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Abstract
Background  Gastric cancer (GC) is one of the high-incidence and high-mortality cancers all over the world. Though genome-
wide association studies (GWASs) have found some genetic loci related to GC, they could only explain a small fraction of 
the potential pathogenesis for GC.
Methods  We used multi-marker analysis of genomic annotation (MAGMA) to analyze pathways from four public pathway 
databases based on Chinese GWAS data including 2631 GC cases and 4373 controls. The differential expressions of selected 
genes in certain pathways were assessed on the basis of The Cancer Genome Atlas database. Immunohistochemistry was also 
conducted on 55 GC and paired normal tissues of Chinese patients to localize the expression of genes and further validate 
the differential expression.
Results  We identified three pathways including chemokine signaling pathway, potassium ion import pathway, and inter-
leukin-7 (IL7) pathway, all of which were associated with GC risk. NMI in IL7 pathway and RAC1 in chemokine signaling 
pathway might be two new candidate genes involved in GC pathogenesis. Additionally, NMI and RAC1 were overexpressed 
in GC tissues than normal tissues.
Conclusion  Immune and inflammatory associated processes and potassium transporting might participate in the development 
of GC. Besides, NMI and RAC1 might represent two new key genes related to GC. Our findings might give new insight into 
the biological mechanism and immunotherapy for GC.
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Introduction

Globally, gastric cancer (GC) is one of the most prevalent 
high-mortality cancers, and is reckoned to cause 951,000 
new cases and 723,000 deaths each year [1]. In China, the 
disease burden of GC is extremely high, and it has been 
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indicated that the number of new GC cases and deaths for 
2015 are 679,100 and 498,000, respectively [2]. The most 
important known cause of GC is chronic inflammation 
induced by Helicobacter pylori (H. pylori) infection [3, 4], 
but malignant transformations were found to occur in only 
a small percentage of infected individuals. Therefore, apart 
from H. pylori infection, other factors such as genetic fac-
tors, dietary factors, Epstein-Barr virus infection, smoking 
and obesity may also contribute to incidence of GC [5, 6].

Germline variations of genomic sequence are impli-
cated in the predisposition to most complex traits, includ-
ing gastric cancer. Genetic variants in IL1B, encoding a 
cytokine with a pivotal role in GC development, were 
among the most studied variants based on candidate gene 
approach, and two variants (rs1143634 and rs16944) 
were associated with gastric cancer in an intermediate 
level of summary evidence [7]. Genome-wide association 
study (GWAS) is an effective method to simultaneously 
assess a large number of single nucleotide polymorphisms 
(SNPs) through high-throughput genetic analysis. Basing 
on this method, a series of genetic loci were identified 
to affect GC susceptibility, including rs4072037 (MUC1) 
[8], rs80142782 (ASH1L) [9], rs9841504 (ZBTB20) [10], 
rs13361707 (PRKAA1) [10], rs7712641 (lnc-POLR3G-4) 
[9], rs2294693 (UNC5CL) [11], rs1679709 (BTN3A2) 
[12], rs2294008 (PSCA) [13], rs2274223 (PLCE1) [8]. 
Nevertheless, the biological mechanisms behind the 
association between genetic variants and GC risk still 
remain unclear. Besides, a study in 2016 proposed that 
the estimate of heritability for GC was 22%, while those 
established risk loci could only explain a small proportion 
of GC heritability [14]. Therefore, there still exist large 
amounts of GC associated loci in the whole genome, and 
they have been missed most probably due to strict signifi-
cance thresholds used in GWAS. Pathway-based GWAS 
analysis is a new and effective strategy that can detect 
the associations missed by traditional GWAS and explore 
the biological mechanisms of diseases. Recently, this new 
analysis strategy has given novel insights into pathogen-
esis of cancers such as oesophageal squamous cell carci-
noma [15], pancreatic cancer [16] and breast cancer [17].

Multi-marker analysis of genomic annotation (MAGMA) 
is a fast and flexible tool for gene and gene-set analysis based 
on GWAS data [18]. MAGMA’s gene analysis uses a multi-
ple regression method to validly incorporate linkage disequi-
librium (LD) between variants and to discover multi-variant 
effects. Pathway-based analysis is based on gene-set analy-
sis that is conducted using a gene-level regression model. 
MAGMA is a powerful tool to detect genes and pathways 
associated with diseases and to help us explore the poten-
tially biological mechanisms [19, 20].

In this study, on the basis of Chinese GC GWAS, 
we applied MAGMA to conduct pathway analysis to 

identify crucial pathways and genes that contribute to GC 
susceptibility.

Materials and methods

Study populations

We conducted the analysis relying on three GC GWASs 
from ethnic Chinese. Two GWASs from Nanjing and Beijing 
populations (NJ-GWAS and BJ-GWAS) were implemented 
by our team [10], and the other GWAS from Shanxi and 
Linxian (NCI-GWAS) was based on Shanxi Upper Gastro-
intestinal Cancer Genetics Project supported by the National 
Cancer Institute (NCI) [8]. Details about the above three 
GWASs have been described elsewhere [8, 10]. In brief, all 
GC cases were histopathologically confirmed, and cancer-
free controls from NJ-GWAS and BJ-GWAS were matched 
on age, sex and geographic region, while controls were 
matched on age and sex in NCI-GWAS. In total, 2631 GC 
cases and 4373 controls were included in our analysis. Basic 
demographic information of the participants was shown in 
Supplementary table 1.

Quality control, genotype imputation 
and meta‑analysis

We excluded SNPs with call rate < 95%, minor allele fre-
quency (MAF) < 0.01 or Hardy–Weinberg equilibrium 
(HWE) P value < 1 × 10−6. Then, we performed imputation 
with SHAPEIT [21] and IMPUTE2 [22] for those three 
GWASs separately. All populations from the 1000 Genomes 
Project Phase III were taken as the reference set. SNPTEST 
[23] was performed to evaluate the relationship between 
each variant and GC, then we used GWAMA [24] to conduct 
the meta-analysis. To get more reliable results, the SNPs 
were selected with more stringent inclusion criteria: HWE 
-value > 1 × 10−3 and imputed INFO score ≥ 0.5. Finally, 
6,865,316 SNPs which were shared by all three GWASs and 
showed no obvious heterogeneity (I2 < 75%) were included 
in our following analysis.

Pathway‑based analysis

Pathway data from four databases were downloaded online 
(http://softw​are.broad​insti​tute.org/gsea/msigd​b/colle​ction​
s.jsp). Totally, 186 gene sets form Kyoto Encyclopedia of 
Genes and Genomes (KEGG) database, 4436 gene sets from 
Gene Ontology (GO) database about biological process, 217 
gene sets from BioCarta database and 674 gene sets from 
Reactome database were included in our analysis. We per-
formed gene-based analysis on SNP P values, and raw geno-
type data from Nanjing and Beijing populations were set as 

http://software.broadinstitute.org/gsea/msigdb/collections.jsp
http://software.broadinstitute.org/gsea/msigdb/collections.jsp
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a reference for linkage disequilibrium (LD). SNPs located 
in 10 kB upstream and downstream of a coding gene were 
mapped to the gene. The SNP-wise mean model which is 
equivalent to SKAT model using inverse variance weights 
[25] was adopted in this analysis. The maximum and mini-
mum number of permutations per gene were set as 1 million 
and ten, respectively. We got two results about the P value 
for a certain gene, relying on different distributions (asymp-
totic sampling distribution and permutation-based sampling 
distribution). P value relying on asymptotic sampling distri-
bution represented the result of gene-based analysis in this 
study. Taking advantage of the results of gene analysis, we 
implemented the gene-set analysis through a linear regres-
sion model. As Bonferroni correction may be too conserva-
tive when gene sets are strongly overlapping, we adopted 
a permutation-based empirical multiple testing correction 
which is provided by MAGMA. One hundred thousand per-
mutations were performed during the gene-set analysis.

Differential expression analysis

Differential expression analysis was performed based on the 
data downloaded from The Cancer Genome Atlas (TCGA) 
database. Differential expression among paired (32 GC tis-
sues and 32 adjacent normal tissues) and unpaired (413 GC 
tissues and 32 adjacent normal tissues) samples were both 
calculated in our analysis.

Immunohistochemistry (IHC)

Immunohistochemistry was performed on 55 pairs of GC 
and matched adjacent normal tissues of Chinese patients 
using tissue arrays (Shanghai Outdo Biotech Co., Ltd.). 
The tissue sections were sequential incubations with anti-
N myc interactor antibody (for NMI, ab183724, Abcam) 
or anti-Rac1 antibody (for RAC1, ab33186, Abcam), and 
EnVision™ FLEX /HRP reagent (DM842, Dako Omnis). 
The intensity of staining and the frequency of the stained 
cells were estimated by two investigators who were blinded 
to the patients’ information. The frequency of positive cells 
was scored as follows: ≤5% = 0; >5 to ≤ 25% = 1; >25 to 
≤ 50% = 2; >50 to ≤ 75% = 3; and > 75% = 4. Another score 
was given according to the intensity of staining as follows: 
negative = 0; weak = 1; moderate = 2; or strong = 3. For pur-
poses of statistical analysis, NMI and RAC1 proteins’ inten-
sity and frequency were transformed into a staining intensity 
score (SIS) calculated by multiplying the staining intensity 
score by the frequency score [26].

Statistical analysis

Multivariate logistic regression analysis in the additive 
model was used to estimate the association between genetic 

variants and GC risk. Nanjing and Beijing GWASs took 
age, sex, smoking status, alcohol consumption and the top 
genotype principal components (PCs) as covariates. NCI-
GWAS was adjusted for age (10-year categories), sex and the 
top PCs. EIGENSTRAT 3.0 software was used to evaluate 
population structure. We adopted a fixed-effect model in the 
meta-analysis to explore the correlation between the single 
genetic variant and susceptibility of GC. As for differential 
expression analysis among mRNA level, t test was used to 
measure the difference between log-2 transformed expres-
sion values of GC and normal tissues. Moreover, differential 
expression analysis among protein level was conducted by 
Wilcoxon signed rank test on SIS.

Results

Based on 2631 GC cases and 4373 controls, we first 
obtained the gene-based results. Among 18,449 protein-
coding genes on autosomes, we identified 1465 genes with 
P < 0.05 (Fig. 1). After Bonferroni correction, 20 genes 
reached statistical significance (P < 2.7 × 10−6, 0.05/18449) 
(Supplementary table 2), of which 19 genes were located in 
known GC susceptibility regions including 1q22, 5p13.1 and 
10q23.33. IRGC​ in 19q13.32 was a new gene, but its expres-
sion level was similar between tumor and normal tissues 
(P = 0.15 and 0.52 for unpaired and paired samples from 
TCGA, respectively, Supplementary figure 1).

Through pathway-based analysis, 244 candidate pathways 
were identified at the level of P < 0.05. Of the above path-
ways, 5 were from KEGG database, 200 from GO database, 
11 from Biocarta database and 28 from Reactome data-
base (Supplementary table 3–6). After permutation-based 
empirical multiple testing correction, no pathway remained. 
However, 3 pathways reached a less stringent threshold (cor-
rected P < 0.5), and they were chemokine signaling pathway, 
potassium ion import pathway and interleukin-7 (IL7) path-
way (Table 1). Stratification analysis of pathways showed 
no heterogeneities between the groups by age and sex (Sup-
plementary table 7).

To discover new potentially causal genes, we examined 
the relationship between genes in each of the three path-
ways mentioned above and GC risk. Eighteen of 183 genes 
in chemokine signaling pathway were identified (P < 0.05), 
but only RAC1 and MAP2K1 were left after false discovery 
rate (FDR) correction (FDR corrected P < 0.05) (Table 2, 
Supplementary table 8). In potassium ion import pathway, 
although 4 of 28 genes were found to be associated with GC 
risk (P < 0.05), none of them reached the FDR corrected 
criterion (Supplementary table 9). Among 16 genes in IL7 
pathway, 4 genes reached the P level at 0.05 and NMI passed 
FDR correction (Table 2, Supplementary table 10).
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For the three genes passing FDR correction, we esti-
mated the differential expression of them in paired and 
unpaired samples from TCGA. Results showed that NMI 
was overexpressed in GC for both of unpaired and paired 
samples, while increased expression of RAC1 in GC tissues 
was observed in unpaired tissues (Fig. 2). NMI and RAC1 
were overexpressed in GC tissues in either early or advanced 
cases (Supplementary figure 2–3). However, the expression 
of MAP2K1 was similar between GC and normal tissues 
(Supplementary figure 1).

NMI localized to cytoplasm, whereas RAC1 localized 
primarily to cytoplasm and cellular matrix (Fig. 3). In GC 
tissues, NMI and RAC1 expressed in cancer cells but not 
in tumor-infiltrating lymphocytes. Among 55 Chinese GC 
patients, the protein levels of NMI and RAC1 were also 
increased in GC tissues as compared with paired normal 
tissues (P = 1.48 × 10−7 and 2.35 × 10−7, respectively), for 
either early stage (P = 2.04 × 10−3 and 2.30 × 10−3, respec-
tively) or advanced stage of GC (P = 1.00 × 10−5 and 
2.40 × 10−5, respectively) (Fig. 3).

Fig. 1   Manhattan plots that show the distribution and association 
of genes with GC risk. The x-axis is chromosomal position and the 
y-axis is − log10(P). the red horizontal line represents P = 2.7 × 10−6 

while the green horizontal line represents P = 0.05. Red circles 
showed the association at P < 2.7 × 10−6, and the known GC-associ-
ated genes (MUC1 and PRKAA1) were marked by orange circles

Table 1   Summary of significant 
pathways associated with GC

a Number of genes participated in the pathway
b Corrected P value based on MAGMA’s empirical multiple testing correction method

Pathway No. of genesa Beta SE P P_CORRb Database

Chemokine signaling pathway 183 0.177 0.065 3.36 × 10−3 0.42 KEGG
Potassium ion import pathway 28 0.556 0.156 1.90 × 10−4 0.50 GO
IL7 pathway 16 0.515 0.190 3.43 × 10−3 0.43 BIOCARTA​

Table 2   Summary of significant genes in significant pathways

a Number of SNPs annotated to the gene
b Corrected P value based on FDR method

Gene Chr Start Stop No. of SNPsa P P_FDRb Database Pathway

RAC1 7 6,414,126 6,443,598 167 2.94 × 10−4 4.12 × 10−2 KEGG Chemokine signaling pathway
MAP2K1 15 66,679,182 66,783,882 234 4.51 × 10−4 4.12 × 10−2 KEGG Chemokine signaling pathway
NMI 2 152,126,982 152,146,430 145 1.53 × 10−3 2.45 × 10−2 BIOCARTA​ IL7 pathway
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Discussion

In this study, on the basis of 2631 GC cases and 4373 con-
trols, we found 3 candidate pathways and 2 candidate cas-
ual genes associated with GC in Chinese populations. In a 
previous study, Lee et al. [27] performed an Identify Can-
didate Causal SNPs and Pathways (ICSNPathway) analysis 
based on NCI-GWAS, and reported several hypothetical 
biological mechanisms of GC, including ephrin receptor 
binding, drug and pyrimidine metabolism, cyanoamino 
acid metabolism, and lipid biosynthetic process, regulation 
of cell growth, and cation homeostasis. Using similar data-
set and ICSNP pathway analysis, Zhu et al. [28] reported 
similar mechanisms including ephrin receptor binding. In 
contrast to the ICSNPathway aiming to discover candidate 
causal pathways that represent the way in which the can-
didate causal SNPs affect GC [29], MAGMA was used to 
identify novel pathways associated with GC in the current 
study. As a result, we found three new pathway for gastric 
cancer, including chemokine signaling pathway, potassium 
ion import pathway and Interleukin-7 (IL7) pathway. We 
also several identified pathways such as drug metabo-
lism—other enzymes, pyrimidine metabolism, regula-
tion of cell growth, and cellular cation homeostasis were 

repeated in our analysis, apart from three new discovered 
candidate pathways.

Three pathways were identified in our study. They were 
chemokine signaling, potassium ion import, and IL7 path-
way. Chemokines are a large family of small cytokines and 
they were initially discovered as they could recruit immune 
cells to a site of inflammation during an immune response 
[30]. Subsequent researches reported chemokines could 
also provide directional guidance to normal cells like neu-
rons and germ cells during embryonic development [31], 
besides, they could migrate cancer cells to distant sites dur-
ing metastasis [32, 33]. Nowadays, researchers have paid 
great attention to the relationship between chemokines and 
cancer, and they found that chemokines were involved in 
many other cancer-related processes, including facilitating 
growth and survival of cancer cells [34, 35] and forma-
tion of cancer blood vessels [36]. It has been reported that 
chemokines persisting at an inflammatory site were crucial 
in neoplastic progression [37], and once GC occurred, cer-
tain chemokines could be produced by tumor and might play 
a great role in promoting the development and progression 
of GC. IL-7 is an important cytokine for adaptive immune 
system, because IL-7 plays an essential role in the devel-
opment of B and T cells such as generation of T cells in 

Fig. 2   Differential expression of 
NMI and RAC1. a, c Exhibited 
results of all unpaired samples 
from TCGA; b, d exhibited 
results of all paired samples 
from TCGA. The x-axis showed 
the number of GC tissues and 
the normal ones used in the 
analysis
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the thymus and peripheral homeostasis of T Cells [38]. A 
healthy immune system could help clear tumor cells effec-
tively, and suppressed immunity might increase the risk 
for cancers. Additionally, cancers could suppress normal 
immunological surveillance function to escape being iden-
tified by immune system during the progression of cancers 
[39]. According to the evidence above, we inferred that 
both chemokine signaling pathway and IL7 pathway might 
participate in occurrence of cancers through immune and 
inflammatory processes, and facilitate the development of 
cancers through multiple mechanisms.

Nowadays, immunotherapy has been a new treatment for 
cancers and has achieved great success [40–43]. For GC, 
several common immunotherapies such as cancer vaccines 
therapy, T cell based adoptive transfer therapy and check-
point inhibition therapy have been used to induce antitumor 
immunity to kill cancer cells and improve survival [44]. 
Although chemokines and cytokines have been commonly 
applied to the treatment of cancers, they were rarely used 
for treating GC [45–47]. Recent studies have found IL7 
has great potential in cancer immunotherapy because of its 
function in immune reconstitution, enhancing the function 
of effector immune cells and fighting against the immuno-
suppressive network [48]. Therefore, in consideration of 
those findings of the recent studies mentioned above and 
our results, there are reasons to believe that new ways of 

immunotherapy for GC might be discovered centering on 
chemokines, IL7 and other cytokines in the future.

In addition to the above two pathways, potassium ion 
import pathway was the third one we discovered. Potas-
sium has been reported to be associated with apoptosis, for 
example, loss of potassium ions is linked to shrinkage which 
is a basic morphological characteristic of apoptosis [49]. 
Besides, low level of cytoplasmic potassium is capable of 
activating caspases and nucleases, which is pivotal in apop-
tosis [50, 51]. Abnormal apoptosis process could break the 
equilibrium between cell proliferation and cell death, which 
might promote oncogenesis because “undead” cells are 
accumulated [52]. After oncogenesis, accumulation of potas-
sium in T cells would suppress the activity of T cells [53]. 
Enhancing activity of potassium channel may enable T cells 
to attack cancer cells more effectively and powerfully [54]. 
Besides, potassium channels were reported to be correlated 
with multidrug resistance in gastric cancer cells [55]. Thus, 
process of potassium import may influence susceptibility of 
GC and provide new ideas for treating GC.

NMI and RAC1 were two new candidate genes discov-
ered in our study. NMI in 2q23.3 could interact with N-myc 
and C-myc which are two members of the oncogene Myc 
family and induce transcription activity as a transcription 
cofactor [56]. Researchers have found that overexpression 
of NMI retards invasion and growth of cancer cells through 

Fig. 3   Results of Immunohistochemical staining of NMI and RAC1 
proteins. a Immunohistochemical staining of NMI protein in two 
pairs of representative GC tissues and the adjacent normal tissues. b 
Immunohistochemical staining of RAC1 protein in two pairs of rep-
resentative GC tissues and the adjacent normal tissues. c Distribution 
of staining intensity score of NMI protein in 55 paired GC tissues and 
the adjacent normal tissues. Red bars represent results of GC tissues, 
while blue bars represent results of the adjacent normal tissues. The 

first 25 paired samples came from early GC patients, and the last 30 
paired samples came from advanced GC patients. d Distribution of 
staining intensity score of RAC1 protein in 55 paired GC tissues and 
the adjacent normal tissues. Red bars represent results of GC tissues, 
while blue bars represent results of the adjacent normal tissues. The 
first 25 paired samples came from early GC patients, and the last 30 
paired samples came from advanced GC patients
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inhibiting the Wnt/beta-catenin signaling [57]. Besides, NMI 
could suppress tumor invasion and metastasis by inhibiting 
NF-κB pathways in human gastric cancer cells [58]. NMI in 
IL7 pathway can augment the recruitment of CBP/p300 to 
transcription factor STAT5, which can enhance transcrip-
tion of downstream target genes [59]. STAT5 proteins are 
required for normal T cell proliferation and NK function. 
Additionally, they critically regulate vital cellular func-
tions such as proliferation, differentiation, and survival 
[60]. RAC1 located at 7p22.1 is a GTPase that belongs to 
the RAS superfamily whose members can regulate cellular 
events, such as cell growth, cytoskeletal reorganization, and 
the activation of protein kinases [61]. RAC1 in chemokine 
signaling pathway can interact with downstream effector 
PAK1. Activation of PAK1 affects mitogen activated protein 
kinase (MAPK), phospoinositide 3-kinase (PI3K), and Wnt/
beta-catenin signaling pathways associated with inflamma-
tion and malignant transformation [62]. RAC1 is also a key 
activator of NF-κB and promote tumor growth by inducing 
the expression of inflammatory cytokines [63]. It has been 
proved that RAC1 was overexpressed in cancer tissues and 
associated with poor survival [64, 65]. In addition, research-
ers have indicated RAC1 can serve as therapeutic targets 
for cancers including GC [66, 67]. Therefore, both of the 
two candidate genes discovered in our study are vital in the 
progression of cancers and might be treated as drug targets 
for GC.

In conclusion, immune and inflammatory associated 
processes and potassium transporting might participate in 
the occurrence and development of GC. Besides, NMI and 
RAC1 were two new vital genes related to GC. Our findings 
might give new insight into the mechanism and treatment 
of GC. However, due to the genetic heterogeneity among 
different populations [7, 68], there might be inconsistent 
results according to the ethnicities as a result of differences 
in genetic basis as well as environmental exposures. In the 
future, additional studies are needed to confirm the identified 
pathways and genes associated with risk for GC in popula-
tions of East Asian and elsewhere, and functional experi-
ments should be conducted to observe the effect of the two 
candidate genes on the development of GC. Additionally, 
more efforts are warranted to explore new therapies for GC 
based on our findings, and potential therapies may refer to 
immunotherapy centering on chemokines, IL7 and other 
cytokines, to enhance activity of potassium channel, and 
therapeutic targets on NMI and RAC1.
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