, 
were revealed in various types of malignancy rather than in 
GC [37–45]. In GC specifically, BART miRNAs encoding 
44 mature miRNAs may disrupt genes involved in apopto-
sis and cell cycle regulation, as confirmed in EBV (+) GC 
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(Table 1) [2, 10, 36, 45–59]. It is currently accepted that 
EBV-encoded miRNAs play important regulatory roles in 
EBV-mediated gastric carcinogenesis. 

We recently investigated EBV-encoded miRNAs that can 
regulate ARID1A expression in EBV (+) GC based on the 
identification of cases with ARID1A protein loss despite the 
lack of ARID1A truncating mutations in EBV (+) GC [18]. 
We first investigated epigenetic modifications such as DNA 

promoter hypermethylation; however, we found that ARID1A 
is not hypermethylated in EBV (+) GC tumors and EBV-
infected GC cells [4, 10]. We therefore conducted in silico 
analysis to identify EBV-encoded miRNAs that may target 
ARID1A, and confirmed that miR-BART11-3p and miR-
BART12 directly target ARID1A, downregulating ARID1A 
protein levels in EBV (+) GC harboring ARID1A-WT [10].

Therapeutic responses of EBV (+) GC patients 
in precision medicine

In this review, we summarized the clinical and histopatho-
logical features of EBV (+) GC and the genetic and epige-
netic aberrations that underlie EBV-associated gastric car-
cinogenesis. Studies that contribute to our understanding 
of the molecular characteristics of these aberrations may 
improve the therapeutic efficacy of precision medicine for 
EBV (+) GC (Fig. 2). Because immune checkpoint inhibi-
tors targeting the PD-1 axis are used for the treatment of GC, 
it was reported that EBV (+) tumors as well as MSI-high or 
a high PD-L1 combined positive score are used as predictive 
biomarkers of the response to anti-PD-1 mAbs in metastatic 
GC patients [60]. In fact, several clinical trials of immune 
checkpoint inhibitors in EBV (+) GC are currently underway 
[6]. However, tumors with PD-L1 overexpression associ-
ated with high levels of CD274 focal amplification without 
lymphocyte infiltration may not show a favorable response to 
anti-PD-1 mAbs [11]. In addition, because ARID1A is one of 

Table 1  Target genes of EBV-encoded BART microRNAs in gastric 
cancer

MicroRNAs Targets References

EBV-miR-BART1-3p DAB2 Min [47]
EBV-miR-BART1-5p GCNT3 Liu [48]
EBV-miR-BART3-3p TP53 Wang [49]
EBV-miR-BART4-5p BID Shinozaki-Ushiku [2]
EBV-miR-BART5-3p TP53 Zheng [50]
EBV-miR-BART5-5p PIAS3, PUMA Choy [63], Yoon [45]
EBV-miR-BART6-3p LOC553103 He [52], Wang [51]
EBV-miR-BART10-3p DKK1, APC Min [54], Dong [53]
EBV-miR-BART11-3p ARID1A, FOXP1 Song [55], Kase [10]
EBV-miR-BART12 ARID1A, TPPP1 Wu [56], Kase [10]
EBV-miR-BART15-3p BRUCE, TAX1BP1 Choi [64], Choi [57]

Yoon [58]EBV-miR-BART17-5p KLF2
EBV-miR-BART20-5p BAD Kim [59]
EBV-miR-BART22 DKK1, APC Dong [53]

ARID1A WT

EBV (+) gastric cancer

ARID1A Mut

ARID1A
complete loss 

ARID1A
weak loss 

PI3K/AKT 
pathway

activation

miR-BART11-3p
miR-BART12

EZH2
inhibitors

CD274
Amplification

Immune checkpoint 
inhibitors

CD274
No amplification

INF-γ

IRF3
activation

AKT
inhibitors

PD-L1
Lower overexpression

(“HOT” tumor) 

PD-L1
Higher overexpression

(“COLD” tumor) 

Fig. 2  Treatment options for a patient with EBV (+) gastric cancer in 
precision medicine. Possible treatments focused on specific inhibitors 
against ARID1A aberrations and PD-L1. Immune checkpoint inhibi-

tors may not show efficacy for tumors with higher PD-L1 overexpres-
sion associated with CD274 focal amplification without lymphocyte 
infiltration (“COLD” tumor) (break line)
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the most frequently mutated genes in EBV (+) GC, targeted 
therapies against ARID1A mutations could provide impor-
tant therapeutic benefits to patients. However, because the 
ARID1A tumor suppressor gene is frequently inactivated, 
ARID1A is a poor therapeutic target by itself. Furthermore, 
potential candidate targets or pathways underlying ARID1A 
deficiency have not been identified, suggesting that specific 
inhibitors targeting genes downstream of ARID1A defi-
ciency may not provide a therapeutic benefit [8]. Synthetic 
lethal approaches to the treatment of ARID1A-deficient 
tumors were recently proposed using specific inhibitors 
against enhancer of zeste homolog 2 (EZH2). These strate-
gies demonstrate the selective sensitivity of EZH2 inhibi-
tors against ARID1A-deficient GC cells, and suggest the 
potential efficacy of targeted therapy using a synthetic lethal 
approach for ARID1A-deficient EBV (+) GC [9]. Because 
treatment strategies based on synthetic lethality are a valid 
approach to the treatment of various cancers, inhibitors of 
poly ADP-ribose polymerase (PARP) or AKT are expected 
to show efficacy in EBV (+) GC harboring ARID1A muta-
tions [61, 62]. These breakthrough treatments against 
ARID1A-mutated/-deficient or PD-L1 overexpressing tumors 
may yield positive results in EBV (+) GC. 

Conclusion

The molecular features of EBV (+) GC have been eluci-
dated in detail including genetic and epigenetic regula-
tion. Because of the distinct molecular regulatory pattern 
of EBV (+) GC, several possible therapies ranging from 
immune checkpoint inhibitors to synthetic lethal approaches 
to the ARID1A axis can be selected as precision medicine 
strategies.
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