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Abstract
Background Gastric cancer (GC) patients with PD-L1-negative tumor occasionally have a favorable response to anti-PD-1 
mAb. The aim of the present study was to investigate the regulatory mechanism and immunosuppressive role of PD-L2 in GC.
Methods We used immunohistochemistry to evaluate the expression of PD-L2 in primary tumors from 194 patients with 
GC. The mechanism of PD-L2 expression was assessed in TCGA stomach adenocarcinoma tissue dataset and in vitro assay 
using GC cell lines. The immunosuppressive role of PD-L2 was evaluated by cytotoxicity of CTL clone against PD-L2 
expressing GC cells.
Results PD-L2 was expressed on tumor cells (TCs) of 28.4% patients and PD-L2 expression on TCs was significantly associ-
ated with tumor progression. TCGA dataset revealed that IFN-γ and, to a lesser extent, IL-4 signature significantly correlated 
with PD-L2 expression. In vitro assay showed that IFN-γ and, also to a lesser extent, IL-4 can upregulate PD-L2 expression 
on GC cells. Anti-PD-L2 mAb significantly enhanced the cytotoxicity of CTL clone against GC cell lines expressing PD-L2.
Conclusions PD-L2 is expressed on GC cells and PD-1/PD-L2 interaction are functionally involved in anti-tumor CTL 
activities. PD-L2 expression should be considered when determining the optimal immunotherapy for GC.
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Background

Gastric cancer (GC) is the fifth most frequently diag-
nosed cancer and the third leading cause of cancer death 
in the world, accounting for over 1,000,000 new cases 
and 783,000 deaths in 2018 worldwide [1]. Especially in Electronic supplementary material The online version of this 

article (https ://doi.org/10.1007/s1012 0-020-01079 -z) contains 
supplementary material, which is available to authorized users.
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East Asia including Japan and Korea, incidence rates are 
markedly elevated [1]. Combinations of surgical resec-
tion, diverse chemotherapy, and radiotherapy are used to 
treat advanced GC patients; however, the 5-year overall 
survival rates of patients with pathological stage IV dis-
ease is still 16.4% in Japan [2]. To improve the progno-
sis of advanced GC patients, the development of a novel 
therapeutic strategy is required.

Immune checkpoint blockade targeting the pro-
grammed cell death 1 (PD-1) axis has been approved 
to treat various human cancers including GC [3–7]. 
Although an immune checkpoint blockade with anti-PD-1 
mAb has been also expected for advanced GC patients, 
its clinical efficacy is limited with an objective response 
rate of 11.9% [3, 8]. Therefore, more effective therapeutic 
strategies and predictive biomarkers to identify respond-
ers for immune checkpoint blockade targeting the PD-1 
axis are urgently needed.

PD-1 is mainly expressed on activated T cells, B 
cells, and natural killer cells, and binds to programmed 
death ligand-1 (PD-L1) and PD-L2 [9, 10]. PD-L1 is 
expressed on both various types of tumor cells (TCs) and 
tumor-infiltrating immune cells (TIICs) [11–13]. On the 
other hand, although it was initially thought that PD-L2 
is mainly expressed on macrophage in the presence of 
interleukin (IL)-4/IL-13 [14, 15], several studies recently 
reported that PD-L2 is also expressed on various types 
of TCs, depending on tumor microenvironment situation 
[16–18]. Activation of the PD-1 signaling pathway leads 
T cells to apoptosis and anergy, resulting in immunosup-
pression caused by T cell dysfunction [19, 20]. Immune 
checkpoint blockade targeting PD-1 inhibits the receptor 
interaction with both PD-L1 and PD-L2.

In clinical studies of anti-PD-1 mAb, it has been 
reported that patients with PD-L1 expressing tumor had a 
favorable clinical course [21, 22]. However, some patients 
with PD-L1 expressing tumor have been reported to have 
responded poorly to anti-PD-1 mAb, whereas patients 
with PD-L1-negative tumor occasionally have clinical 
efficacy in several types of cancer including GC [3, 7, 
21–27]. Furthermore, Yearley et al. suggested that PD-L2 
expression may provide information in predictive clinical 
response to anti-PD-1　mAb [16]. Although these find-
ings indicate the immunosuppressive role of PD-L2, its 
role has not yet been fully elucidated. In the present study, 
we investigated the regulatory mechanism, expression sta-
tus, and immunosuppressive role of PD-L2 in GC using 
surgically-resected specimens, The Cancer Genome Atlas 
(TCGA) stomach adenocarcinoma tissue dataset, the cyto-
toxicity of tumor antigen-specific cytotoxic T lymphocyte 
(CTL) clone against GC cells, and in vitro assay using 
GC cell lines.

Methods

Clinical samples

Surgically-resected specimens were obtained from 194 
patients who had undergone surgical resection for GC 
at the Department of Gastrointestinal Tract Surgery, 
Fukushima Medical University Hospital, between Janu-
ary 2003 and December 2013. No patients had received 
pre-operative anti-tumor therapy such as radiotherapy 
or chemotherapy. Clinical and pathological information 
was retrospectively obtained by reviewing the patients’ 
medical records. Tumor grade and stage were defined in 
accordance with the Japanese GC Association (The 15th 
Edition). The study was conducted in accordance with the 
Declaration of Helsinki and was approved by the Institu-
tional Ethical Committee of Fukushima Medical Univer-
sity (Reference Nos. 2329 and 2847). Written informed 
consent was obtained from all participants.

Immunohistochemistry staining

Four-μm-thick sections were deparaffinized and rehy-
drated. Endogenous peroxidases were blocked with 0.3% 
hydrogen peroxide in methanol and antigen retrieval was 
performed by autoclave for 10 min in Target Retrieval 
Solution (Agilent Technologies, Inc., Santa Clara, CA, 
USA) (120 °C, pH9.0). Thereafter, the slides were incu-
bated at 4 °C overnight with the following primary anti-
bodies: PD-L1 mAb (Cell Signaling Technology, Inc., 
Danvers, MA, USA) at 1:400, and PD-L2 mAb (Cell Sign-
aling Technology, Inc.) at 1:200. Followed by incubation, 
the detection was performed with an HRP-coupled anti-
rabbit polymer (Envision + System-HRP, Agilent Tech-
nologies, Inc.). The sections were then incubated with 
diaminobenzidine (Agilent Technologies, Inc.) at room 
temperature for 5 min, and counterstained with Mayer’s 
Hematoxylin Solution (FUJIFILM Wako Pure Chemical 
Corp., Osaka, Japan), also at room temperature, for 1 min.

Assessment of immunohistochemistry staining

Immunohistochemistry (IHC) evaluation was performed 
by two independent observers (Y.N. and K.S), who were 
blinded to the clinical data. The expression of PD-L1 and 
PD-L2 was evaluated by assessing membranous staining 
of TCs and TIICs; ≥ 1% was defined as positive and < 1% 
was defined as negative [7, 21, 26, 28].
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RNA‑seq analysis using TCGA dataset

The mRNA expression z-scores of genes (RNA-Seq V2 
RSEM normalized, RNA-Seq data) were obtained from 
TCGA stomach adenocarcinoma tissue dataset (n = 269) 
through cBioPortal (https ://www.cbiop ortal .org/) [29, 30]. 
In the present study, we evaluated the mRNA expression 
levels of PD-1 (PDCD1), PD-L1 (CD274), and PD-L2 
(PDCD1LG2), Interferon (IFN)-γ gene signature, and 
interleukin (IL)-4 gene signature in GC. Samples with 
gene amplification for PD-L1 or PD-L2 were excluded 
for analysis. IFN-γ gene signature included indoleamine 
2,3-dioxygenase 1 (IDO1), C-X-C motif chemokine ligand 
(CXCL)10, CXCL9, human leukocyte antigen (HLA)-
DRA, signal transducer and activator of transcription 1 
(STAT1) and IFN-γ [31], although TCGA RNA-seq data 
lacked HLA-DRA expression values. The BIOCARTA_
IL4_PATHWAY was obtained from Gene Set Enrichment 
Analysis (GSEA) through Explore the Molecular Signa-
tures Database (MSigDB) (https ://softw are.broad insti tute.
org/gsea/msigd b/index .jsp) and we used it as the IL-4 gene 
signature including AKT1, growth factor receptor-bound 
protein 2 (GRB2), IL-4, IL-4R, insulin receptor substrate 
1 (IRS1), Janus kinase (JAK)1, JAK3, ribosomal protein 
S6 kinase B1 (RPS6KB1), SHC1, and STAT6 [32–34]. The 
signature score was calculated by averaging the expression 
levels of included genes [35, 36].

Tumor cell lines

MKN7, MKN45, OCUM-1, and NUGC-3 were purchased 
from the Japanese Collection of Research Bioresources 
Cell Bank (Osaka, Japan). NCI-N87 was purchased from 
the American Type Culture Collection (Manassas, VA, 
USA), and ECC10, GSU, HGC27, KE39, and NUGC-4 
were purchased from the RIKEN BioResource Research 
Center (Ibaraki, Japan). These cell lines have no gene ampli-
fication or deletion for PD-L1 and PD-L2 according to the 
cell line data from each company. For PCR, KATO III was 
purchased from the American Type Culture Collection and 
OE19 was purchased from the Merck KGaA (Darmstadt, 
Germany). All cell lines, in which the absence of myco-
plasma was confirmed, were cultured in RPMI-1640 con-
taining l-glutamine (Merck KGaA) with 10% fetal bovine 
serum (Thermo Fisher Scientific, Inc., Waltham, MA, USA) 
and 1% Penicillin–Streptomycin (Thermo Fisher Scientific, 
Inc.), and were verified as authentic through short tandem 
repeat profiling.

Generation of CTL clone

HLA-A24 restricted, Kinesin family member 20A (KIF20A) 
peptide-specific CTL clone was established using HLA-A24 

positive peripheral blood mononuclear cells (PBMC) from 
advanced GC patients as previously described [37]. Briefly, 
T cells were stimulated with KIF20A peptide-loaded, autolo-
gous mature dendritic cells every 7 days. After the third 
stimulation, the KIF20A peptide specificity of the CTL lines 
was tested by enzyme-linked immunospot (ELISpot) assay. 
CTL clones specific for KIF20A peptide were established 
from an HLA-A24 restricted, KIF20A peptide-specific CTL 
line using a limiting dilution method.

Cell treatment with cytokines and inhibitors

We decided the optimal doses of IFN-γ (R&D Systems, 
Minneapolis, MN, USA) and IL-4 (PeproTech, Inc., Rocky 
Hill, NJ, USA) for the PD-L1 and PD-L2 expression on 
tumor cell lines according to our previous study [37–39] 
(data not shown). Tumor cell lines were cultured in a 12-well 
plate and exposed to 10 ng/mL IFN-γ or 10 ng/mL IL-4. 
PBS was used as a negative control, and was added to all 
controls. The cells were used for western blotting for cell 
signaling pathway and gene expression microarray after 1 h 
incubation, and were used for flow cytometry and western 
blotting for PD-L1 and PD-L2 after incubation for 48 h.

For the blocking assay, the CTL clone and lymphocytes 
were incubated with or without 10 μg/mL anti-PD-1 mAb 
(Thermo Fisher Scientific, Inc.), and the tumor cell lines 
were incubated with or without 10 μg/mL anti-PD-L1 mAb 
(Thermo Fisher Scientific, Inc.) and/or 10 μg/mL anti-PD-
L2 mAb (Thermo Fisher Scientific, Inc.) for 1 h before co-
culture experiment, ELISpot assay, and cytotoxic assay. 
Each dose of these blocking antibodies was recommended 
according to the manufacture’s instructions.

Co‑culture experiment

IL-2 activated lymphocytes were generated as previously 
described [40]. PD-1 expression on T cells in IL-2 activated 
lymphocytes were evaluated by flow cytometry using APC-
H7 conjugated anti-human CD3 mAb (BD Biosciences, San 
Jose, CA, UAS) at 1:20, and PerCP-CyTM5.5 conjugated 
anti-human CD279 (PD-1) mAb (BD Biosciences) at 1:20. 
IL-2 activated lymphocytes treated with/without anti-PD-1 
mAb were co-cultured with NUGC-3 treated with/without 
inhibitors at a 1:1 ratio in 24-well plates for 48 h. After a 
48 h incubation, the proportion of apoptotic CD3-positive 
cells, T cells, were analyzed with PE-conjugated Annexin V 
and 7-Aminoactinomycin D (7-AAD) (PE Annexin V Apop-
tosis Detection Kit I, BD Biosciences) using flow cytometry.

Cytotoxic assay

Cytotoxicity of the CTL clone was measured using a 
calcein-release assay as previously described [37–39]. 

https://www.cbioportal.org/
https://software.broadinstitute.org/gsea/msigdb/index.jsp
https://software.broadinstitute.org/gsea/msigdb/index.jsp
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Briefly, target cells were stained with 5 μM of calcein-AM 
(Dojindo Molecular Technologies, Inc., Kumamoto, Japan) 
for 30 min at 37 °C. The stained targets (5 × 103/well) were 
then co-cultured at various ratios of the CTL clone in 200 
µL of culture medium for 4 h. Assays were performed in 
triplicate in a 96-well U-bottomed plate. After incubation, 
100 μL of the supernatant was transferred into a 96-well 
flat-bottomed plate, and the fluorescence of each super-
natant was measured using an Infinite 200 plate reader 
(Tecan Group Ltd., Männedorf, Switzerland). Spontaneous 
release was obtained from target cells incubated without 
effector cells, and maximum release was obtained from 
detergent-released target cells. The percentage of spe-
cific lysis was calculated according to the formula: %spe-
cific lysis = 100 × (experimental release − spontaneous 
release)/(maximum release − spontaneous release).

ELISpot assay

IFN-γ ELISpot assay was performed using a commercial 
kit (Mabtech, Stockholm, Sweden) to determine the CTL 
response [37, 38]. Briefly, 96-well plates with nitrocel-
lulose membranes (Merck KGaA) were pre-coated with 
the primary anti-IFN-γ antibody at 4 °C overnight. After 
blocking with AIM-V medium containing 5% human 
serum, target cells (2 × 104/well) and KIF20A peptide-
specific CTL clones (2 × 103/well) were co-cultured in 
200 µL of culture medium at 37 °C for 24 h. These wells 
were treated with biotinylated secondary anti-IFN-γ mAb, 
followed by incubation with HRP-reagent and stained with 
TMB (Mabtech). The spots were then quantified with 
ImmunoSPOT S4 (Cellular Technology Ltd., Cleveland, 
OH, USA).

Western blotting

All samples were prepared and stained with antibodies, and 
the blots were visualized as previously described [40, 41]. 
The following were used as primary antibodies: STAT1 
mAb (Cell Signaling Technology, Inc.) at 1:1000, phospho-
STAT1 mAb (p-STAT1) (Cell Signaling Technology, Inc.) 
at 1:1000, PD-L1 mAb (Cell Signaling Technology, Inc.) at 
1:1000, PD-L2 mAb (Cell Signaling Technology, Inc.) at 
1:1000, STAT6 polyclonal Ab (Atras Antibodies, Bromma, 
Sweden) at 1:1000, p-STAT6 mAb (Thermo Fisher Scien-
tific, Inc.) at 1:1000, β-actin mAb (Santa Cruz Biotechnol-
ogy, Inc., Dallas, Texas, USA) at 1:2000. Horseradish per-
oxidase (HRP)-linked anti-rabbit antibody (Cell Signaling 
Technology, Inc.) at 1:2000 or the HRP-linked anti-mouse 
antibody (Santa Cruz Biotechnology, Inc.) at 1:2000 were 
used as secondary antibodies.

Flow cytometry

All samples were stained with antibodies, then measured 
and analyzed as previously described [40, 41]. The sam-
ples were stained with the following antibodies, which 
were purchased from Thermo Fisher Scientific, Inc.: PE-
conjugated anti-human CD274 (B7-H1; PD-L1) at 1:20, 
and APC-conjugated anti-human CD273 (B7-DC; PD-L2) 
at 1:20. Isotype-matched immunoglobulin served as a neg-
ative control.

RT‑PCR

Expression of KIF20A in GC cell lines was analyzed by 
reverse transcription PCR. Primers were used as described 
in Imai et al.: KIF20A, sense 5′-CTA CAA GCA CCC AAG 
GAC TCT-3′ and antisense 5′-AGA TGG AGA AGC GAA TGT 
TT-3′ and ACTIN, sense 5′-CAT CCA CGA AAC TAC CTT 
CAACT-3′ and antisense 5′-TCT CCT TAG AGA GAA GTG 
GGGTG-3′ [42].

Pathway analysis

We used the GC cell lines including MKN7, NUGC-3, 
NUGC-4, and OCUM-1. Tumor cell lines were treated 
with or without IFN-γ, and the isolation of total RNA from 
treated tumor cell lines, as well as the analysis of microar-
ray gene expression based on SuperPrint G3 Human Gene 
Expression 8 × 60 K v3 (Agilent, Inc., Santa Clara, CA), 
were performed at the Laboratory of Macrogen Japan Corp. 
(Tokyo, Japan). Upregulated genes by IFN-γ treatment were 
selected at a minimum fold change of 1.5 in each sample. 
The Database for Annotation, Visualization and Integrated 
Discovery v6.8 (https ://david .ncifc rf.gov) was used for path-
way (Kyoto Encyclopedia of Genes and Genomes PATH-
WAY) analysis on the list of selected genes [43].

Statistics

Comparisons of the IFN-γ or IL-4 gene signature with 
mRNA expression of PD-L1 or PD-L2, and of PD-L1 with 
PD-L2 mRNA expression, and of PD-1 with PD-L1 or 
PD-L2 mRNA expression were assessed using the scatter 
diagram and Pearson’s product-moment correlation coeffi-
cient. Fisher’s exact test, Chi-square test, and Mann–Whit-
ney U test were used to determine differences between two 
variables, where appropriate. The significance of results in 
the cytotoxic assay was determined using one-way analysis 
of variance followed by a Tukey’s post hoc test. Analyses 
were performed using SPSS Statistics Package version 25 

https://david.ncifcrf.gov
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(IBM, Chicago, IL, USA). All p values were two-sided, and 
those less than 0.05 were considered statistically significant.

Results

PD‑L2 expression on TCs significantly correlated 
with tumor progression

We used IHC to evaluate the expression of PD-L1 and 
PD-L2 in primary tumors from 194 GC patients. The clinical 

features of the patients are summarized in Table 1, and rep-
resentative immunostainings of PD-L1 and PD-L2 are pre-
sented in Fig. 1a. Regarding TCs, PD-L1 and PD-L2 were 
expressed in 64 (33.0%) and 55 (28.4%) patients, respec-
tively, and both were co-expressed in 31 (16.0%) patients 
(Fig. 1b). On the other hand, regarding TIICs, PD-L1 and 
PD-L2 were, respectively, expressed in 133 (68.6%) and 155 
(79.9%) of the patients, and both were co-expressed in 115 
(59.3%) patients (Fig. 1b).

The relationship between PD-L1 or PD-L2 expression 
and clinicopathological factors was shown in Table 2. We 
confirmed that both PD-L1 and PD-L2 expression on TCs 
was strongly associated with venous invasion, lymphatic 
invasion, depth of invasion, and higher TNM stage.

mRNA expression of PD‑L1 and PD‑L2 is significantly 
correlated with the IFN‑γ gene signature in GC

We previously reported that IFN-γ increased the gene 
expression level of PD-L2 in several cancer cell lines [35, 
39]. Although there have been few articles providing the 
regulatory mechanism of PD-L2 expression on TCs, Rozali 
et  al. and Loke et  al. both reported that IL-4 increased 
PD-L2 expression on macrophages [14, 15]. Therefore, in 
the present study, we focused on the IFN-γ and IL-4 signal-
ing pathways to elucidate the mechanism of PD-L2 expres-
sion on GC cells.

Analysis of TCGA stomach adenocarcinoma tissue data-
set (n = 269) revealed that there were strong significant 
positive correlations between the IFN-γ gene signature 
and PD-L1 or PD-L2 (Fig. 2a), as well as weak but signifi-
cant positive correlations between the IL-4 gene signature 
and PD-L1 or PD-L2 (Fig. 2b). These observations are in 
line with the results of our previous studies, which demon-
strated the correlation between IFN-γ production and PD-L1 
expression in the tumor microenvironment [35, 37, 39]. Fur-
thermore, PD-L1 expression was found to be strongly associ-
ated with PD-L2 expression (Fig. 2c) and PD-1 expression 
was significantly correlated with both PD-L1 and PD-L2 
expression (Fig. 2d).

PD‑1/PD‑L2 interaction inhibited the cytotoxicity 
of human CTL clone

We next addressed how PD-1/PD-L2 interaction influenced 
the antitumor effects of T cells. At first, the proportion of 
apoptotic IL-2 activated T cells after co-culture with NUGC-
3, which expresses both PD-L1 and PD-L2 (Fig. 3a), was 
analyzed using flow cytometry, as we recently reported that 
PD-1/PD-L1 interaction functionally led T cells express-
ing PD-1 to apoptosis [40]. To analyze the proportion of 
apoptotic T cells, CD3-positive cells were gated out of IL-2 
activated lymphocytes, and the proportion of Annexin V 

Table 1  Clinical features of the patient (n = 194)

The Japanese Classification of Gastric Carcinoma were defined 
according to the Japanese Gastric Cancer Association (The 15th Edi-
tion)

Age, years
 Mean 67.0(± 11.6)
 Range 30–90

Gender
 Male 129
 Female 65

Tumor location
 Upper 55
 Middle 73
 Lower 46
 Mixed 20

Histological type
 Differentiated 110
 Undifferentiated 84

Venous invasion*
 Negative 85
 Positive 109

Lymphatic invasion*
 Negative 76
 Positive 118

Depth of invasion*
 T1 97
 T2 21
 T3 21
 T4a 54
 T4b 1

Lymph metastasis*
 N0 114
 N1 28
 N2 26
 N3 26

TNM stage*
 I 105
 II 34
 III 34
 IV 21
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positive cells was measured (Supplementary Fig. S1a). PD-1 
expression was confirmed on IL-2 activated T cells (Sup-
plementary Fig. S1b). Anti-PD-1 mAb, anti-PD-L1 mAb, 
and anti-PD-L2 mAb reduced the population of apoptotic T 
cells (Supplementary Fig. S1c), indicating that PD-1/PD-L2 
as well as PD-1/PD-L1 interaction can affect the induction 
of T cell apoptosis, leading to an immunosuppressive role 
of PD-L2 in GC.

We subsequently performed ELISpot and cytotoxic 
assay using HLA-A24 restricted, KIF20A peptide-spe-
cific CTL clone in the presence of inhibitors for the PD-1 
pathway, such as anti-PD-1 mAb, anti-PD-L1 mAb, and 

anti-PD-L2 mAb. The GC cell lines, MKN7 and NUGC-3, 
were used as targets because both cell lines are HLA-A24 
positive [37] and express PD-L1, PD-L2, and KIF20A 
(Fig. 3a, b). Anti-PD-1 mAb, anti-PD-L1 mAb, and anti-
PD-L2 mAb significantly enhanced the cytotoxicity of the 
CTL clone against MKN7 and NUGC3 (Fig. 3c). These 
inhibitors also enhanced the IFN-γ production of the CTL 
clone against MKN7 and NUGC3 (Supplementary Fig. 
S2). These results again revealed that PD-1/PD-L2 as 
well as PD-1/PD-L1 interactions can affect the anti-tumor 
activity of T cells, leading to an immunosuppressive role 
of PD-L2 in GC.

Fig. 1  Representative IHC 
staining and the relationship 
between PD-L1 and PD-L2 
expression. a Representative 
IHC staining with PD-L1 and 
PD-L2 on TCs and TIICs. 
Original magnification × 200. 
b Relationship between the 
expression of PD-L1 and PD-L2 
on TCs and TIICs

a TCs TIICs

b
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PD-L2 expression
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+ -

PD-L1 
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on TIICs
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10.8 %
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Fig. 2  Correlation of IFN-γ or IL-4 gene signature with the mRNA 
expression of PD-L1 or PD-L2 in TCGA stomach adenocarci-
noma tissues dataset. a A heatmap showing IFN-γ gene signature 
and mRNA expressions of PD-L1 and PD-L2, and the correlation 
between IFN-γ gene signature and mRNA expressions of PD-L1 
or PD-L2. b A heatmap showing IL-4 gene signature and mRNA 
expressions of PD-L1 and PD-L2, and the correlation between IL-4 

gene signature and mRNA expressions of PD-L1 or PD-L2. c A 
heatmap showing mRNA expressions of PD-L1 and PD-L2, and the 
correlation between mRNA expressions of PD-L1 and PD-L2. d A 
heatmap showing mRNA expressions of PD-1, PD-L1, and PD-L2. 
The correlation between mRNA expressions of PD-1 and PD-L1 or 
PD-L2
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Upregulation of PD‑L1 and PD‑L2 by IFN‑γ and IL‑4 
in GC cell lines

The optimal condition of IFN-γ treatment was based on our 
previous studies [37, 39] and that of IL-4 was determined 
by the same strategy (data not shown) [37, 38]. As a result, 
to analyze PD-L1 and PD-L2 expression, the GC cell lines 
were treated with either 10 ng/mL of IFN-γ or 10 ng/mL 
of IL-4 as described in the Methods section of the pre-
sent study. Western blot analysis demonstrated that IFN-γ 
increased p-STAT1, which is a key molecule in the IFN-γ 
signaling pathway, and IL-4 increased p-STAT6, which is a 
key molecule in the IL-4 signaling pathway, in the GC cell 
lines (Fig. 4a). These observations validated that IFN-γ and 
IL-4 could efficiently act on these cell lines.

Treatment with IFN-γ increased PD-L1 expression in all 
the tested cell lines and PD-L2 expression in three out of 10 
cell lines (Fig. 4b and Supplementary Fig. S3). On the other 
hand, treatment with IL-4 did not affect PD-L1 expression 
in any tested cell lines and increased PD-L2 expression in 
two out of 10 cell lines (Fig. 4b and Supplementary Fig. S3). 
To analyze the regulatory mechanism of PD-L2 expression, 
we focused on four cell lines, MKN7, NUGC-3, NUGC-
4, and OCUM-1, because treatment with IFN-γ increased 

both PD-L1 and PD-L2 expression in MKN7 and NUGC-
3, but only PD-L1 expression in NUGC-4 and OCUM-1 
(Fig. 4b and Supplementary Fig. S3). The microarray gene 
expression analysis was performed for these cell lines after 
IFN-γ treatment. As a result, IFN-γ related genes in the JAK-
STAT pathway were significantly increased in all tested cells 
and, of note, signaling pathways of TNF and NF-κB were 
enhanced in MKN7 and NUGC-3, but not in NUGC-4 and 
OCUM-1 (Fig. 4c). These results may indicate that PD-L2 
expression is regulated by the TNF and the NF-κB signaling 
pathways, as well as the JAK-STAT pathway.

Discussion

It was revealed in an analysis of the ATT RAC TION-2 study 
for GC that some patients with PD-L1-negative tumors have 
a favorable response to anti-PD-1 mAb in GC [3]. Since 
PD-1 interacts with PD-L2 as well as PD-L1, PD-L2 expres-
sion on TCs may be involved in the clinical response. How-
ever, the immunosuppressive role of PD-L2 in GC has not 
yet been fully elucidated. In the present study, we revealed 
that a subset of GC patients expressed PD-L2 relating to 
tumor progression, and both IFN-γ and IL-4 can up-regulate 
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Fig. 3  Effect of anti-PD-1 mAb, anti-PD-L1 mAb, and anti-PD-L2 
mAb for anti-tumor specific CTL activity. a Surface expression of 
PD-L1 and PD-L2 was assessed by flow cytometry in MKN7 and 
NUGC-3. The black open curve is the specific ligand staining, and 
the gray filled curve represents the isotype control. b KIF20A expres-
sion was assessed by RT-PCR in GC cell lines. c The response of 
CTL clones treated with/without anti-PD-1 mAb against MKN7 or 

NUGC-3 treated with/without anti-PD-L1 mAb and/or anti-PD-L2 
mAb was assessed by cytotoxic activity using calcein-release assay. 
Experiments were performed in triplicate, and error bars represent the 
mean ± SEM. of indicated samples. The p value by two-way ANOVA 
and Tukey’s test for multiple comparisons versus control; *p < 0.05; 
**p < 0.01; ***p < 0.001. E:T, effector: target
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PD-L2 expression in GC cells. Furthermore, anti-PD-L2 
mAb enhanced the anti-tumor activity of CTLs against GC 
cells expressing PD-L2. These results indicate that PD-1/
PD-L2 interaction is significantly related to CTL function in 
GC and, to our knowledge, this is the first report to elucidate 

the immunosuppressive role of PD-L2 from the clinical and 
translational point of view in GC.

In our IHC cohort, 28.4% GC patients expressed PD-L2 
on TCs (Fig. 1b) and PD-L2 expression on TCs was sig-
nificantly associated with tumor progression (Table 2). 

Fig. 4  Effect of IFN-γ and IL-4 
for the expression of PD-L1 
and PD-L2 in GC cells. GC 
cell lines were treated without 
(control) or with 10 ng/mL 
IFN-γ or 10 ng/mL IL-4 for 1 h 
(a) or 48 h (b). Western blot 
analysis of relevant molecules 
in signaling pathways (a) and 
flow cytometric analysis of 
PD-L1 and PD-L2 expres-
sion (b) were performed, and 
representative results out of 
three independent experiments 
are shown. c Pathway analysis 
was performed in GC cell lines 
treated with IFN-γ as described 
in the Methods section
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TCGA stomach adenocarcinoma dataset also revealed that 
PD-L2 was expressed and was significantly co-expressed 
with PD-L1 in GC patients (Fig. 2c). Tanegashima et al. also 
reported that the PD-1/PD-L2 interaction appears to play a 
more important role in evading antitumor immunity than the 
PD-1/PD-L1 interaction in renal cell carcinoma and lung 
squamous cell carcinoma [44]. This report and our results 
in the present study indicated that a subset of GC patients 
expressed PD-L2 and PD-L2 as well as PD-L1 may suppress 
the immune response in the tumor microenvironment of GC.

PD-1 is expressed on CTL and binds to PD-L1 and PD-L2 
on target cells [9]. Activation of the PD-1 pathway leads 
CTL-dysfunction, resulting in tumor progression [19, 20]. 
In the present study, we indicated that PD-L1 and PD-L2 
were co-expressed on TCs of 16.0% GC patients in our IHC 
cohort (Fig. 1b), and, furthermore, PD-1 expression was sig-
nificantly correlated with PD-L1 and PD-L2 expressions in 
TCGA stomach adenocarcinoma tissues dataset (Fig. 2d). 
These reports and our results indicated that GC cells may 
express both PD-L1 and PD-L2 in the situation that CTL 
exist in the tumor microenvironment. To increase the effi-
cacy of immunotherapy for patients with GC, therefore, it 
is important to elucidate the expression mechanism and the 
immune suppressive role of PD-L2 in GC.

The mechanism to regulate the PD-L1 expression has 
been well demonstrated such as innate and acquired expres-
sion [45], and we recently reported that PD-L1 expression 
on GC cells significantly correlated with the presence of 
CD8 T cells in the tumor microenvironment and with the 
IFN-γ expression in TCs [39]. However, PD-L2 expression 
on human TCs has been demonstrated in limited studies, and 
the mechanism to regulate the PD-L2 expression in human 
TCs has not been fully elucidated [15, 16, 44]. Rozali et al. 
and Loke et al. both reported that IL-4 increased PD-L2 
expression in macrophages [14, 15], and we and Garcia-
Diaz et al. reported that IFN-γ upregulates the expression of 
PD-L2 in TCs [35, 39, 46]. Therefore, in the present study, 
we focused on IFN-γ and IL-4 as key regulators for the 
PD-L2 expression in GC.

Our results from TCGA stomach adenocarcinoma dataset 
(Fig. 2a, b) revealed that IFN-γ and, to a lesser extent, IL-4 
signatures significantly correlated with PD-L2 expression. 
Moreover, in vitro assay using GC cells (Fig. 4b and Supple-
mentary Fig. S3) showed that IFN-γ and, to a lesser extent, 
IL-4 can upregulate PD-L2 expression on GC cells. There-
fore, it is likely that IFN-γ and, to a lesser extent, IL-4 are 
involved in the regulatory mechanisms for PD-L2 expression 
in GC cells, although other unknown mechanisms also exist. 
Garcia-Diaz et al. recently reported that IFN-β as well as 
IFN-γ upregulate PD-L2 in melanoma cells through STAT3, 
which binds to the PD-L2 promoter [46]. We investigated 
STAT3 expression in GC cells treated with IFN-γ or IL-4 
using western blot, however, no correlation was observed 

between STAT3 and PD-L2 expression (data not shown). 
We speculate from the present study that the TNF and 
the NF-κB signaling pathways are involved in regulatory 
mechanisms for PD-L2 expression in GC cells, since these 
pathways were enhanced in MKN7 and NUGC-3 but not in 
NUGC-4 and OCUM-1 after IFN-γ stimulation (Fig. 4c), 
in which PD-L2 expression was increased by IFN-γ in the 
former two cell lines but not in the latter two. We need fur-
ther investigation to fully elucidate the mechanism of PD-L2 
expression in GC cells.

To our knowledge, this is the first report to directly show 
the functional consequence of the immunosuppressive role 
of PD-L2 in a human model, although two reports recently 
proved the antitumor activity of PD-L2 using a preclinical 
animal model [44, 47]. In the present study, using tumor 
antigen-specific CTL clone, we clearly showed that anti-
PD-L2 mAb significantly enhanced the cytotoxicity of CTLs 
against GC cell lines expressing PD-L2 (Fig. 3c). Taken 
together, the blockade of PD-1/PD-L2 interaction, in addi-
tion to PD-1/PD-L1 interaction, may be an optimum for the 
immune checkpoint inhibitors in GC patients.

In conclusion, PD-L2 is expressed on GC cells and PD-1/
PD-L2 as well as PD-1/PD-L1 interactions are functionally 
involved in anti-tumor CTL activities. Therefore, PD-L2 
expression also should be considered when determining the 
optimal immunotherapy for patients with GC.
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