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Abstract
Helicobacter pylori affect around 50% of the population worldwide. More importantly, the gastric infection induced by this 
bacterium is deemed to be associated with the progression of distal gastric carcinoma and gastric mucosal lymphoma in 
the human. H. pylori infection and its prevalent genotype significantly differ across various geographical regions. Based on 
numerous virulence factors, H. pylori can target different cellular proteins to modulate the variety of inflammatory responses 
and initiate numerous “hits” on the gastric mucosa. Such reactions lead to serious complications, including gastritis and 
peptic ulceration, gastric cancer and gastric mucosa-associated lymphoid structure lymphoma. Therefore, H. pylori have 
been considered as the type I carcinogen by the Global Firm for Research on Cancer. During the two past decades, different 
reports revealed that H. pylori possess oncogenic potentials in the gastric mucosa through a complicated interplay between 
the bacterial factors, various facets, and the environmental factors. Accordingly, numerous signaling pathways could be trig-
gered in the development of gastrointestinal diseases (e.g., gastric cancer). Therefore, the main strategy for the treatment of 
gastric cancer is controlling the disease far before its onset using preventive/curative vaccination. Increasing the efficiency 
of vaccines may be achieved by new trials of vaccine modalities, which is used to optimize the cellular immunity. Taken all, 
H. pylori infection may impose severe complications, for resolving of which extensive researches are essential in terms of 
immune responses to H. pylori. We envision that H. pylori-mediated diseases can be controlled by advanced vaccines and 
immunotherapies.
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Introduction

Helicobacter pylori bacterium is one of the most common 
human infectious agents around the globe. Genetic sequenc-
ing evaluation suggested that human and H. pylori have been 
co-evolved for a very long time [1]. Since its discovery in 
1982, H. pylori bacteria have directly been associated with 
a range of gastrointestinal conditions [2]. Currently, it is 

believed that H. pylori is  the most frequent etiologic agent 
involved in the infection-associated cancers, which holds 
5.5% of the cancer burden in the worldwide [3]. The preva-
lence of H. pylori is dependent on several factors, including 
geographical region, socioeconomic position, educational 
level, background and residing setting and lifestyle [4].

Two regular insufferable neoplasms started in the stomach 
include (i) adenocarcinoma and (ii) lymphoma of gastric, 
the so-called mucosa-associated lymphoid tissue (MALT). 
Although the possibility of gastric carcinoma infection 
has declined in some countries, this disease is considered 
as the major reason for the cancer-related demise in the 
world [3]. Unfortunately, many gastric cancers (GCs) are 
diagnosed in the advanced stages, so that the treatment of 
these diseases are rarely achieved by surgery and adjuvant 
therapy approaches [5, 6]. Gastric carcinomas and MALT 
lymphomas seem to occur in a setting of chronic gastric 
inflammation [7]. However, in the two past decades, the most 
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common reason for gastritis was shown to be induced by the 
consistent H. pylori infection. It should be noted that almost 
70% of global gastric cancer and gastric MALT lymphomas 
incidences are happening by the previous infection with H. 
pylori [6, 8].

Altogether, among different diseases that strongly linked 
to H. pylori infection, gastrointestinal malignancies remain 
as one of the most life-threatening ailment that require 
a  better understanding of the molecular mechanism(s) 
involved with the initiation and progression of the disease. 
Hence, in this review, we present some important mech-
anistic insights into the involvement of H. pylori in gas-
tric carcinogenesis and the impacts of passive and active 
vaccinations.

A glance at the pathogenesis of H. pylori

H. pylori is a Gram-negative spiral-shaped bacterium 
(Fig. 1) acquired often in the human infancy that can induce 
chronic gastric inflammation during human life, which is 
also the most crucial riskiness factor for gastric malignancies 

[9]. The impacts of H. pylori infection on the gastric malig-
nancies might depend on the anatomic location [10]. How-
ever, gastroesophageal junction cancer might be associated 
with either H. pylori infection or Barrett’s esophagus [11]. 
Therefore, the abolition of H. pylori has become a typi-
cal treatment modality in people with the gastric MALT 
lymphoma. Because H. pylori do not adhere effectively to 
the abdominal mucosal cells, linking this infection to the 
intestinal type gastric cancer may not be obvious when the 
intestinal metaplasia dominates the gastric topography. For 
the same reasons, serum antibody levels against H. pylori 
antigens decrease during the development of gastric cancer 
[12]. Although H. pylori mostly adhere to the epithelial cells 
of the stomach, it may also colonize at the proximal duode-
num resulting in a possible transformation of gastric tissue 
(the so-called metaplasia).

Accordingly, it has been articulated that the intracellular 
presence of H. pylori may promote its persistence, result-
ing in the induction of an inadvertent antibiotic resistance 
[13]. H. pylori utilize its very effective enzymatic pieces 
of machinery (e.g., urease) to buffer the gastric environ-
ment with pH 1–2 acidity [14]. Furthermore, the survival of 

Fig. 1  Helicobacter pylori structure and its infection mechanism. 
Various bacterial entities (e.g., toxins and enzymes) are involved in 
the interaction of bacteria with the host cells and its evasion from 
the immune system surveillance. Flagella gives motility and enables 
the bacterium to grow under the mucosal membrane. LPS lipopoly-
saccharides and membrane proteins adhere to the host cell recep-

tors. Urease enzyme is used to combat the acidic environment of the 
stomach by producing ammonia. VacA exotoxin causes injury to the 
mucosal membrane. T4SS Type IV secretion system that uses a pillus 
to inject effectors (inset). CagA causes actin remodeling and inhibits 
apoptosis. Outer proteins (BabA, Oip, SabA, Others adhesins) adhere 
to the host cells
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bacteria is facilitated by the helical morphology and unipo-
lar flagella permitting movement within the gastric mucous 
layer via overlaying among and/or within the gastric epithe-
lial cells (Fig. 1) [15].

Genomics of H. pylori

Variations of the H. pylori genome is significantly associ-
ated with the migration trends of human populations, which 
connecting the geographical dissemination of the microor-
ganism leading to the emergence of mankind life [16]. H. 
pylori genome was sequenced in 1997 [17] and since then 
several full genome sequences (at least 7) have been reported 
[17–22]. Generally, the H. pylori genome comprises about 
1.6 megabases, encoding approximately 1500 predicted open 
reading frames (ORFs) and about 20–30% genomic varia-
tion among different strains. This issue is relatively high 
percentage of bacterial species, resultant from the high spon-
taneous mutation rate and recombination frequency within 
the microorganism genome [23]. Several variable regions 
within the H. pylori genome have already been identified, 
including “plasticity zone” and “cytotoxin-associated gene” 
(Cag) pathogenicity island. The Cag island encodes a few 
structural proteins that required for assembling four secre-
tion systems, effective on the translocation of the H. pylori 
products (e.g., immune dominant 120–145 kDa CagA pro-
tein) [24] within the host gastric epithelial cells [25]. The 
H. pylori genome also encodes several adhesion proteins 
that are important for ensuring tight contact between H. 
pylori and gastric epithelial cells. These proteins include 
the blood group antigen binding adhesin (BabA) and the 
sialic acid binding adhesin, SabA. VacA gene of H. pylori 
encodes a multimeric vacuolating secretory cytotoxin (88 
kDa), which is effective for developing the intracellular vac-
uoles in the gastric and different epithelial cells [26]. This 
gene is conserved among all H. pylori strains. Nevertheless, 
the gene exhibits a high level of genetic variation within 
regions that encode the signal sequence, intermediate factor, 
and the middle portion of the VacA protein [27]. The recent 
evaluation of the transcriptome of H. pylori strain 26,695 
has revealed that the simultaneous presence of sense and 
antisense transcripts from common RNA sequences within 
the organism [28], introducing another level of complexity 
of the genome. Multiple RNAs forms such as non-coding 
RNAs were also reported within the H. pylori.

H. pylori pathogenesis in GC

H. pylori produce many different virulence factors that may 
dysregulate the host intracellular signaling mechanism(s) 
and promote the neoplastic transformation [29]. Among 

those, CagA and its pathogenicity region (Cag PAI), and 
VacA (vacuolating cytotoxin A) are deemed as the signifi-
cant pathogenic factors, which will be discussed in the fol-
lowing sections (Fig. 2) [24].

Impacts of CagA in GC

The Cag PAI is a 40 kb locus comprising 27–31 genes. A 
few genes within this locus encode the CagA protein and the 
Cag type IV secretion process (T4SS) [30]. Of these, the 
T4SS forms a syringe-like pilus structure, through which 
the CagA protein can be injected into the host cells, leading 
to the modulation of cellular processes in the favor of the 
pathogenic activity of an invader. For such phenomena, the 
ectodomain of a5b1 integrin seems to be a vital step for the 
translocation of CagA into the host cells [31]. Subsequently, 
CagA binds to the internal surface of the cell membrane 
and undergoes tyrosine phosphorylation at glutamate-pro-
line-isoleucine-tyrosine-alanine (EPIYA) site by Src fam-
ily kinases. It should be noted that the phosphorylated and 
unphosphorylated CagA interact with numerous host pro-
teins, resulting in the activation of some downstream signal-
ing pathways, including the Ras/mitogen-activated protein 
kinase (MEK), extracellular signal-regulated kinase (ERK) 
[32, 33], nuclear element ҡB (NF-ҡB), and β-catenin path-
ways. These biological functions appear to enhance the pro-
liferative ability of the gastric epithelial cells (Fig. 2) [34].

Impacts of VacA in GC

H. pylori secrete the vacuolating cytotoxin (VacA) via a 
type V auto transport release system [24]. VacA is an 88 
kDa, constituting p33 and p55 subunits, in which the p33 
protein (N-terminal, 33 kDa) forms an inner channel for 
the chloride transportation and the p55 protein (C-termi-
nal, 55 kDa) is responsible for the presentation of toxin 
into the host cells [35]. VacA has several biological activi-
ties, and it can bind to a variety of cells. After the inter-
nalization, it can induce intense vacuolation by the accu-
mulation of large vesicles existed in both early and late 
endosomes. VacA can be transferred to the mitochondria, 
in which it causes the dissipation of mitochondrial trans-
membrane potential (∆Ψm), discharge of cytochrome c, 
and the activation of pro-apoptotic factor Bcl-2 associated 
X protein (Bax). All these proteins can eventually involve 
in the apoptosis [36]. During VacA-induced mitochondria 
perturbation, the activation of dynamin-related protein 1 
(DRP1) may play a critical role because the inhibition of 
DRP1-dependent mitochondria fission within the VacA-
intoxicated cells was shown to inhibit the activation of 
Bax and mitochondrial outer membrane permeabilization 
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(MOMP) and also prevent the death of intoxicated cells 
[37]. Moreover, VacA can affect the restricted connections 
of the epithelial cells and prevent T lymphocyte activa-
tion and expansion in the lamina propria. It seems that 

the disruption of the autophagy could be considered as 
another mechanism by which VacA causes gastric inflam-
mation, and hence, contributes to gastric carcinogenesis 
(Fig. 2) [38, 39].

Fig. 2  Dysregulation of the apical-junctional complex by H. pylori. 
a Released and imported urease can phosphorylate MLC by MLCK 
kinase, leading to the disruption of tight junctions between the 
stomach cells. b Vacuolating cytotoxin A (VacA) is secreted by the 
bacteria, which can then bind to host cells. Once internalized by 
the host gastric epithelial cells, VacA can induce a severe vacuola-
tion—seen as the accumulation of large vesicles similar to early and 
late endosomes, and early lysosomes. The development of “vacuoles” 
has been attributed to the formation of VacA anion-selective channels 
in membranes. Besides, the p33 subunit  of VacA can enter  into the 

mitochondria and disrupt their function. Moreover, VacA by effecting 
on the tight junction elements such as occludin, claudin and JAM-1 
can disrupt the junctions between the stomach cells. c After import-
ing the CagA into the stomach cells, it can physically interact with 
the E-cadherin, releasing of and importing β-catenin into the nucleus. 
H. pylori can induce the nuclear translocation of p 120 protein, which 
can increase the releasing level of β-catenin. In the nucleus, β-catenin 
can  induce the accumulation of the tcf/LEF and subsequently the 
highly increasing the cell proliferation
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H. pylori responses and its role 
in the induction of GC

H. pylori infection and the resultant chronic inflammation 
in the gastric mucosa is believed to be the major part of the 
initiation, development, and progression of GC. In fact, H. 
pylori bacteria stimulate an inflammatory response both in 
the gastric epithelial cells and the immune cells recruited 
to the site of infection through multiple mechanisms [40]. 
It has been shown that the H. pylori infection upregulates 
the functional expression of several pro-inflammatory 
cytokines such as interleukin (IL) 1, IL-6, IL-8, tumor 
necrosis factor α (TNF-α), NF-ҡp, and also regulates 
the activation of regular T cells [40]. These cytokines, 

particularly NF-ҡB, are key mediators of gastric patho-
physiology and may perform important roles in the devel-
opment of gastric inflammation and cancer (Fig. 3).

Role of CSCs in H. pylori‑induced gastric 
inflammation and carcinogenesis

Cancer stem cells (CSCs) are considered as a special set 
of cells with the self-renew ability for the differentiation 
to mature tumor cells [41]. Recently, it  is thought that 
CSCs perform a pivotal role in the development of sev-
eral cancers such as GC [42]. Although the origin of the 
gastric CSCs is not absolutely clear, it is believed that 
they originate from the segregated gastric epithelial cells, 

Fig. 3  Schematic view of H. pylori infection and the induction 
of  matrix metalloproteinases (MMPs) involved with  both cellular 
and humoral components. a Cellular responses. During the infec-
tion of H. pylori, CagA with type IV Secretion System (TSSIV) 
enter  into the gastric epithelial cells. CagA phosphorylation occurs 
by host’s Src/Abl kinases and the phosphorylated CagA activates a 
series of signaling molecules such as  inflammatory cytokines, ROS, 
MMPs, leading the aberrant cellular function. b Humoral responses. 
H. pylori prime the host immune system by various lymphocyte sub-

sets through dendritic cells (DC)-mediated antigen presentation to the 
naive T cell. Under the influence of specific cytokines and foreign 
antigens, the naive T cells start switching and differentiate into the 
effector T subtypes via signature transcription factors. TH17 and TH1 
promote the inflammatory response while Treg arrests the reactions 
by secreting immunosuppressive cytokines; and thereby, maintaining 
H. pylori inside the gastric mucosa. TH17 stimulates MMPs through 
IL-17 and IL-21
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local progenitor cells in the gastric mucosa, or bone mar-
row-derived cells (BMDCs) [43]. Some in vivo animal 
studies have demonstrated that the chronic inflammation 
could induce gastric CSCs, resulting in H. pylori-induced 
GC [44]. Intriguingly, some virulence factors of H. pylori 
(e.g., CagA protein, T4SS or VacA protein) might not be 
involved in the mobilization of gastric CSCs, but rather, 
the certain undiscovered virulence factors and cytokines 
secreted by contaminated epithelial cells (e.g., TNF-α) 
could be involved in this process [44]. The role of BMDCs 
in H. pylori-induced gastric carcinogenesis has recently 
been reported, showing that the strains of H. pylori were 
able to recruit bone marrow stem cells to the gastric 
mucosa via different capacities, upon which they could 
turn into the gastric glands with the possibility to evolve 
towards metaplasia and dysplasia [45].

Mechanisms of H. pylori‑induced gastric 
carcinogenesis

The chronic inflammation is stimulated by the persistent 
H. pylori infection, which can create a permissive micro-
environment with the plethora of inflammatory cytokines 
as well as reactive oxygen and nitrogen species (ROS and 
RNS)  that have the potential to induce cellular damage and 
mutagenesis [46]. Accelerated cell turnover in such micro-
environment can result in (a) the emergence of cell lineages 
which are not normally found in the stomach (gastric meta-
plasia) and in a small part of humans infected chronically 
by H. pylori, and (b) the development of neoplastic clones 
under the pressure of accelerated DNA replication [47]. As 
such, the chronic inflammatory state is deemed to be the fea-
ture of several common individual malignancies, especially 
in the gastrointestinal tract. Other such examples include 
chronic acid reflux esophagitis (predisposing to Barrett’s 
metaplasia and esophageal adenocarcinomas), chronic viral 
hepatitis (increasing the danger of hepatocellular cancer) 
and the chronic colonic inflammation of the inflammatory 
bowel diseases (IBD) that are associated with the increased 
risk of colon cancer [48].

Some investigations focusing on pro-inflammatory 
immune responses against H. pylori infection have mainly 
been designed based on in vitro models using gastric epithe-
lial AGS cells. Further, it is critical to define the modulating 
mechanisms of the antigen presenting cells such as dendritic 
cells (DCs) as well as B and T lymphocytes by H. pylori. 
Given the interactions between pathogen and gut-associated 
immune cells, it is envisioned that DCs play a major role, 
through Toll-like receptors (TLRs), in the regulation of the 
responses of the adaptive immune against H. pylori [49] 
(Fig. 3).

H. pylori‑induced changes in epithelial gene 
expression and regulation

Of numerous alterations induced by H. pylori in the gastric 
epithelial cells, the differential expression of various gene 
clusters plays vital roles in promoting gastric epithelial cell 
transformation [50]. Although TP53 mutation is one of the 
common molecular hallmarks of various malignancies, there 
are inconsistent studies about the regulation of wild-type p53 
appearance by H. pylori during the pre-neoplastic stages in 
GC [50]. Nevertheless, the p73, a homologous of p53 pro-
tein, has recently been shown to be highly responsive to H. 
pylori, which seems to be much more important than p53 in 
regulating apoptotic phenomena within the gastric epithelial 
cells [51].

H. pylori infection has a causal role in the induction of spe-
cific alterations on the DNA methylation patterns in the gastric 
mucosa of H. pylori-infected patients and GC cell lines [52]. 
Of these genes that specifically methylated by H. pylori infec-
tion, the E-cadherin (CDH1) has a specific importance in the 
diffuse type of gastric carcinogenesis. In fact, germline muta-
tions in CDH1 are responsible for the syndrome of heredi-
tary diffuse GC and commonly acquire in the sporadic diffuse 
type of GC [53]. It should be noted that the methylation of the 
E-cadherin promoter is reverted to the normal state after the 
eradication of H. pylori [54]. H. pylori infection also causes 
hypermethylation leading to a decrease in the expression of 
DNA repair protein O-6-methylguanine-DNA methyltrans-
ferase. The latter enzyme is a biomolecule, which is normally 
involved in the prevention of cytosine: guanine to adenine: 
thymine change mutations, and thus, DNA replication fidelity 
[55].

Several groups have recently analyzed the microRNA sig-
natures of the H. pylori infection and showed that the dys-
regulation of miRNA expression could be mechanistically 
linked between the H. pylori infection and the development 
of gastric malignancies [56]. Furthermore, a study of the dif-
ferential expression of microRNAs between H. pylori-positive 
and negative patients showed that 14 of 30 miRNAs after H. 
pylori eradication were repaired [57]. Further, the upregula-
tion of certain miRNAs such as the members of let-7 family 
is affected in the presence of the Cag pathogenicity island. 
However, miR21 and miR155 could be upregulated during 
the occurrence of H. pylori infection, which may provide 
some insights about the significance of these markers in vivo 
[58–60].
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Loss of gastric acidity

H. pylori bacteria are one of the bacterial species that can 
efficiently survive in an extreme condition (pH 2–3) of 
the gastric lumen. The resident bacteria in the oral cav-
ity and gastrointestinal regions can be colonized in the 
stomach if the gastric pH reaches to pH 7. The chronic 
gastric inflammation may be predisposed to GC through 
atrophy of gastric glands due to the lack of the specialized 
acid-secreting parietal cells [61]. In the state of hypochlo-
rhydria, the colonization and growth of non-Helicobacter 
species may generate carcinogenic and potentially geno-
toxic nitrosamines [62]. It should be noted that the inter-
play between H. pylori infection, gastric acid secretion 
and clinical outcome is complicated, which is dependent 
on a large region within the stomach with maximal H. 
pylori infection. For instance, despite being infected by H. 
pylori, individuals who involved with the duodenal ulcers 
showed high acid secretory rates, while they had a very 
small chance of developing GC [63]. Such discrepancy 
seems to be explicable on the foundation of H. pylori 
infection in such patients being solely confined to the 
gastric antrum rather than other regions. Such infection 
may result in the depletion of the somatostatin secreting 
cells in the region and eliciting a subsequent exaggerated 
release of the acid secretory hormone gastrin from the 
particular antral gastrin-secreting neuroendocrine cells. 
When the proximal stomach has not infected with H. 
pylori, in duodenal ulcer patients, the high levels of gas-
trin can stimulate the healthy parietal cells of the proxi-
mal stomach towards hypersecretion gastric acid, causing 
inevitable ulcerative damages in the proximal duodenum 
[64]. Although some patients have high levels of gastrin, 
their parietal cells present an intriguing hyper-functional 
environment of intense proximal stomach inflammation 
and consequently glandular atrophy of H. pylori-induced 
inflammation [65].

Role of oxidative stress and DNA damage 
in H. pylori‑induced gastric inflammation 
and carcinogenesis

The pathogenesis of H. pylori-associated gastric carcino-
genesis appears to be associated with the generation of 
intracellular ROS RNS in the human stomach, as well as 
the oxidative stress and DNA damages (e.g., p53) [66, 
67]. It is demonstrated that H. pylori can induce the gen-
eration of ROS and RNS in the host gastric epithelial cells 
and inflammatory cells (e.g., neutrophils) [68], indicating 
their important roles in the gastric carcinogenesis.

Gastric immune response to infection

In the absence of H. pylori antigenic stimulation, the stom-
ach appears to act as a relatively quiescent organ with little 
evidence of immunologic activity. Further, an oral immuni-
zation that supports the trafficking and migration of antigens 
into the mucosal organs of antigen-specific T cells and IgA 
B cells may result in originating in the gut-associated lym-
phoid tissues (GALT). So that, the uninfected stomach is 
segregated from the continuous entry of lymphocytes into 
the mucosal sites [69, 70]. These findings indicate a paucity 
of local gastric cytokines and chemokines involved in guid-
ing integrin expression, leukocyte homing, and an influx in 
the absence of H. pylori-driven inflammation. Early events 
during binding H. pylori to the gastric epithelial cells are 
mediated by the interaction of epithelial cell glycoconjugate 
and integrin receptors with their cognate H. pylori ligands 
[71–74]. Adhesion reaction induces the translocation of H. 
pylori protein antigens into the epithelial cells by type IV 
secretion [75] and the focal reorganization of cytoskeletal 
proteins into the membrane pedestals [76]. Tyrosine phos-
phorylation of the host proteins leads to the activation of 
NF-κB transcription factor than promoting the production of 
inflammatory cytokines and chemokines [77, 78]. Accord-
ingly, gastric biopsies from the infected subjects exhibit the 
increased levels of several factors, including interleukin-1β 
(IL-1β), IL-6, IL-8, IL-12, tumor necrosis factor alpha 
(TNF-α), growth-related oncogene, monocyte chemotac-
tic protein-1, macrophage inflammatory protein-1 alpha, 
and regulated-upon-activation T expressed and secreted 
(RANTES) chemokines [79]. The chemical gradients cre-
ated by these molecules can be harmonized the expression of 
cell adhesion receptor–ligand pairs and favor the leukocyte 
recruitment, accumulation, and activation (Fig. 3).

It is clear that during the infection of gastric tissues, H. 
pylori upregulates the expression of the CD11b/CD18 inte-
grin and its receptor and intercellular-adhesion molecule-1 
(ICAM-1; CD54) used for the leukocyte transmigration into 
inflammatory sites [80–82]. H. pylori can also increase the 
expression of CD80 and CD86 in gastric epithelial cells [83] 
required for the costimulation T cells and the upregulation 
of class II major histocompatibility complex (MHC) in vivo 
[84, 85]. Importantly, the class II of MHC heterodimer may 
itself act as a receptor for H. pylori [86].

Immune evasion strategies employed by H. 
pylori

To explain its persistence in human populations, H. pylori 
has been suggested either to tolerize the host from mount-
ing a protective immune response or to interfere with the 
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immune responses that would otherwise result in its elimi-
nation [87]. While the carriage of the H. pylori does not 
induce peripheral tolerance, several studies indicated the 
ability of H. pylori to downregulate the T-cell proliferation 
[88] and IL-15 transcription [89] and also to restrict the cog-
nate interactions in the T-cell activation through the pertur-
bation of endocytosis and antigen processing [90]. Recent 
findings showed that the persistence of H. pylori might also 
be related to its capacity to inhibit T cells by the induction 
of apoptosis through Cag pathogenicity island (PAI) and the 
expression of Fas ligand and evade the immunosurveillance 
[91]. H. pylori can polarize the host cells and T cells and 
alter their responses. Given that the H. pylori infection is 
dominated by the regulatory T cells and T helper 1 (Th1) 
cells through induced Th17 and the expression of IL-17 and 
IFN-γ [92, 93], its immunization may be observed as a type 
of Th1-dominant response that is in favor of the bacterial 
growth and progression.

Vaccines

Vaccines have been developed against a large number of 
infectious and non-infectious diseases [94]. Early attempts 
focused on the recombinant urease showed some promis-
ing outcomes in animals, nevertheless, some subsequent 
clinical trials were hampered by a number of certain side 
effects of mucosal adjuvants [95]. More recently, an intra-
muscularly administered trivalent vaccine (recombinant 
CagA, VacA, and neutrophil-activating protein) was devel-
oped, while unfortunately the antigens were recognized by 
the host’s cellular and humoral immune systems, causing 
no immunity in a challenged model [96]. Chen et al. syn-
thesized an H. pylori oipA DNA construct, as a therapeu-
tic vaccine, that was delivered by attenuated Salmonella 
typhimurium in the C57BL/6 mouse model with H. pylori 
strain SS1 infection [97]. To increase the expression level, 
the oipA gene was codon-optimized for the mammalian 
cell systems, resulting in a 2-log reduction of H. pylori 
colonization with sterilizing immunity achieved in three 
out of 10 mice. The LPS of H. pylori is relatively nontoxic 
but may promote autoimmune responses. Considering the 
potential of polysaccharide-based conjugate vaccines, 
Altman et al. chemically modulated the LPS of H. pylori 
by delipidation and conjugation processes to enhance the 
immunogenicity [98]. Prophylactically administering of 
the oipA antigen induced enhanced antibody responses 
and a modest reduction in gastric H. pylori loading. Two 
groups of tested H. pylori antioxidant proteins in the 
mouse models demonstrated the partial protection for 
both alkyl hydroperoxide reductase (AhpC) [99] and a 
trivalent superoxide dismutase/catalase/thiol peroxidase 

preparation [100]. The AhpC was found to be beneficial 
when administered subcutaneously with alum, while the 
trivalent vaccine was successful intranasally with the 
cholera toxin. Moreover, mannosylation could generally 
improve the antigen presentation, nonetheless, the protec-
tion afforded by mannosylated AhpC was no better than 
that of the native protein [99]. Recently, based on the 
relative immunodominance of H. pylori, the Lpp20 outer 
membrane lipoprotein in the immunized rabbit antiserum 
was used to prime BALB/c mice with the recombinant 
Lpp20 [101]. Then, splenic T-cell responses were analyzed 
to eight peptides predicted in silico as Lpp20 epitopes. 
Two of these epitopes showed immunogenicity through 
the proliferation and cytokine secretion assays. Further-
more, some researchers used restricted HLA and evalu-
ated their immunogenicity effects. Based on the results 
obtained from murine studies of a multi-T-cell epitope 
construct against urease B, dominant UreB T-cell epitopes 
were identified in two H. pylori-infected patients [102]. 
Each subject revealed the dominant HLA-restricted T-cell 
responses to different regions of UreB identified by the 
peptide stimulation in vitro. However, the applicability 
and practicality of this approach and the development 
of haplotype-specific vaccine remain to be determined. 
The same group [103] used a multi-T-cell epitope pseudo 
protein containing 17 putative HpaA, UreB, and CagA 
epitopes. Once administered prophylactically subcutane-
ously in BALB/c mice, the colonization was decreased 
by 1–2 logs. Despite the modestly improving parameters 
of humoral and cell-mediated immunity, none of the four 
tested adjuvants could significantly enhance the vaccine 
efficacy. It was reported that a single epitope of urease 
A, given intragastrically as a 20-mer peptide with chol-
era toxin B as an adjuvant, achieved a 1-log reduction 
in BALB/c mice administered either prophylactically or 
therapeutically [104]. Identifying the optimal adjuvant/
delivery strategy is critical for the clinical trials. Given 
that cholera toxin and Escherichia coli LT antigen can 
induce diarrhea in humans, a recently developed LT dou-
ble mutant (R192G/L211A) was tested via the sublingual 
or intragastric route together with H. pylori lysate in mice 
[105]. The LT mutant was similar to the cholera toxin in 
terms of protective immune responses and efficacy. An 
alternate adjuvant strategy is the use of an engineered chi-
meric flagellin (H. pylori/E. coli) to activate TLR5. The 
prophylactically administered vaccine (as boosts given 
with alum) was reported to significantly reduce the H. 
pylori DNA levels in association with enhanced serum 
IgG antibody levels [106]. Finally, because H. suis is 
a significant cause of gastric ulcers in pigs, a BALB/c 
mouse vaccine model was developed against this disease. 
Whole H. suis lysate or recombinant UreB, but not rNapA, 
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showed promise in terms of the bacterial colonization 
when administered prophylactically [107].

Retrospective and new considerations in H. 
pylori vaccine development

The results of the clinical studies (Table 1) performed to 
date present a re-evaluation of the understanding of H pylori 
immunity. Although it must be acknowledged that the mouse 
model is extremely useful for helping to define differences in 
the nature of the immune responses to infection and immu-
nization, it may lack predictive ability when designing an 
efficacious vaccine. Most studies defined protection as a 
significant reduction in bacterial load, with only occasional 
reports of sterilizing immunity [108, 109]. Additional evi-
dence revealed that the levels of protection observed in mice 
might not reflect its use in the human. Based on the data 
obtained from the primate studies (e.g., rhesus macaques 
harboring native H. pylori infections), one may deduce that 
in a model of indigenous H. pylori infection, vaccines simi-
lar to those tested on mice are much less efficacious [110, 
111]. In fact, the host response to H. pylori is actively sup-
pressed by regulatory T (Treg) cells and IL-10-producing 
Tr1 cells [49, 112]. In vitro lymphocyte recall assays on 
infected and non-infected subjects demonstrate comparable 
responses to H. pylori antigen [112, 113]. Further, depletion 
of CD25hi T cells led to significant activity in the T cells 
isolated from H. pylori-infected donors [114]. Subsequent 
experiments have documented that the presence of Treg cells 
in the infected human stomach might cause a blockage or 
suppression of Treg cells, and hence, significantly increas-
ing the activity of T-helper cells and gastric inflammation 
and markedly reducing/eliminating the bacterial load from 
the stomach [49, 115, 116]. The host gastrointestinal tract 
inherently suppresses the immune responses to commen-
sal bacteria, thus future strategies might incorporate the 
mechanisms of limiting Treg cells activity or preferentially 

activating proinflammatory T cells that can overcome the 
activity of Treg cells. In that light, the administration of 
IL-12 to H. felis-infected mice was sufficient to achieve the 
eradication of the bacteria in the absence of immunization 
[117]. Finally, although the results have yet to be published, 
a large-scale phase III of the clinical trial was completed in 
China to test a prophylactic oral vaccine against the natural 
acquisition of H. pylori [118]. The vaccine was tested on 
children aged 6–15 years who were negative in terms of 
H. pylori. The oral vaccine contained the urease B protein 
subunit, while additional details remain unknown. It was 
administered in three 15-mg immunization doses, and the 
children were monitored to determine the rate of natural 
H. pylori infection. Studies in mice indicate that antibod-
ies are sufficient to prevent the infection when present at a 
challenge sufficiently [119]. Recently, a novel oral vaccine 
has been constructed against the H. pylori infection in the 
children. On the basis of the phase III data, the researchers 
claimed the vaccine as a safe and well immunogenic treat-
ment modality that could prevent the H. pylori infection with 
a high rate (up to 71·8%) [120]. To date, almost twenty US 
patents have been submitted about the different aspects of 
H. pylori infection from 1997 to 2015 years.

New strategies about H. pylori vaccine 
construction

Recently, some researchers have focused on the recombinant 
vaccines with multiple T- and/or B-cell epitopes against H. 
pylori infection. Multi-epitope vaccines that generally com-
posed of  CD4+ and  CD8+ epitopes have been examined due 
to their safety, stability, cost-effective production, and high 
specificity. However, the main drawback of this approach 
is the low immunogenicity that is also observed in the oral 
vaccines [124].

Identifying and using the protective antigens and viru-
lence factors is another approach for designing vaccines 

Table 1  Clinical trials for vaccine efficacy against H. pylori 

References Year Route Antigens Adjuvant Timing Challenge Result

[121] 1999 Oral Urease LT mutant Therapeutic Natural Significant reduction in bacterial 
load in some vaccine groups

[122] 2001 Oral Whole cell LT mutant Therapeutic Natural No clearance
[123] 2008 Oral Urease or Hp0231 Salmonella enterica 

serovar Typhi 
Ty21a

Prophylactic Experimental Some clearance in both vaccine and 
control groups

[96] 2012 Intramuscular CagA VacA Nap Alum Prophylactic Experimental Clearance equivalent between vac-
cine and controls groups

[118] 2014 Oral Urease Undisclosed Prophylactic Natural Efficacy, 72%
[120] 2015 Oral Urease Undisclosed Prophylactic Experimental Significant prevention of the infec-

tion in the children



32 H. Maleki Kakelar et al.

1 3

against developing cancers and H. pylori infection. Dif-
ferent virulence factors have been used for constructing 
high effective vaccines against H. pylori, including urease 
(UreA and UreB), vacuolating cytotoxin (VacA), neutro-
phil-activating protein (NapA), CagA, heat shock proteins 
(Hsps), and different types of outer membrane protein 
(Omps) [125, 126]. A chimeric vaccine, consisting of UreA 
and UreB, was constructed and expressed in E. coli. The 
recombinant protein was purified and used for intragastric 
vaccination of Mongolian gerbils [127] and C57BL/6 mice 
[128], which showed partial inhibition of H. pylori infec-
tion. Regarding the limited success of intragastric vaccina-
tion, some researchers have focused on new platforms for 
an oral administration of the vaccines, including a vaccine 
expressed in Lactococcus lactis NZ9000, and the spores 
of Bacillus subtilis. Because the bacteria show very low 
survival in the gastrointestinal tract, the antigen-based 
vaccines, which was expressed cytoplasmically, could be 
released in this tract resulting in the minimization of the 
H. pylori infection [125].

Microalgae, as a group of photosynthetic microorgan-
isms, have unique characteristics (fast growth rate and 
simple and cost-effective cultivation procedure) [129] 
and can be used as edible vaccines. The cell-wall poly-
saccharides of different microalgae, which might present 
a natural encapsulation for the recombinant proteins and 
protect them within the harsh conditions of the stomach 
and intestine and act as an effective adjuvant for boosting 
the immune system [130, 131].

Conclusion

During H. pylori-induced chronic inflammation and sub-
sequent carcinogenesis, various bacterial, host, and envi-
ronmental factors may be associated in the emergence of 
inflammation and progression of the disease. While hav-
ing H. pylori in over 50% of the world’s population, only 
2% of the infected cases develop GC and fewer develop a 
MALT lymphoma. Given such variable threat of H. pylori 
infection-mediated malignancy, what are the important 
factors or co-factors involved in dictating which individu-
als with H. Pylori infection will undergo H. pylori-induced 
gastric transformation? Some of the variability in outcome 
can be correlated with the bacterial strain specificity, host 
genetic susceptibility, and the type of immune response 
elicited in the infected host.
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