Skip to main content
Log in

Self-assembly induced by complexation of diblock copolyelectrolytes and oppositely charged homopolymers

  • Research Article
  • Special Issue: Charged Polymers
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

We investigate the solution self-assembly of a mixture of positively charged homopolymers and AB diblock copolymers, in which the A blocks are negatively charged, and the B blocks are neutral. The electrostatic complexation between oppositely charged polymers drives the formation of many ordered phases. The microstructures and phase diagrams are calculated using self-consistent field theory (SCFT) based on an ion-pair model with an equilibrium constant K to characterize the strength of binding between positively and negatively charged monomers. The effects of the charge ratio, representing the ratio of charges from the homopolymer over all charges from polymers in the system, on the ordered structure are systematically studied, both for hydrophobic and hydrophilic A blocks. The charge ratio plays an important role in determining the phase boundaries in the phase diagram of salt concentration versus polymer concentration. We also provide information about the varying tendency of the domain spacing and core size of the spherical phase when the charge ratio is changed, and the results are in good agreement with experiments. These studies provide a deep understanding of the self-assembled microstructures of oppositely charged diblock copolymer-homopolymer systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou, J.; Shi, A. C. Microphase separation induced by differential interactions in diblock copolymer/homopolymer blends. J. Chem. Phys. 2009, 130, 234904.

    Article  ADS  PubMed  Google Scholar 

  2. Qian, H. J.; Lu, Z. Y.; Chen, L. J.; Li, Z. S.; Sun, C. C. Dissipative particle dynamics study on the interfaces in incompatible A/B homopolymer blends and with their block copolymers. J. Chem. Phys. 2005, 122, 184907.

    Article  ADS  PubMed  Google Scholar 

  3. Hashimoto, T.; Koizumi, S.; Hasegawa, H.; Izumitani, T.; Hyde, S. T. Observation of “mesh” and “strut” structures in block copolymer/homopolymer mixtures. Macromolecules 1992, 25, 1433–1439.

    Article  ADS  CAS  Google Scholar 

  4. Han, C. D.; Baek, D. M.; Kim, J.; Kimishima, K.; Hashimoto, T. Viscoelastic behavior, phase equilibria, and microdomain morphology in mixtures of a block copolymer and a homopolymer. Macromolecules 1992, 25, 3052–3067.

    Article  ADS  CAS  Google Scholar 

  5. Spontak, R. J.; Smith, S. D.; Ashraf, A. Dependence of the OBDD morphology on diblock copolymer molecular weight in copolymer/homopolymer blends. Macromolecules 1993, 26, 956–962.

    Article  ADS  CAS  Google Scholar 

  6. Disko, M. M.; Liang, K. S.; Behal, S. K.; Roe, R. J.; Jeon, K. J. Catenoid-lamellar phase in blends of styrene-butadiene diblock copolymer and homopolymer. Macromolecules 1993, 26, 2983–2986.

    Article  ADS  CAS  Google Scholar 

  7. Jeon, K. J.; Roe, R. J. Solubilization of a homopolymer in a block copolymer. Macromolecules 1994, 27, 2439–2447.

    Article  ADS  CAS  MATH  Google Scholar 

  8. Zin, W. C.; Roe, R. J. Phase equilibria and transition in mixtures of a homopolymer and a block copolymer. 1. Small-angle X-ray scattering study. Macromolecules 1984, 17, 183–188.

    Article  ADS  CAS  MATH  Google Scholar 

  9. Roe, R. J.; Zin, W. C. Phase equilibria and transition in mixtures of a homopolymer and a block copolymer. 2. Phase diagram. Macromolecules 1984, 17, 189–194.

    Article  ADS  CAS  MATH  Google Scholar 

  10. Kinning, D. J.; Winey, K. I.; Thomas, E. L. Structural transitions from spherical to nonspherical micelles in blends of poly(styrene-butadiene) diblock copolymer and polystyrene homopolymers. Macromolecules 1988, 21, 3502–3506.

    Article  ADS  CAS  Google Scholar 

  11. Owens, J. N.; Gancarz, I. S.; Koberstein, J. T.; Russell, T. P. Orderdisorder transitions in mixtures of homopolymers with diblock copolymers. Macromolecules 1989, 22, 3388–3394.

    Article  ADS  CAS  Google Scholar 

  12. Hashimoto, T.; Tanaka, H.; Hasegawa, H. Ordered structure in mixtures of a block copolymer and homopolymers. 2. Effects of molecular weights of homopolymers. Macromolecules 1990, 23, 4378–4386.

    Article  ADS  CAS  MATH  Google Scholar 

  13. Kuo, S. W. Hydrogen bonding mediated self-assembled structures from block copolymer mixtures to mesoporous materials. Polymer International 2022, 71, 393–410.

    Article  CAS  Google Scholar 

  14. Matsen, M. W. Phase behavior of block copolymer/homopolymer blends. Macromolecules 1995, 28, 5765–5773.

    Article  ADS  CAS  MATH  Google Scholar 

  15. Matsen, M. W. Stabilizing new morphologies by blending homopolymer with block copolymer. Physical Review Letters 1995, 74, 4225–4228.

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  16. Matsen, M. W. New fast SCFT algorithm applied to binary diblock copolymer/homopolymer blends. Macromolecules 2003, 36, 9647–9657.

    Article  ADS  CAS  MATH  Google Scholar 

  17. Lee, H. F.; Kuo, S. W.; Huang, C. F.; Lu, J. S.; Chan, S. C.; Wang, C. F.; Chang, F. C. Hydrogen-bonding interactions mediate the phase behavior of an A-B/C block copolymer/homopolymer blend comprising poly(methyl methacrylate-b-vinylpyrrolidone) and Poly(Vinylphenol). Macromolecules 2006, 39, 5458–5465.

    Article  ADS  CAS  Google Scholar 

  18. Chen, W. C.; Kuo, S. W.; Lu, C. H.; Jeng, U. S.; Chang, F. C. Self-assembly structures through competitive interactions of crystalline-amorphous diblock copolymer/homopolymer blends: poly(ε-caprolactone-b-4-vinyl pyridine)/poly(vinyl phenol). Macromolecules 2009, 42, 3580–3590.

    Article  ADS  CAS  Google Scholar 

  19. Dobrosielska, K.; Wakao, S.; Suzuki, J.; Noda, K.; Takano, A.; Matsushita, Y. Effect of homopolymer molecular weight on nanophase-separated structures of AB block copolymer/C homopolymer blends with hydrogen-bonding interactions. Macromolecules 2009, 42, 7098–7102.

    Article  ADS  CAS  Google Scholar 

  20. Dehghan, A.; Shi, A. C. Modeling hydrogen bonding in diblock copolymer/homopolymer blends. Macromolecules 2013, 46, 5796–5805.

    Article  ADS  CAS  MATH  Google Scholar 

  21. Voets, I. K.; de Keizer, A.; de Waard, P.; Frederik, P. M.; Bomans, P. H. H.; Schmalz, H.; Walther, A.; King, S. M.; Leermakers, F. A. M.; Cohen Stuart, M. A. Double-faced micelles from water-soluble polymers. Angew. Chem., Int. Ed. 2006, 45, 6673–6676.

    Article  CAS  Google Scholar 

  22. Takahashi, R.; Sato, T.; Terao, K.; Yusa, S. I. Intermolecular interactions and self-assembly in aqueous solution of a mixture of anionic-neutral and cationic-neutral block copolymers. Macromolecules 2015, 48, 7222–7229.

    Article  ADS  CAS  MATH  Google Scholar 

  23. Yan, Y.; Harnau, L.; Besseling, N. A. M.; de Keizer, A.; Ballauff, M.; Rosenfeldt, S.; Cohen Stuart, M. A. Spherocylindrical coacervate core micelles formed by a supramolecular coordination polymer and a diblock copolymer. Soft Matter 2008, 4, 2207–2212.

    Article  ADS  CAS  Google Scholar 

  24. Oana, H.; Morinaga, M.; Kishimura, A.; Kataoka, K.; Washizu, M. Direct formation of giant unilamellar vesicles from microparticles of polyion complexes and investigation of their properties using a microfluidic chamber. Soft Matter 2013, 9, 5448–5458.

    Article  ADS  CAS  Google Scholar 

  25. Anraku, Y.; Kishimura, A.; Oba, M.; Yamasaki, Y.; Kataoka, K. Spontaneous formation of nanosized unilamellar polyion complex vesicles with tunable size and properties. J. Am. Chem. Soc. 2010, 132, 1631–1636.

    Article  CAS  PubMed  Google Scholar 

  26. Perry, S. L.; Leon, L.; Hoffmann, K. Q.; Kade, M. J.; Priftis, D.; Black, K. A.; Wong, D.; Klein, R. A.; Pierce, C. F.; Margossian, K. O.; Whitmer, J. K.; Qin, J.; de Pablo, J. J.; Tirrell, M. Chirality-selected phase behaviour in ionic polypeptide complexes. Nat. Commun. 2015, 6, 6052.

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Elabd, Y. A.; Hickner, M. A. Block copolymers for fuel cells. Macromolecules 2011, 44, 1–11.

    Article  ADS  CAS  Google Scholar 

  28. Rubatat, L.; Shi, Z.; Diat, O.; Holdcroft, S.; Frisken, B. J. Structural study of proton-conducting fluorous block copolymer membranes. Macromolecules 2006, 39, 720–730.

    Article  ADS  CAS  Google Scholar 

  29. Wang, X.; Yakovlev, S.; Beers, K. M.; Park, M. J.; Mullin, S. A.; Downing, K. H.; Balsara, N. P. On the origin of slow changes in ionic conductivity of model block copolymer electrolyte membranes in contact with humid air. Macromolecules 2010, 43, 5306–5314.

    Article  ADS  CAS  Google Scholar 

  30. LimSoo, P.; Luo, L.; Maysinger, D.; Eisenberg, A. Incorporation and release of hydrophobic probes in biocompatible polycaprolactone-block-poly(ethylene oxide) micelles: implications for drug delivery. Langmuir 2002, 18, 9996–10004.

    Article  Google Scholar 

  31. Acar, H.; Ting, J. M.; Srivastava, S.; LaBelle, J. L.; Tirrell, M. V. Molecular engineering solutions for therapeutic peptide delivery. Chem. Soc. Rev 2017, 46, 6553–6569.

    Article  CAS  PubMed  Google Scholar 

  32. Chassenieux, C.; Tsitsilianis, C. Recent trends in pH/thermo-responsive self-assembling hydrogels: from polyions to peptide-based polymeric gelators. Soft Matter 2016, 12, 1344–1359.

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Huo, H.; Zhao, W.; Duan, X.; Sun, Z. Y. Control of diblock copolyelectrolyte morphology through electric field application. Macromolecules 2023, 56, 1065–1076.

    Article  ADS  CAS  Google Scholar 

  34. Rahalkar, A.; Wei, G.; Nieuwendaal, R.; Prabhu, V. M.; Srivastava, S.; Levi, A. E.; Pablo, J. J. d.; Tirrell, M. V. Effect of temperature on the structure and dynamics of triblock polyelectrolyte gels. J. Chem. Phys. 2018, 149, 163310.

    Article  ADS  PubMed  Google Scholar 

  35. Lemmers, M.; Sprakel, J.; Voets, I. K.; van der Gucht, J.; Cohen Stuart, M. A. Multiresponsive reversible gels based on charge-driven assembly. Angew. Chem., Int. Ed. 2010, 49, 708–711.

    Article  CAS  Google Scholar 

  36. Kramarenko, E. Y.; Khokhlov, A. R.; Reineker, P. Stoichiometric polyelectrolyte complexes of ionic block copolymers and oppositely charged polyions. J. Chem. Phys. 2006, 125, 194902.

    Article  ADS  PubMed  Google Scholar 

  37. Duan, X.; Shi, A. C.; An, L. Formation of ionomer microparticles via polyelectrolyte complexation. Macromolecules 2021, 54, 9053–9062.

    Article  ADS  CAS  MATH  Google Scholar 

  38. Hunt, J. N.; Feldman, K. E.; Lynd, N. A.; Deek, J.; Campos, L. M.; Spruell, J. M.; Hernandez, B. M.; Kramer, E. J.; Hawker, C. J. Tunable, high modulus hydrogels driven by ionic coacervation. Adv. Mater. 2011, 23, 2327–2331.

    Article  CAS  PubMed  Google Scholar 

  39. Krogstad, D. V.; Lynd, N. A.; Choi, S. H.; Spruell, J. M.; Hawker, C. J.; Kramer, E. J.; Tirrell, M. V. Effects of polymer and salt concentration on the structure and properties of triblock copolymer coacervate hydrogels. Macromolecules 2013, 46, 1512–1518.

    Article  ADS  CAS  Google Scholar 

  40. Audus, D. J.; Gopez, J. D.; Krogstad, D. V.; Lynd, N. A.; Kramer, E. J.; Hawker, C. J.; Fredrickson, G. H. Phase behavior of electrostatically complexed polyelectrolyte gels using an embedded fluctuation model. Soft Matter 2015, 11, 1214–1225.

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Lytle, T. K.; Radhakrishna, M.; Sing, C. E. High charge density coacervate assembly via hybrid monte carlo single chain in mean field theory. Macromolecules 2016, 49, 9693–9705.

    Article  ADS  CAS  MATH  Google Scholar 

  42. Jiang, J.; Chen, X.; Yang, S.; Chen, E. Q. The size and affinity effect of counterions on self-assembly of charged block copolymers. J. Chem. Phys. 2020, 152, 124901.

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  43. Jiang, J.; Chen, E. Q.; Yang, S. The effect of ion pairs on coacervate-driven self-assembly of block polyelectrolytes. J. Chem. Phys. 2021, 154, 144903.

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Holappa, S.; Andersson, T.; Kantonen, L.; Plattner, P.; Tenhu, H. Soluble polyelectrolyte complexes composed of poly(ethylene oxide)-block-poly(sodium methacrylate) and poly(methacryloyloxyethyl trimethylammonium chloride). Polymer 2003, 44, 7907–7916.

    Article  CAS  Google Scholar 

  45. Marras, A. E.; Vieregg, J. R.; Ting, J. M.; Rubien, J. D.; Tirrell, M. V. Polyelectrolyte complexation of oligonucleotides by charged hydrophobic-neutral hydrophilic block copolymers. Polymers 2019, 11, 83.

    Article  PubMed  PubMed Central  Google Scholar 

  46. ElJundi, A.; Buwalda, S. J.; Bakkour, Y.; Garric, X.; Nottelet, B. Double hydrophilic block copolymers self-assemblies in biomedical applications. Adv. Colloid Interface Sci. 2020, 283, 102213.

    Article  CAS  Google Scholar 

  47. Hofs, B.; de Keizer, A.; van der Burgh, S.; Leermakers, F. A. M.; Cohen Stuart, M. A.; Millard, P. E.; Müller, A. H. E. Complex coacervate core micro-emulsions. Soft Matter 2008, 4, 1473–1482.

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Lindhoud, S.; de Vries, R.; Schweins, R.; Cohen Stuart, M. A.; Norde, W. Salt-induced release of lipase from polyelectrolyte complex micelles. Soft Matter 2009, 5, 242–250.

    Article  ADS  CAS  Google Scholar 

  49. Read, E.; Lonetti, B.; Gineste, S.; Sutton, A. T.; Di Cola, E.; Castignolles, P.; Gaborieau, M.; Mingotaud, A. F.; Destarac, M.; Marty, J. D. Mechanistic insights into the formation of polyion complex aggregates from cationic thermoresponsive diblock copolymers. J. Colloid Interface Sci. 2021, 590, 268–276.

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Rizis, G.; van de Ven, T. G. M.; Eisenberg, A. Homopolymers as structure-driving agents in semicrystalline block copolymer micelles. ACS Nano 2015, 9, 3627–3640.

    Article  CAS  PubMed  MATH  Google Scholar 

  51. van der Burgh, S.; de Keizer, A.; Cohen Stuart, M. A. Complex coacervation core micelles. Colloidal stability and aggregation mechanism. Langmuir 2004, 20, 1073–1084.

    Article  CAS  PubMed  MATH  Google Scholar 

  52. Weaver, J. V. M.; Armes, S. P.; Liu, S. A “holy trinit” of micellar aggregates in aqueous solution at ambient temperature: unprecedented self-assembly behavior from a binary mixture of a neutral-cationic diblock copolymer and an anionic polyelectrolyte. Macromolecules 2003, 36, 9994–9998.

    Article  ADS  CAS  Google Scholar 

  53. Liu, J. Y.; Song, H. R.; Wang, M.; Jin, S. H.; Liang, Z.; Mao, X.; Li, W.; Deng, R. H.; Zhu, J. T. Asymmetric mesoporous carbon microparticles by 3D-confined self-assembly of block copolymer/homopolymer blends and selective carbonization. Chinese J. Polym. Sci. 2023, 41, 787–793.

    Article  CAS  Google Scholar 

  54. Zhang, X.; Chen, J.; Xu, L.; Liu, T. Supramolecular self-assembly behaviors of asymmetric diblock copolymer blends with hydrogen bonding interactions between shorter blocks modelled by Yukawa potentials. Chinese J. Polym. Sci. 2021, 39, 1502–1509.

    Article  CAS  MATH  Google Scholar 

  55. Kramarenko, E. Y.; Khokhlov, A. R.; Reineker, P. Micelle formation in a dilute solution of block copolymers with a polyelectrolyte block complexed with oppositely charged linear chains. J. Chem. Phys. 2003, 119, 4945–4952.

    Article  ADS  CAS  MATH  Google Scholar 

  56. Lemmers, M.; Voets, I. K.; Cohen Stuart, M. A.; der Gucht, J. V. Transient network topology of interconnected polyelectrolyte complex micelles. Soft Matter 2011, 7, 1378–1389.

    Article  ADS  CAS  MATH  Google Scholar 

  57. Bodrova, A. S.; Kramarenko, E. Y.; Potemkin, I. I. Microphase separation induced by complexation of ionic-non-ionic diblock copolymers with oppositely charged linear chains. Macromolecules 2010, 43, 2622–2629.

    Article  ADS  CAS  Google Scholar 

  58. Harada, A.; Kataoka, K. Formation of polyion complex micelles in an aqueous milieu from a pair of oppositely-charged block copolymers with poly(ethylene glycol) segments. Macromolecules 1995, 28, 5294–5299.

    Article  ADS  CAS  Google Scholar 

  59. CohenStuart, M. A.; Besseling, N. A. M.; Fokkink, R. G. Formation of micelles with complex coacervate cores. Langmuir 1998, 14, 6846–6849.

    Article  MATH  Google Scholar 

  60. Voets, I. K.; de Keizer, A.; Cohen Stuart, M. A.; Justynska, J.; Schlaad, H. Irreversible structural transitions in mixed micelles of oppositely charged diblock copolymers in aqueous solution. Macromolecules 2007, 40, 2158–2164.

    Article  ADS  CAS  Google Scholar 

  61. Lindhoud, S.; Norde, W.; Cohen Stuart, M. A. Reversibility and relaxation behavior of polyelectrolyte complex micelle formation. J. Phys. Chem. B 2009, 113, 5431–5439.

    Article  CAS  PubMed  MATH  Google Scholar 

  62. Lemmers, M.; Spruijt, E.; Beun, L.; Fokkink, R.; Leermakers, F.; Portale, G.; Cohen Stuart, M. A.; van der Gucht, J. The influence of charge ratio on transient networks of polyelectrolyte complex micelles. Soft Matter 2012, 8, 104–117.

    Article  ADS  CAS  Google Scholar 

  63. Shi, A. C.; Noolandi, J. Theory of inhomogeneous weakly charged polyelectrolytes. Macromol. Theory Simul. 1999, 8, 214–229.

    Article  CAS  MATH  Google Scholar 

  64. Yan, Y.; Besseling, N. A. M.; de Keizer, A.; Marcelis, A. T. M.; Drechsler, M.; Cohen Stuart, M. A. Hierarchical self-assembly in solutions containing metal ions, ligand, and diblock copolymer. Angew. Chem., Int. Ed. 2007, 46, 1807–1809.

    Article  CAS  Google Scholar 

  65. Nakai, K.; Nishiuchi, M.; Inoue, M.; Ishihara, K.; Sanada, Y.; Sakurai, K.; Yusa, S. I. Preparation and characterization of polyion complex micelles with phosphobetaine shells. Langmuir 2013, 29, 9651–9661.

    Article  CAS  PubMed  Google Scholar 

  66. Gohy, J. F.; Varshney, S. K.; Antoun, S.; Jérôme, R. Water-soluble complexes formed by sodium poly(4-styrenesulfonate) and a poly(2-vinylpyridinium)-block-poly(ethyleneoxide) copolymer. Macromolecules 2000, 33, 9298–9305.

    Article  ADS  CAS  Google Scholar 

  67. Hofs, B.; de Keizer, A.; Cohen Stuart, M. A. On the stability of (highly aggregated) polyelectrolyte complexes containing a charged-block-neutral diblock copolymer. J. Phys. Chem. B 2007, 111, 5621–5627.

    Article  CAS  PubMed  MATH  Google Scholar 

  68. Yusa, S. I.; Fukuda, K.; Yamamoto, T.; Ishihara, K.; Morishima, Y. Synthesis of well-defined amphiphilic block copolymers having phospholipid polymer sequences as a novel biocompatible polymer micelle reagent. Biomacromolecules 2005, 6, 663–670.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (NSFC) (Nos. 22073002, 51921002 and 22373008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Er-Qiang Chen or Shuang Yang.

Ethics declarations

The authors declare no interest conflict.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Yin, ZY., Jiang, JD. et al. Self-assembly induced by complexation of diblock copolyelectrolytes and oppositely charged homopolymers. Chin J Polym Sci (2024). https://doi.org/10.1007/s10118-024-3080-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10118-024-3080-1

Keywords

Navigation