Skip to main content
Log in

One-step and Continuous Fabrication of Coaxial Piezoelectric Fiber for Sensing Application

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Although there has been rapid advancement in piezoelectric sensors, challenges still remain in developing wearable piezoelectric sensors by a one-step, continuous and environmentally friendly method. In this work, a 1D flexible coaxial piezoelectric fiber was directly fabricated by melt extrusion molding, whose core and sheath layer are respectively slender steel wire (i.e., electrode) and PVDF (i.e., piezoelectric layer). Moreover, such 1D flexible coaxial piezoelectric fiber possesses short response time and high sensitivity, which can be used as a self-powered sensor for bending and vibration sensing. More interestingly, such 1D flexible coaxial piezoelectric fiber (1D-PFs) can be further endowed with 3D helical structure. Moreover, a wearable and washable motion monitoring system can be constructed via braiding such 3D helical piezoelectric fiber (3D-PF) into commercial textiles. This work paves a new way for developing 1D and 3D piezoelectric fibers through a one-step, continuous and environmentally friendly method, showing potential applications in the field of sensing and wearable electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. He, X.; Zi, Y.; Guo, H.; Zheng, H.; Xi, Y.; Wu, C.; Wang, J.; Zhang, W.; Lu, C.; Wang, Z. L. A highly stretchable fiber-based triboelectric nanogenerator for self-powered wearable electronics. Adv. Funct. Mater. 2017, 27, 1604378.

    Article  Google Scholar 

  2. Ning, C.; Dong, K.; Cheng, R.; Yi, J.; Ye, C.; Peng, X.; Sheng, F.; Jiang, Y.; Wang, Z. L. Flexible and stretchable fiber-shaped triboelectric nanogenerators for biomechanical monitoring and human-interactive sensing. Adv. Funct. Mater. 2021, 31, 2006679.

    Article  CAS  Google Scholar 

  3. Dong, K.; Deng, J.; Ding, W.; Wang, A. C.; Wang, P.; Cheng, C.; Wang, Y. C.; Jin, L.; Gu, B.; Sun, B. Versatile core-sheath yarn for sustainable biomechanical energy harvesting and real-time human-interactive sensing. Adv. Energy Mater. 2018, 8, 1801114.

    Article  Google Scholar 

  4. Song, Y.; Mukasa, D.; Zhang, H.; Gao, W. Self-powered wearable biosensors. Acc. Mater. Res. 2021, 2, 184–197.

    Article  CAS  Google Scholar 

  5. Chen, S.; Huang, T.; Zuo, H.; Qian, S.; Guo, Y.; Sun, L.; Lei, D.; Wu, Q.; Zhu, B.; He, C. A single integrated 3D-printing process customizes elastic and sustainable triboelectric nanogenerators for wearable electronics. Adv. Funct. Mater. 2018, 28, 1805108.

    Article  Google Scholar 

  6. Wang, Z. L.; Wu, W. Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew. Chem. Int. Ed. 2012, 51, 11700–11721.

    Article  CAS  Google Scholar 

  7. Ma, J.; Cui, Z.; Du, Y.; Zhang, J.; Sun, C.; Hou, C.; Zhu, N. Wearable fiber-eased supercapacitors enabled by additive-free aqueous MXene inks for self-powering healthcare sensors. Adv. Fiber Mater. 2022, 4, 1535–1544.

    Article  CAS  Google Scholar 

  8. Pang, C.; Lee, G. Y.; Kim, T. I.; Kim, S. M.; Kim, H. N.; Ahn, S. H.; Suh, K. Y. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat. Mater. 2012, 11, 795–801.

    Article  CAS  PubMed  Google Scholar 

  9. Bai, P.; Zhu, G.; Jing, Q.; Yang, J.; Chen, J.; Su, Y.; Ma, J.; Zhang, G.; Wang, Z. L. Membrane-based self-powered triboelectric sensors for pressure change detection and Its uses in security surveillance and healthcare monitoring. Adv. Funct. Mater. 2014, 24, 5807–5813.

    Article  CAS  Google Scholar 

  10. Peng, X.; Dong, K.; Ye, C.; Jiang, Y.; Wang Z. L. A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci. Adv. 2020, 6, eaba9624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu, N.; Cheng, X.; Zhong, Q.; Zhong, J.; Li, W.; Wang, B.; Hu, B.; Zhou, J. Cellular polypropylene piezoelectret for human body energy harvesting and health monitoring. Adv. Funct. Mater. 2015, 25, 4788–4794.

    Article  CAS  Google Scholar 

  12. Garcia, C.; Trendafilova, I.; Guzman de Villoria, R.; Sanchez del Rio, J. Self-powered pressure sensor based on the triboelectric effect and its analysis using dynamic mechanical analysis. Nano Energy 2018, 50, 401–409.

    Article  CAS  Google Scholar 

  13. Yang, L.; Zhao, Q.; Chen, K.; Ma, Y.; Wu, Y.; Ji, H.; Qiu, J. PVDF-based composition-gradient multilayered nanocomposites for flexible high-performance piezoelectric nanogenerators. ACS Appl. Mater. Interfaces 2020, 12, 11045–11054.

    Article  CAS  PubMed  Google Scholar 

  14. Xue, L.; Fan, W.; Yu, Y.; Dong, K.; Liu, C.; Sun, Y.; Zhang, C.; Chen, W.; Lei, R.; Rong, K. A novel strategy to fabricate core-sheath structure piezoelectric yarns for wearable energy harvesters. Adv. Fiber Mater. 2021, 3, 239–250.

    Article  CAS  Google Scholar 

  15. Song, J.; Chen, S.; Sun, L.; Guo, Y.; Zhang, L.; Wang, S.; Xuan, H.; Guan, Q.; You, Z. Mechanically and electronically robust transparent organohydrogel fibers. Adv. Mater. 2020, 32, 1906994.

    Article  CAS  Google Scholar 

  16. Scheffler, S.; Poulin, P. Piezoelectric fibers: processing and challenges. ACS Appl. Mater. Interfaces 2022, 14, 16961–16982.

    Article  CAS  PubMed  Google Scholar 

  17. Jeong, K.; Kim, D. H.; Chung, Y. S.; Hwang, S. K.; Hwang, H. Y.; Kim, S. S. Effect of processing parameters of the continuous wet spinning system on the crystal phase of PVDF fibers. J. Appl. Polym. Sci. 2018, 135, 45712.

    Article  Google Scholar 

  18. Tascan, M.; Nohut, S. Effects of process parameters on the properties of wet-spun solid PVDF fibers. Text. Res. J. 2014, 84, 2214–2225.

    Article  Google Scholar 

  19. Chapron, D.; Rault, F.; Talbourdet, A.; Lemort, G.; Cochrane, C.; Bourson, P.; Devaux, E.; Campagne, C. In-situ raman monitoring of the poly(vinylidene fluoride) crystalline structure during a melt-spinning process. J. Raman Spectrosc. 2021, 52, 1073–1079.

    Article  CAS  Google Scholar 

  20. Lund, A.; Jonasson, C.; Johansson, C.; Haagensen, D.; Hagström, B. Piezoelectric polymeric bicomponent fibers produced by melt spinning. J. Appl. Polym. Sci. 2012, 126, 490–500.

    Article  CAS  Google Scholar 

  21. Ponnamma, D.; Chamakh, M. M.; Alahzm, A. M.; Salim, N.; Hameed, N.; AlMaadeed, M. A. A. Core-shell nanofibers of polyvinylidene fluoride-based nanocomposites as piezoelectric nanogenerators. Polymers (Basel) 2020, 12, 2344.

    Article  CAS  PubMed  Google Scholar 

  22. Luo, G.; Luo, Y.; Zhang, Q.; Wang, S.; Wang, L.; Li, Z.; Zhao, L.; Teh, K. S.; Jiang, Z. The radial piezoelectric response from three-dimensional electrospun PVDF micro wall structure. Materials 2020, 13, 1368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang, Z.; Deng, J.; Chen, X.; Ren, J.; Peng, H. A highly stretchable, fiber-shaped supercapacitor. Angew. Chem. Int. Ed. 2013, 52, 13453–13457.

    Article  CAS  Google Scholar 

  24. Zhao, Z.; Yan, C.; Liu, Z.; Fu, X.; Peng, L. M.; Hu, Y.; Zheng, Z. Machine-washable textile triboelectric nanogenerators for effective human respiratory monitoring through loom weaving of metallic yarns. Adv. Mater. 2016, 28, 10267–10274.

    Article  CAS  PubMed  Google Scholar 

  25. Dong, K.; Wang, Y. C.; Deng, J.; Dai, Y.; Zhang, S. L.; Zou, H.; Gu, B.; Sun, B.; Wang, Z. L. A highly stretchable and washable all-yarn-based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors. ACS Nano 2017, 11, 9490–9499.

    Article  CAS  PubMed  Google Scholar 

  26. Wang, Y.; Liu, X.; Lian, M.; Zheng, G.; Dai, K.; Guo, Z.; Liu, C.; Shen, C. Continuous fabrication of polymer microfiber bundles with interconnected microchannels for oil/water separation. Appl. Mater. Today 2017, 9, 77–81.

    Article  Google Scholar 

  27. Zhao, L. J. Elastic behavior of LDPE/HEPE blend melts in capillary extrusion. J. Appl. Polym. Sci. 2000, 78, 759–765.

    Article  Google Scholar 

  28. Pokharel, P.; Bae, H.; Lim, J. G.; Lee, K. Y.; Choi, S. Effects of titanate treatment on morphology and mechanical properties of graphene nanoplatelets/high density polyethylene nanocomposites. J. Appl. Polym. Sci. 2015, 132, 42073.

    Article  Google Scholar 

  29. Zhu, J.; Zhang, Y.; Zheng, G.; Ji, Y.; Dai, K.; Mi, L.; Zhang, D.; Liu, C.; Shen, C. Microribbon structured polyvinylidene fluoride with high-performance piezoelectricity for sensing application. ACS Appl. Polym. Mater. 2021, 3, 2411–2419.

    Article  CAS  Google Scholar 

  30. Zhou, H.; Zhang, Y.; Qiu, Y.; Wu, H.; Qin, W.; Liao, Y.; Yu, Q.; Cheng, H. Stretchable piezoelectric energy harvesters and self-powered sensors for wearable and implantable devices. Biosens. Bioelectron. 2020, 168, 112569.

    Article  CAS  PubMed  Google Scholar 

  31. Lu, X.; Qu, H.; Skorobogatiy, M. Piezoelectric micro- and nanostructured fibers fabricated from thermoplastic nanocomposites using a fiber drawing technique: comparative study and potential applications. ACS Nano 2017, 11, 2103–2114.

    Article  CAS  PubMed  Google Scholar 

  32. Lu, L.; Yang, B.; Zhai, Y.; Liu, J. Electrospinning core-sheath piezoelectric microfibers for self-powered stitchable sensor. Nano Energy 2020, 76, 104966.

    Article  CAS  Google Scholar 

  33. Martins, R. S.; Gonçalves, R.; Azevedo, T.; Rocha, J. G.; Nόbrega, J. M.; Carvalho, H.; Lanceros-Mendez, S. Piezoelectric coaxial filaments produced by coextrusion of poly(vinylidene fluoride) and electrically conductive inner and outer layers. J. Appl. Polym. Sci. 2014, 131, 40710.

    Article  Google Scholar 

  34. Lin, J.; Malakooti, M. H.; Sodano, H. A. Thermally stable poly(vinylidene fluoride) for high-performance printable piezoelectric devices. ACS Appl. Mater. Interfaces 2020, 12, 21871–21882.

    Article  CAS  PubMed  Google Scholar 

  35. Karan, S. K.; Mandal, D.; Khatua, B. B. Self-powered flexible Fedoped RGO/PVDF nanocomposite: an excellent material for a piezoelectric energy harvester. Nanoscale 2015, 7, 10655–10666.

    Article  CAS  PubMed  Google Scholar 

  36. Martins, P.; Lopes, A. C.; Lanceros-Mendez, S. Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci. 2014, 39, 683–706.

    Article  CAS  Google Scholar 

  37. Deng, W.; Yang, T.; Jin, L.; Yan, C.; Huang, H.; Chu, X.; Wang, Z.; Xiong, D.; Tian, G.; Gao, Y.; Zhang, H.; Yang, W. Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures. Nano Energy 2019, 55, 516–525.

    Article  CAS  Google Scholar 

  38. Peng, F.; Liu, D.; Zhao, W.; Zheng, G.; Ji, Y.; Dai, K.; Mi, L.; Zhang, D.; Liu, C.; Shen, C. Facile fabrication of triboelectric nanogenerator based on low-cost thermoplastic polymeric fabrics for large-area energy harvesting and self-powered sensing. Nano Energy 2019, 65, 104068.

    Article  CAS  Google Scholar 

  39. Wei, J.; Zheng, Y.; Chen, T. A fully hydrophobic ionogel enables highly efficient wearable underwater sensors and communicators. Mater. Horiz. 2021, 8, 2761–2770.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, Y.; Gao, M.; Gao, C.; Zheng, G.; Ji, Y.; Dai, K.; Mi, L.; Zhang, D.; Liu, C.; Shen, C. Facile preparation of micropatterned thermoplastic surface for wearable capacitive sensor. Compos. Sci. Technol. 2023, 232, 109863.

    Article  CAS  Google Scholar 

  41. Su, T.; Liu, N.; Lei, D.; Wang, L.; Ren, Z.; Zhang, Q.; Su, J.; Zhang, Z.; Gao, Y. Flexible MXene/bacterial cellulose film sound detector based on piezoresistive sensing mechanism. ACS Nano 2022, 16, 8461–8471.

    Article  CAS  PubMed  Google Scholar 

  42. Woo, J.; Lee, H.; Yi, C.; Lee, J.; Won, C.; Oh, S.; Jekal, J.; Kwon, C.; Lee, S.; Song, J.; et al. Ultrastretchable helical conductive fibers using percolated Ag nanoparticle networks encapsulated by elastic polymers with high durability in omnidirectional deformations for wearable electronics. Adv. Funct. Mater. 2020, 30, 1910026.

    Article  CAS  Google Scholar 

  43. Chen, S.; Sun, L.; Zhou, X.; Guo, Y.; Song, J.; Qian, S.; Liu, Z.; Guan, Q.; Meade Jeffries, E.; Liu, W. Mechanically and biologically skinlike elastomers for bio-integrated electronics. Nat. Commun. 2020, 11, 1107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sun, L.; Huang, H.; Ding, Q.; Guo, Y.; Sun, W.; Wu, Z.; Qin, M.; Guan, Q.; You, Z. Highly transparent, stretchable, and self-healable ionogel for multifunctional sensors, triboelectric nanogenerator, and wearable fibrous electronics. Adv. Fiber Mater. 2022, 4, 98–107.

    Article  CAS  Google Scholar 

  45. Yan, T.; Zhou, H.; Niu, H.; Shao, H.; Wang, H.; Pan, Z.; Lin, T. Highly sensitive detection of subtle movement using a flexible strain sensor from helically wrapped carbon yarns. J. Mater. Chem. C 2019, 7, 10049–10058.

    Article  CAS  Google Scholar 

  46. Xiong, J.; Cui, P.; Chen, X.; Wang, J.; Parida, K.; Lin, M. F.; Lee, P. S. Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting. Nat. Commun. 2018, 9, 4280.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Fan, W. J.; He, Q.; Meng, K. Y.; Tan, X. L.; Zhou, Z. H.; Zhang, G. Q.; Yang, J.; Wang, Z. L. Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring. Sci. Adv. 2020, 6, eaay2840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No.51873199) and Program for Innovative Research Team (in Science and Technology) in University (No.20IRTSTHN002) Furthermore, we also express our great thanks to Shiyanjia Lab for the support of SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Qiang Zheng.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gui, SS., Da, BX., Peng, F. et al. One-step and Continuous Fabrication of Coaxial Piezoelectric Fiber for Sensing Application. Chin J Polym Sci 41, 1778–1785 (2023). https://doi.org/10.1007/s10118-023-2960-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-2960-0

Keywords

Navigation