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Abstract   Simultaneous  realization  of  superior  mechanical  and  antifouling  properties  is  critical  for  a  coating.  The  use  of  stereoscopic

polysiloxanes in place of linear polysiloxanes to fabricate antifouling coatings can combine properties of organic and inorganic materials, i.e., they

can exhibit both high hardness and wear resistance from inorganic components as well as the flexibility and tunability from organic components.

This  strategy is  used to  prepare  hard yet  flexible  antifouling coatings  or  polymer-ceramic  hybrid  antifouling coatings.  In  this  mini-review,  we

report  the  recent  advances  in  this  field.  Particularly,  the  effects  of  stereoscopic  polysiloxane  structures  on  their  mechanical  and  antifouling

properties are discussed in detail.
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INTRODUCTION

Marine  biofouling  refers  to  the  adhesion  and  reproduction  of
marine  organisms,  including  marine  microorganisms,  plants,
and  animals  on  submerged  surfaces,  which  has  numerous
detrimental  consequences  for  maritime  industries.[1−3] For
example,  marine  biofouling  on  ship  hull  surfaces  promotes
surface deterioration, resulting in slower speed and higher fuel
consumption  for  the  ships.[4] Moreover,  higher  fuel
consumption causes carbon dioxide emissions.[5] Biofouling can
also induce biocorrosion of cross-sea bridge piers and marine oil
platforms.[6] Additionally, the unwanted accumulation of marine
microorganisms on the surface will clog pipelines of tidal power
plants and nuclear power plants.[7]

Accordingly,  fouling-release  coatings,[8] degradable  poly-
mers,[9] amphiphilic  polymers,[10] protein-resistant
polymers,[11] and  biomimetic  polymers[12] have  been  pre-
pared  to  inhibit  biofouling.  Among  these,  fouling-release
coatings  have  received  considerable  attention  in  both  aca-
demia  and industry  due to  their  biocide-free  and drag-redu-
cing  effects  on  the  ship  hull  surface.[13] Silicone-based  elast-
omers are mostly used in fouling-release coatings. Because of
silicone-based coatings’ low surface energy and low modulus
characteristics, fouling organisms cannot firmly adhere to the
surface and are readily detached by an external shear force.[14]

Moreover,  silicone-based  coatings  have  been  widely  used  in
medical  devices  due  to  their  biocompatibility  and  elasticity.
However,  traditional  silicone-based  coatings  generally  suffer

from  weak  mechanical  properties,  poor  substrate  adhesion,
and  limited  fouling  resistance.  Therefore,  various  micro-  or
nanometer-sized fillers[15−18] (SiO2, TiO2, nanodiamond, multi-
walled  carbon  nanotubes, etc.)  or  groups[19−23] (epoxy,  cat-
echol, urethane, urea, 2-ureido-4[1H]-pyrimidinone, etc.) have
been  introduced  into  silicone-based  coatings  to  improve
their  mechanical  properties  and  substrate  adhesion.  Mean-
while,  amphiphiles,[24] zwitterions,[25] quaternary  ammonium
salts,[26] and  antifoulants[27] have  been  introduced  to  offer
fouling resistance. It should be noted that the above modific-
ation approaches to materials are based on the linear polydi-
methylsiloxane  (PDMS)  elastomer,  which  does  not  simultan-
eously have superior mechanical and antifouling properties.

Compared  to  linear  polysiloxanes  with  high  chain  flexibil-
ity,  stereoscopic  polysiloxanes  (nanoclusters,  hyperbranched
structures,  cage-like,  or ladder-like)[28,29] with a rigid inorgan-
ic  core  and  organic  periphery  are  promising  to  develop  into
hard yet flexible antifouling coatings.  Recently,  to realize the
combination of ceramic-like hardness and polymer-like flexib-
ility  (two mutually  exclusive  characteristics)  in  an  antifouling
coating,  methods about developing linear polysiloxanes into
stereoscopic  polysiloxanes via chemical  hybridization  have
been  extensively  employed  for  the  creation  of  polymer-
ceramic  hybrid  antifouling coatings.  Compared with a  PDMS
elastomer, a polymer-ceramic hybrid coating usually exhibits
much higher hardness and wear resistance owing to its inor-
ganic  silicon  core.  Moreover,  the  flexibility  and  antifouling
properties  of  the  coatings  can  be  achieved  by  introducing
functional  polymers via chemical  hybridization.  Such  a  coat-
ing is expected to be used on the surface of marine facilities,
electronic displays, and biomedical devices.

Herein,  we  focus  on  recent  progress  in  the  conceptual
design  of  polymer-ceramic  hybrid  antifouling  coatings,  and
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how stereoscopic polysiloxanes affect the mechanical and an-
tifouling properties of the final coatings. Some of their emer-
ging applications are also discussed.  Finally,  conclusions and
future outlooks for the design of polymer-ceramic hybrid an-
tifouling coatings are presented.

METHODOLOGY FOR THE SYNTHESIS OF
POLYMER-CERAMIC HYBRID ANTIFOULING
COATINGS

The  complementary  properties  of  inorganic  ceramic  materials
and organic polymers can be combined into a monolithic entity
through chemical  hybridization.[30,31] Unlike the relatively  weak
interactions  (van  der  Waals,  hydrogen  bonding,  or  weak
electrostatic  interactions)  between  the  two  components via
physical  blending,  chemical  hybridization  connects
components  with  covalent  bonds  at  the  nanometer  level,
namely,  the  chemical  interactions  are  strong.  Furthermore,  the
maximum  level  of  chemical  bonding  in  the  intra-/interphases
can  improve  the  mechanical  performance  of  the  hybrid
coatings.[32] Based on the concept, the polymer-ceramic hybrid
antifouling coatings can be classified into two major categories
according  to  the  procedure  of  chemical  hybridization:  (i)  one-
step sol-gel hybrid strategy and (ii) step-by-step hybrid strategy
(Fig. 1).

One-Step Sol-Gel Hybrid Strategy toward Polymer-
Ceramic Hybrid Antifouling Coatings
The  chemical  hybridization  of  organic  and  inorganic
components  at  the  nanometer  level  generates  a  material  with
synergetic  characteristics  of  organic  polymers  and  inorganic
materials.  In  particular,  the  sol-gel  reaction  has  emerged  as  an

attractive  candidate  for  preparing  organic-inorganic  hybrid
materials.  It  has  been  widely  used  to  prepare  various
structuralized  forms,  such  as  monoliths,  films,  and  powder
materials,  owing  to  its  controllable  stoichiometry,  easy
functionalization,  low-temperature  process,  and  ease  of
application.[33] In  general,  sol-gel  reactions  are  classified  as
hydrolytic  or  nonhydrolytic.  The  former  is  silane  or  metal-
containing alkoxy groups (―OCnH2n+1) hydrolyzed under acidic
or basic aqueous conditions;  then, the hydroxyl groups (―OH)
condense  with  other  hydroxyl  and  alkoxy  groups  in  processes
referred to as water and alcohol condensations, respectively.[34]

The latter is a condensation of metal alkoxides, hydroxyl silane,
or  halide.  In  the  last  few  decades,  siloxane-based  organic-
inorganic  hybrid  materials  derived  from  sol-gel  have  received
considerable  attention.[35] The  desired  properties  of  the  hybrid
materials  can  be  readily  tuned  by  controlling  the  sol-gel
procedure and organic groups of the silane precursor.

In recent years,  a  series  of  sol-gel  hybrid coatings via one-
step  hydrolytic  polycondensation  of  silane-bearing  aliphatic
chains  and  amino/fluoro  functional  groups  were
reported.[36−39] The hard hybrid  coating prepared by n-octyl-
triethoxysilane (C8) and tetraethoxysilane (TEOS) in a 1:1 mol-
ar ratio exhibited better fouling resistance to algae and juven-
ile barnacles compared with glass or PDMS elastomers. Partic-
ularly, the low surface roughness (0.1–1 nm) can significantly
decrease  the  settlement  and  the  ease  of  removal  of  fouling
organisms  from  these  surfaces.  However,  this  coating  be-
comes  brittle  and  susceptible  to  damage  when  it  forms  a
thick film. Meanwhile,  such a coating has limited fouling res-
istance due to the lack of antifouling moieties, particularly un-
der static conditions.

Polymer-ceramic hybrid antifouling coating
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Fig. 1    Two main strategies for constructing polymer-ceramic hybrid antifouling coatings: one-step sol-gel hybrid strategy and step-by-
step hybrid strategy.
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To solve the problem, our group synthesized a silane-bear-
ing  amphiphilic  fluorocarbon  acrylate-PEG  oligomer  (FP) via
telomerization  of  dodecafluoroheptyl  methacrylate  (DFMA),
poly(ethylene  glycol)  methyl  ether  methacrylate  (PEGMA),
and 3-mercaptopropyl triethoxysilane (KH580), and incorpor-
ated  it  into  a  hybrid  coating  by  a  facile  sol-gel  reaction  (Fig.
2a).[40] The  hybrid  coatings  exhibit  higher  transmittance
(>99%),  hardness  (~50  MPa),  and  modulus  (~0.4  GPa)  com-
pared  with  the  soft  PDMS  elastomers  (Fig.  2b).  The  mechan-
ism of  fouling release was mainly  determined by its  low sur-
face  energy  (17−24  mJ·m−2)  and  low  surface  roughness
(Rq<2.8 nm). Meanwhile, the soft PEG moiety of FP serves as a
plasticizer to toughen the coating, thus endowing it with flex-
ibility.  As  shown  in Fig.  2(c),  after  100  bending  cycles,  no
cracks  were  observed  on  the  surface  of  HC-FP-15,  while  nu-
merous cracks were visible on HC-FP-0 surface. Moreover, the
amphiphilic  FP can self-enrich on the surface to improve the
fouling resistance of the coating, which could effectively res-
ist diatoms Navicula incerta as well as Pseudomonas sp. (P. sp.)
and  its  biofilm  (Fig.  2d).  Furthermore,  other  antifouling
groups,  such  as  zwitterions[41] and  quaternary  ammonium
salts,[42] could  be  covalently  attached  to  the  hybrid  coating
through a one-step sol-gel hybrid strategy.

It  should  be  noted  that  the  one-step  sol–gel  hybrid
strategy also inevitably has some problems, such as long cur-
ing  time,  poor  adjustment  ability,  and  limited  flexibility,  and
most  systems  need  a  high-temperature  process  to  obtain  a

highly  cross-linked  network,  which  limits  its  application  on
various substrates.

Step-by-Step Hybrid Strategy toward Polymer-
Ceramic Hybrid Antifouling Coatings
In  contrast  to  only  using  a  sol-gel  reaction  to  obtain  polymer-
ceramic  hybrid  coatings,  using  the  R  group  (epoxy,  acrylate,
vinyl,  amino,  thiol, etc.)  of  the  silane  coupling  agent,  the
inorganic  components  can  connect  through  a  polymerization
process of R group.[34,43−47] Functional organic components can
also be readily introduced in polymer-ceramic hybrid coatings.

In recent years, ladder-like polysilsesquioxanes (CEOS) have
been  reported via hydrolytic  polycondensation  of  (2-(3,4-
epoxycyclohexyl)ethyl)  trimethoxysilane  under  base-cata-
lyzed  conditions.[32] The  CEOS  is  a  clear  and  viscous  semili-
quid.  Next,  a  highly  crosslinking  hybrid  network  was  ob-
tained  after  UV-initiated  cationic  ring-opening  polymeriza-
tion and subsequently exposed to 85% relative humidity at 85
°C for 2 h. The hardness of hybrid coatings was up to 9 H, and
no crack was observed on the surface even after bending for
10000  cycles.  Hybrid  coatings  based  on  ring-opening  poly-
merization  of  glycidyloxypropyl  polyhedral  silsesquioxane
(GPOSS)  have  also  been  prepared.[48] The  inorganic  silicon
core  provides  hardness,  while  the  ether  and  methylene
groups  formed  by  the  ring-opening  polymerization  of  gly-
cidyloxypropyl  groups  provide  flexibility.  Moreover,  low-sur-
face-tension liquid lubricant PDMS was incorporated into the

 
Fig.  2    (a)  Synthetic  route  for  amphiphilic  telomer  FP  and  the  hybrid  coating;  (b)  The  hardness  of  hybrid  coatings  determined  by
nanoindentation; (c) Flexibility test of HC-FP-0 and HC-FP-15 coated on PET; (d) Fluorescence microscopy images of P. sp. adhered to the hybrid
coatings. (Reproduced with permission from Ref. [40]; Copyright (2017) The Royal Society of Chemistry).
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GPOSS coating via epoxy-amine reaction to fabricate an om-
niphobic  surface.  The  resulting  GPOSS  coating  was  hard  (>9
H) but flexible (U-shape bending). Even after 200 abrasions by
steel wool or 500 times U-shape bending, water and n-hexa-
decane sliding capabilities remained nearly unchanged.

Note that the above coatings still  lack the antifouling abil-
ity, and the photocatalytic crosslinking reaction requires com-
plex  UV irradiation,  limiting the  thickness  and hence the  ap-
plication fields  of  the coatings.  Therefore,  our  group presen-
ted a facile and universal step-by-step strategy for fabricating
polymer-ceramic hybrid antifouling coatings.[49] We first  syn-
thesized two types of highly cross-linked epoxy-oligosiloxane
nanoclusters via sol-gel  reaction,  one  for  the  matrix  and  the
other  for  fouling  resistance.  Then,  the  epoxy-oligosiloxane
nanoclusters  were  crosslinked  with  various  amine-termin-
ated  curing  agents  at  room  temperature  without  external
triggers (Fig. 3a). This step-by-step strategy is simple, and the
performance of coatings can be precisely regulated by the ju-
dicious design of oligosiloxane nanoclusters or curing agents.

As  shown  in Figs.  3(b)  and  3(c),  the  resulting  coatings  ex-
hibited  excellent  transmittance  (>92%  in  the  range  of
400−800 nm), hardness (6−7 H), and flexibility (10 mm bend-
ing  diameter).  Furthermore,  by  introducing  the  antifouling
oligosiloxane  nanocluster-bearing  amphiphilic  telomer  (FP)
and  bis(3-aminopropyl)  terminated  polydimethylsiloxane
(APT-PDMS), the coating exhibits not only a self-cleaning abil-

ity  but  also  excellent  fouling-release  performance  and  foul-
ing  resistance  against P.  sp., Escherichia  coli (E.  coli),  and
Staphylococcus aureus (S. aureus) (Figs. 3d and 3e). Moreover,
after abrasion for 400 cycles with steel wool, the coated glass
still  exhibits  excellent  antibacterial  adhesion  performance
and water-sliding capability.

Based on the combination of sol-gel chemistry and epoxy-
amine  curing  reaction,  the  polymer-ceramic  hybrid  coatings
can  be  easily  prepared  using  different  particles  to  meet  the
requirements  of  different  facilities.  We  also  prepared  a  foul-
ing  resistant  epoxy-zirconium  particle  (ZP)  and  an  amine-
terminated  hyperbranched  polysiloxane  (HP),  where  the
former  is  synthesized via the  sol-gel  reaction  of  tetrapropyl
zirconate  (TPOZ),  3-glycidyloxypropyltrimethoxysilane
(KH560)  and  sulfobetaine  silane  (SBSi),  and  the  latter  is  syn-
thesized by  3-amino-propyltriethoxysilane (KH550)  (Figs.  4a–
4c).[50] The  resulting  coatings  are  transparent  (>99.5%  in  the
range  of  400–800  nm),  hard  (7–9  H),  and  flexible  (≤10  mm
bending  diameter).  While  the  zirconia  core  provides  the  de-
sired hardness,  the flexibility is  imparted by HP network. Fig.
4(d) shows that the KH550-ZP0 film was severely cracked fol-
lowing one rolling-up cycle due to its brittleness, but no crack
was observed on the HP-ZP0 surface even after ten rolling-up
cycles,  indicating  that  the  hyperbranched  polysiloxane  net-
work  can  make  coating  undergo  more  elastic  deformation.
Besides,  the  presence  of  the  zwitterionic  group  allows  the
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Fig.  3    (a)  Schematic  illustration of  the crosslinking process;  (b)  Wear resistance,  (c)  flexibility,  and (d)  anti-smudge of  the hybrid coatings;  (e)
Fluorescence microscopy images of P.  sp., E.  coli,  and S.  aureus on the surface of  hybrid coatings and corresponding relative bacteria adhesion
(RBA). (Reprinted with permission from Ref. [49]; Copyright (2022) Wiley).
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coating to have excellent oil repellency and antibacterial cap-
ability  against P.  sp., E.  coli,  and S.  aureus.  (Figs.  4e and  4f).
Such a coating is expected to be used in foldable displays, op-
tical sensors, and biomedical facilities.

CONCLUSIONS AND PROSPECTS

In this mini-review, we summarized the advances and design
strategies  of  polymer–ceramic  hybrid  antifouling  coatings
based on chemical hybridization, including a one-step sol-gel
hybrid  strategy  and  a  step-by-step  hybrid  strategy.
Furthermore,  the  effects  of  stereoscopic  polysiloxane
structures on their mechanical and antifouling properties are
discussed.  In  particular,  the  step-by-step  hybrid  strategy  can
precisely  and  readily  optimize  the  structure  of  stereoscopic
polysiloxanes,  the  proportion  of  organic-inorganic
components,  and  the  form  of  crosslinking,  which  may
represent  the  new  generation  of  protective  antifouling
coatings.

Moreover,  the  COVID-19  pandemic  has  increased  the  de-
mand  for  surface  long-term  fouling  resistance,  such  as  elec-
tronic displays. Numerous pathogens accumulate on the sur-
faces  of  mobile  phone  screens,  tablets,  and  check-in  touch

screens and are spread by human contact.[51] Specifically, mo-
bile phone is  the main route of  bacteria transmission in hos-
pitals.[52] Previous strategies of surface leaching of antimicro-
bials are detrimental to the human body and cannot improve
surface  scratch  resistance.  The  transparent  polymer-ceramic
hybrid antifouling coating is expected to be used in antifoul-
ing  of  electronic  displays,  especially  in  foldable  displays.
However, most reported systems have only been tested in the
laboratory,  and  environmental  stability  tests  under  real  cli-
mates were seldom carried out.

Overall, certain issues still need to be further addressed. For
example,  there  is  an  urgent  need  to  deeply  understand  the
structure-property relationship of the hybrid antifouling coat-
ings  to  improve  their  performance.  Additionally,  polymer-
ceramic  hybrid  antifouling  coatings  with  functions  such  as
self-healing  or  anti-icing  properties  should  be  developed  in
the future.
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