Skip to main content
Log in

Statics, Dynamics and Linear Viscoelasticity from Dissipative Particle Dynamics Simulation of Entangled Linear Polymer Melts

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Dissipative particle dynamics (DPD) with bond uncrossability shows a great potential in studying entangled polymers, however relatively little is known of applicability range of entangled DPD model to be use as a model for ideal chains and properly describe the full dynamics of entangled melts. Therefore, we perform a comprehensive study on structure, dynamics and linear viscoelasticity of a typical DPD entangled model system, semiflexible linear polymer melt. These polymers obey Flory’s ideality hypothesis in chain dimensions, but their local structure exhibits nonideal behavior due to weak correlated hole effect. Both monomer motion and viscoelasticity relaxation reproduce the full pictures as predicted by reptation theory. The stronger chain length dependent diffusion coefficient and relaxation time as well as dynamic moduli are in close agreement with predictions of modern tube model that accounts for additional relaxation mechanisms besides chain reptation. However, an anomalous sub-diffusive center of mass motion is observed both before and after the intermediate reptation regime and the cross-correlation between chains is not negligible even these polymers obey stress-optical law, indicating limitations of the reptation theory. Hence semiflexible linear entangled DPD model can correctly describe statics and dynamics of entangled polymer melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Doi, M.; Edwards, S. F., The theory of polymer dynamics. Oxford: Oxford University Press: 1986.

    Google Scholar 

  2. Wittmer, J. P.; Beckrich, P.; Meyer, H.; Cavallo, A.; Johner, A.; Baschnagel, J. Intramolecular long-range correlations in polymer melts: the segmental size distribution and its moments. Phys. Rev. E 2007, 76, 011803.

    CAS  Google Scholar 

  3. Fritz, D.; Koschke, K.; Harmandaris, V. A.; van der Vegt, N. F. A.; Kremer, K. Multiscale modeling of soft matter: scaling of dynamics. Phys. Chem. Chem. Phys. 2011, 13, 10412–10420.

    CAS  PubMed  Google Scholar 

  4. Kremer, K.; Grest, G. S. Dynamics of entangled linear polymer melts: a molecular-dynamics simulation. J. Chem. Phys. 1990, 92, 5057–5086.

    CAS  Google Scholar 

  5. Likhtman, A. E. Viscoelasticity and molecular rheology. Polym. Sci.: A Compr. Ref. Elsevier, 2012, 1, pp. 133–179.

    CAS  Google Scholar 

  6. Flory, P. J. Statistical mechanics of chain molecules. Wiley, New York, 1969.

    Google Scholar 

  7. Beckrich, P.; Johner, A.; Semenov, A. N.; Obukhov, S. P.; Benoît, H.; Wittmer, J. P. Intramolecular form factor in dense polymer systems: systematic deviations from the debye formula. Macromolecules 2007, 40, 3805–3814.

    CAS  Google Scholar 

  8. Auhl, R.; Everaers, R.; Grest, G. S.; Kremer, K.; Plimpton, S. J. Equilibration of long chain polymer melts in computer simulations. J. Chem. Phys. 2003, 119, 12718–12728.

    CAS  Google Scholar 

  9. Yao, P.; Feng, L. K.; Guo, H. X. Combined molecular dynamics simulation and rouse model analysis of static and dynamic properties of unentangled polymer melts with different chain architectures. Chinese J. Polym. Sci. 2021, 39, 512–524.

    CAS  Google Scholar 

  10. Wittmer, J. P.; Beckrich, P.; Johner, A.; Semenov, A. N.; Obukhov, S. P.; Meyer, H.; Baschnagel, J. Why polymer chains in a melt are not random walks. Europhys. Lett. 2007, 77, 56003.

    Google Scholar 

  11. Wittmer, J. P.; Meyer, H.; Baschnagel, J.; Johner, A.; Obukhov, S.; Mattioni, L.; Muller, M.; Semenov, A. N. Long range bond-bond correlations in dense polymer solutions. Phys. Rev. Lett. 2004, 93, 147801.

    CAS  PubMed  Google Scholar 

  12. Hsu, H. P.; Kremer, K. Static and dynamic properties of large polymer melts in equilibrium. J. Chem. Phys. 2016, 144, 154907.

    PubMed  Google Scholar 

  13. Jabbari-Farouji, S. Static and dynamic scaling behavior of a polymer melt model with triple-well bending potential. J. Polym. Sci.; Part B: Polym. Phys. 2018, 56, 1376–1392.

    CAS  Google Scholar 

  14. Harmandaris, V. A.; Adhikari, N. P.; Vegt, N. F. A. v. d.; Kremer, K. Hierarchical modeling of polystyrene: from atomistic to coarsegrained simulations. Macromolecules 2006, 39, 6708–6719.

    CAS  Google Scholar 

  15. Svaneborg, C.; Everaers, R. Characteristic time and length scales in melts of kremer-grest bead-spring polymers with wormlike bending stiffness. Macromolecules 2020, 53, 1917–1941.

    CAS  Google Scholar 

  16. de Gennes, P. G. Reptation of a polymer chain in the presence of fixed obstacles. J. Chem. Phys. 1971, 55, 572–579.

    Google Scholar 

  17. Doi, M.; Edwards, S. F. Dynamics of concentrated polymer systems. Part 1.—Brownian motion in the equilibrium state. J. Chem. Soc. Faraday Trans. 2 1978, 74, 1789–1801.

    CAS  Google Scholar 

  18. Doi, M.; Edwards, S. F. Dynamics of concentrated polymer systems. Part 2.—Molecular motion under flow. J. Chem. Soc. Faraday Trans. 2 1978, 74, 1802–1817.

    CAS  Google Scholar 

  19. Doi, M.; Edwards, S. F. Dynamics of concentrated polymer systems. Part 3.—The constitutive equation. J. Chem. Soc. Faraday Trans. 2 1978, 74, 1818–1832.

    CAS  Google Scholar 

  20. Doi, M.; Edwards, S. F. Dynamics of concentrated polymer systems. Part 4.—Rheological properties. J. Chem. Soc. Faraday Trans. 2 1979, 75, 38–54.

    CAS  Google Scholar 

  21. Moreira, L. A.; Zhang, G.; Müller, F.; Stuehn, T.; Kremer, K. Direct equilibration and characterization of polymer melts for computer simulations. Macromol. Theory Simul. 2015, 44, 419–431.

    Google Scholar 

  22. Wang, Z.; Likhtman, A. E.; Larson, R. G. Segmental dynamics in entangled linear polymer melts. Macromolecules 2012, 45, 3557–3570.

    CAS  Google Scholar 

  23. Hall, K. W.; Sirk, T. W.; Klein, M. L.; Shinoda, W. A coarse-grain model for entangled polyethylene melts and polyethylene crystallization. J. Chem. Phys. 2019, 150, 244901.

    PubMed  Google Scholar 

  24. Salerno, K. M.; Agrawal, A.; Perahia, D.; Grest, G. S. Resolving dynamic properties of polymers through coarse-grained computational studies. Phys. Rev. Lett. 2016, 116, 058302.

    PubMed  Google Scholar 

  25. Peters, B. L.; Salerno, K. M.; Ge, T.; Perahia, D.; Grest, G. S. Viscoelastic response of dispersed entangled polymer melts. Macromolecules 2020, 53, 8400–8405.

    CAS  Google Scholar 

  26. Lodge, T. P. Reconciliation of the molecular weight dependence of diffusion and viscosity in entangled polymers. Phys. Rev. Lett. 1999, 83, 3218–3221.

    CAS  Google Scholar 

  27. Watanabe, H. Viscoelasticity and dynamics of entangled polymers. Prog. Polym. Sci. 1999, 24, 1253–1403.

    CAS  Google Scholar 

  28. McLeish, T. C. B. Tube theory of entangled polymer dynamics. Adv. Phys. 2002, 57, 1379–1527.

    Google Scholar 

  29. Feng, L.; Gao, P.; Guo, H. Retardation on blending in the entangled binary blends of linear polyethylene: a molecular dynamics simulation study. Macromolecules 2019, 52, 3404–3416.

    CAS  Google Scholar 

  30. Milner, S. T.; McLeish, T. C. B. Reptation and contour-length fluctuations in melts of linear polymers. Phys. Rev. Lett. 1998, 81, 725–728.

    CAS  Google Scholar 

  31. M. Doi, Explanation for the 3.4-power law for viscosity of polymeric liquids on the basis of the tube model. J. Polym. Sci. Part B: Polym. Phys. 1983, 21, 667–684.

    CAS  Google Scholar 

  32. Likhtman, A. E.; McLeish, T. C. B. Quantitative theory for linear dynamics of linear entangled polymers. Macromolecules 2002, 35, 6332–6343.

    CAS  Google Scholar 

  33. Rubinstein, M.; Colby, R. H. Self-consistent theory of polydisperse entangled polymers: linear viscoelasticity of binary blends. J. Chem. Phys. 1988, 89, 5291–5306.

    CAS  Google Scholar 

  34. Viovy, J. L.; Rubinstein, M.; Colby, R. H. Constraint release in polymer melts: tube reorganization versus tube dilation. Macromolecules 1991, 24, 3587–3596.

    CAS  Google Scholar 

  35. Ylitalo, C. M.; Kornfield, J. A.; Fuller, G. G.; Pearson, D. S. Molecular weight dependence of component dynamics in bidisperse melt rheology. Macromolecules 1991, 24, 749–758.

    CAS  Google Scholar 

  36. Graf, R.; Heuer, A.; Spiess, H. W. Chain-order effects in polymer melts probed by 1H double-quantum NMR spectroscopy. Phys. Rev. Lett. 1998, 80, 5738–5741.

    CAS  Google Scholar 

  37. Cao, J.; Likhtman, A. E. Time-dependent orientation coupling in equilibrium polymer melts. Phys. Rev. Lett. 2010, 104, 207801.

    PubMed  Google Scholar 

  38. Likhtman, A. E.; Sukumaran, S. K.; Ramirez, J. Linear viscoelasticity from molecular dynamics simulation of entangled polymers. Macromolecules 2007, 40, 6748–6757.

    CAS  Google Scholar 

  39. Masubuchi, Y.; Pandey, A.; Amamoto, Y.; Uneyama, T. Orientational cross correlations between entangled branch polymers in primitive chain network simulations. J. Chem. Phys. 2017, 147, 184903.

    PubMed  Google Scholar 

  40. Chappa, V. C.; Morse, D. C.; Zippelius, A.; Muller, M. Translationally invariant slip-spring model for entangled polymer dynamics. Phys Rev Lett 2012, 109, 148302.

    PubMed  Google Scholar 

  41. Sgouros, A. P.; Megariotis, G.; Theodorou, D. N. Slip-spring model for the linear and nonlinear viscoelastic properties of molten polyethylene derived from atomistic simulations. Macromolecules 2017, 50, 4524–4541.

    CAS  Google Scholar 

  42. Masubuchi, Y.; Uneyama, T. Comparison among multi-chain models for entangled polymer dynamics. Soft Matter 2018, 14, 5986–5994.

    CAS  PubMed  Google Scholar 

  43. Behbahani, A. F.; Schneider, L.; Rissanou, A.; Chazirakis, A.; Bačová, P.; Jana, P. K.; Li, W.; Doxastakis, M.; Polińska, P.; Burkhart, C.; Müller, M.; Harmandaris, V. A. Dynamics and rheology of polymer melts via hierarchical atomistic, coarsegrained, and slip-spring simulations. Macromolecules 2021, 54, 2740–2762.

    CAS  Google Scholar 

  44. Nikunen, P.; Vattulainen, I.; Karttunen, M. Reptational dynamics in dissipative particle dynamics simulations of polymer melts. Phys. Rev. E 2007, 75, 036713.

    Google Scholar 

  45. Kumar, S.; Larson, R. G. Brownian dynamics simulations of flexible polymers with spring-spring repulsions. J. Chem. Phys. 2001, 774, 6937–6941.

    Google Scholar 

  46. Padding, J. T.; Briels, W. J. Uncrossability constraints in mesoscopic polymer melt simulations: Non-Rouse behavior of C120H242. J. Chem. Phys. 2001, 115, 2846–2859.

    CAS  Google Scholar 

  47. Ouyang, Y.; Hao, L.; Ma, Y.; Guo, H. Dissipative particle dynamics thermostat: a novel thermostat for molecular dynamics simulation of liquid crystals with Gay-Berne potential. Sci. China Chem. 2014, 58, 694–707.

    Google Scholar 

  48. Ruan, Y.; Lu, Y.; An, L.; Wang, Z. G. Nonlinear rheological behaviors in polymer melts after step shear. Macromolecules 2019, 52, 4103–4110.

    CAS  Google Scholar 

  49. Ruan, Y.; Lu, Y.; An, L.; Wang, Z. G. Shear banding in entangled polymers: stress plateau, banding location, and lever rule. ACS Macro Lett. 2021, 10, 1517–1523.

    CAS  PubMed  Google Scholar 

  50. Mohagheghi, M.; Khomami, B. Molecular processes leading to shear banding in well entangled polymeric melts. ACS Macro Lett. 2015, 4, 684–688.

    CAS  PubMed  Google Scholar 

  51. Mohagheghi, M.; Khomami, B. Elucidating the flow-microstructure coupling in the entangled polymer melts. Part I: single chain dynamics in shear flow. J. Rheol. 2016, 60, 849–859.

    CAS  Google Scholar 

  52. Mohagheghi, M.; Khomami, B. Elucidating the flow-microstructure coupling in entangled polymer melts. Part II: molecular mechanism of shear banding. J. Rheol. 2016, 60, 861–872.

    CAS  Google Scholar 

  53. Mohagheghi, M.; Khomami, B. Molecularly based criteria for shear banding in transient flow of entangled polymeric fluids. Phys. Rev. E 2016, 93, 062606.

    PubMed  Google Scholar 

  54. Hoogerbrugge, P. J.; Koelman, J. M. V. A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. EPL 1992, 19, 155–160.

    Google Scholar 

  55. Español, P.; Warren, P. Statistical mechanics of dissipative particle dynamics. EPL 1995, 30, 191–196.

    Google Scholar 

  56. Groot, R. D.; Madden, T. J. Dynamic simulation of diblock copolymer microphase separation. J. Chem. Phys. 1998, 108, 8713–8724.

    CAS  Google Scholar 

  57. Guskova, O. A.; Seidel, C. Mesoscopic simulations of morphological transitions of stimuli-responsive diblock copolymer brushes. Macromolecules 2011, 44, 671–682.

    CAS  Google Scholar 

  58. Xu, D.; Shi, R.; Sun, Z. Y.; Lu, Z. Y. Mechanism of periodic field driven self-assembly process. J. Chem. Phys. 2021, 154, 144904.

    CAS  PubMed  Google Scholar 

  59. Guo, F.; Li, K.; Wu, J.; Wang, Y.; Zhang, L. Sliding dynamics of ring chain on a knotted polymer in rotaxane. Polymer 2021, 235, 124226.

    CAS  Google Scholar 

  60. Bai, Z.; Guo, H. Interfacial properties and phase transitions in ternary symmetric homopolymer-copolymer blends: a dissipative particle dynamics study. Polymer 2013, 54, 2146–2157.

    CAS  Google Scholar 

  61. Zhang, Z. M.; Guo, H. X. A computer simulation study of the anchoring transitions driven by rod-coil amphiphiles at aqueous-liquid crystal interfaces. Soft Matter 2012, 8, 5168–5174.

    CAS  Google Scholar 

  62. Sumer, Z.; Striolo, A. Manipulating molecular order in nematic liquid crystal capillary bridges via surfactant adsorption: guiding principles from dissipative particle dynamics simulations. Phys. Chem. Chem. Phys. 2018, 20, 30514–30524.

    CAS  PubMed  Google Scholar 

  63. Liu, Y.; Widmer-Cooper, A. A dissipative particle dynamics model for studying dynamic phenomena in colloidal rod suspensions. J. Chem. Phys. 2021, 154, 104120.

    CAS  PubMed  Google Scholar 

  64. Zhou, Y.; Huang, M.; Lu, T.; Guo, H. Nanorods with different surface properties in directing the compatibilization behavior and the morphological transition of immiscible polymer blends in both shear and shear-free conditions. Macromolecules 2018, 51, 3135–3148.

    CAS  Google Scholar 

  65. Huang, M.; Guo, H. The intriguing ordering and compatibilizing performance of Janus nanoparticles with various shapes and different dividing surface designs in immiscible polymer blends. Soft Matter 2011, 9, 7356–7368.

    Google Scholar 

  66. Chang, H. Y.; Lin, Y. L.; Sheng, Y. J.; Tsao, H. K. Structural characteristics and fusion pathways of onion-like multilayered polymersome formed by amphiphilic comb-like graft copolymers. Macromolecules 2013, 46, 5644–5656.

    CAS  Google Scholar 

  67. Wu, S.; Guo, H. Simulation study of protein-mediated vesicle fusion. J. Phys. Chem. 2009, 113, 589–591.

    CAS  Google Scholar 

  68. Goujon, F.; Malfreyt, P.; Tildesley, D. J. Mesoscopic simulation of entanglements using dissipative particle dynamics: application to polymer brushes. J. Chem. Phys. 2008, 129, 034902.

    PubMed  Google Scholar 

  69. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19.

    CAS  Google Scholar 

  70. Shanbhag, S.; Kröger, M. Primitive path networks generated by annealing and geometrical methods: insights into differences. Macromolecules 2007, 40, 2897–2903.

    CAS  Google Scholar 

  71. Karayiannis, N.; Kroger, M. Combined molecular algorithms for the generation, equilibration and topological analysis of entangled polymers: methodology and performance. Int. J. Mol. Sci. 2009, 10, 5054–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Hoy, R. S.; Foteinopoulou, K.; Kroger, M. Topological analysis of polymeric melts: chain-length effects and fast-converging estimators for entanglement length. Phys. Rev. E 2009, 80, 031803.

    Google Scholar 

  73. Fujita, H.; Norisuye, T. Some topics concerning the radius of gyration of linear polymer molecules in solution. J. Chem. Phys. 1970, 52, 1115–1120.

    CAS  Google Scholar 

  74. Lhuillier, D. A simple model for polymeric fractals in a good solvent and an improved version of the Flory approximation. J. Phys. France 1988, 49, 705–710.

    CAS  Google Scholar 

  75. León, S.; van der Vegt, N.; Delle Site, L.; Kremer, K. Bisphenol A polycarbonate: entanglement analysis from Coarse-grained MD simulations. Macromolecules 2005, 38, 8078–8092.

    Google Scholar 

  76. Semenov, A. N.; Obukhov, S. P. Fluctuation-induced long-range interactions in polymer systems. J. Phys.: Condens. Matter 2005, 17, S1747–S1775.

    CAS  Google Scholar 

  77. Obukhov, S. P.; Semenov, A. N. Long-range interactions in polymer melts: the anti-Casimir effect. Phys. Rev. Lett. 2005, 95, 038305.

    CAS  PubMed  Google Scholar 

  78. Hsu, H. P. Lattice Monte Carlo simulations of polymer melts. J. Chem. Phys. 2014, 141, 234901.

    PubMed  Google Scholar 

  79. Halverson, J. D.; Lee, W. B.; Grest, G. S.; Grosberg, A. Y.; Kremer, K. Molecular dynamics simulation study of nonconcatenated ring polymers in a melt. II. Dynamics. J. Chem. Phys. 2011, 134, 204905.

    PubMed  Google Scholar 

  80. Smith, G. D.; Paul, W.; Monkenbusch, M.; Richter, D. A comparison of neutron scattering studies and computer simulations of polymer melts. Chem. Phys. 2000, 261, 61–74.

    CAS  Google Scholar 

  81. Paul, W.; Smith, G. D. Structure and dynamics of amorphous polymers: computer simulations compared to experiment and theory. Rep. Prog. Phys. 2004, 67, 1117–1185.

    CAS  Google Scholar 

  82. Farago, J.; Meyer, H.; Semenov, A. N. Anomalous diffusion of a polymer chain in an unentangled melt. Phys. Rev. Lett. 2011, 107, 178301.

    CAS  PubMed  Google Scholar 

  83. Farago, J.; Semenov, A. N.; Meyer, H.; Wittmer, J. P.; Johner, A.; Baschnagel, J. Mode-coupling approach to polymer diffusion in an unentangled melt. I. The effect of density fluctuations. Phys. Rev. E 2012, 85, 051806.

    CAS  Google Scholar 

  84. Farago, J.; Meyer, H.; Baschnagel, J.; Semenov, A. N. Mode-coupling approach to polymer diffusion in an unentangled melt. II. The effect of viscoelastic hydrodynamic interactions. Phys. Rev. E 2012, 85, 051807.

    CAS  Google Scholar 

  85. Farago, J.; Meyer, H.; Baschnagel, J.; Semenov, A. N. Hydrodynamic and viscoelastic effects in polymer diffusion. J. Phys.: Cond. Matter 2012, 24, 284105.

    CAS  Google Scholar 

  86. Soddemann, T.; Dunweg, B.; Kremer, K. Dissipative particle dynamics: a useful thermostat for equilibrium and nonequilibrium molecular dynamics simulations. Phys. Rev. E 2003, 68, 046702.

    Google Scholar 

  87. Harmandaris, V. A.; Mavrantzas, V. G.; Theodorou, D. N.; Kröger, M.; Ramírez, J.; Öttinger, H. C.; Vlassopoulos, D. Crossover from the rouse to the entangled polymer melt regime: signals from long, detailed atomistic molecular dynamics simulations, supported by rheological experiments. Macromolecules 2003, 36, 1376–1387.

    CAS  Google Scholar 

  88. Tsolou, G.; Mavrantzas, V. G.; Theodorou, D. N. Detailed atomistic molecular dynamics simulation of cis-1,4- poly(butadiene). Macromolecules 2005, 38, 1478–1492.

    CAS  Google Scholar 

  89. Yu, W.; Li, R.; Zhou, C. Rheology and phase separation of polymer blends with weak dynamic asymmetry. Polymer 2011, 52, 2693–2700.

    CAS  Google Scholar 

  90. Watanabe, H.; Chen, Q.; Kawasaki, Y.; Matsumiya, Y.; Inoue, T.; Urakawa, O. Entanglement dynamics in miscible polyisoprene/poly(p-tert-butylstyrene) blends. Macromolecules 2011, 44, 1570–1584.

    CAS  Google Scholar 

  91. Liu, C. Y.; Keunings, R.; Bailly, C. Do deviations from reptation scaling of entangled polymer melts result from single- or many-chain effects. Phys. Rev. Lett. 2006, 97, 246001.

    PubMed  Google Scholar 

  92. Wang, S. Q. Chain dynamics in entangled polymers: diffusion versus rheology and their comparison. J. Polym. Sci., Part B: Polym. Phys. 2003, 41, 1589–1604.

    CAS  Google Scholar 

  93. Yohji K.; W. H.; Takashi U. A note for Kohlrausch-Williams-Watts relaxation function. Nihon Reoroji Gakk. 2011, 39, 127–131.

    Google Scholar 

  94. Wu, Z.; Milano, G.; Muller-Plathe, F. Combination of hybrid particle-field molecular dynamics and slip-springs for the efficient simulation of Coarse-grained polymer models: static and dynamic properties of polystyrene melts. J. Chem. Theory Comput. 2021, 77, 474–487.

    Google Scholar 

  95. Colby, R. H.; Fetters, L. J.; Graessley, W. W. Melt viscosity-molecular weight relationship for linear polymers. Macromolecules 1987, 20, 2226–2237.

    CAS  Google Scholar 

  96. Doi, M. Molecular rheology of concentrated polymer systems. I. J. Polym. Sci. Polym. Phys. Ed. 1980, 18, 1005–1020.

    CAS  Google Scholar 

  97. Maurel, G.; Schnell, B.; Goujon, F.; Couty, M.; Malfreyt, P. Multiscale modeling approach toward the prediction of viscoelastic properties of polymers. J. Chem. Theory Comput. 2012, 8, 4570–4579.

    CAS  PubMed  Google Scholar 

  98. Boudara, V. A. H.; Read, D. J.; Ramírez, J. Reptate rheology software: toolkit for the analysis of theories and experiments. J. Rheol. 2020, 64, 709–722.

    CAS  Google Scholar 

  99. Li, W.; Jana, P. K.; Behbahani, A. F.; Kritikos, G.; Schneider, L.; Polińska, P.; Burkhart, C.; Harmandaris, V. A.; Müller, M.; Doxastakis, M. Dynamics of long entangled polyisoprene melts via multiscale modeling. Macromolecules 2021, 54, 8693–8713.

    CAS  Google Scholar 

  100. Schneider, J.; Fleck, F.; Karimi-Varzaneh, H. A.; Müller-Plathe, F. Simulation of elastomers by slip-spring dissipative particle dynamics. Macromolecules 2021, 54, 5155–5166.

    CAS  Google Scholar 

  101. Ramirez, J.; Sukumaran, S. K.; Likhtman, A. E. Significance of cross correlations in the stress relaxation of polymer melts. J. Chem. Phys. 2007, 126, 244904.

    PubMed  Google Scholar 

  102. Masubuchi, Y.; Sukumaran, S. K. Cross-correlation contributions to orientational relaxations in primitive chain network simulations. Nihon Reoroji Gakk. 2013, 41, 1–6.

    CAS  Google Scholar 

  103. Masubuchi, Y.; Amamoto, Y. Effect of osmotic force on orientational cross-correlation in primitive chain network simulation. Nihon Reoroji Gakk. 2016, 44, 219–222.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21790343, 21574142 and 21174154) and the National Key Research and Development Program of China (No. 2016YFB1100800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Xia Guo.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

10118_2023_2931_MOESM1_ESM.pdf

Statics, Dynamics and Linear Viscoelasticity from Dissipative Particle Dynamics Simulation of Entangled Linear Polymer Melts

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Feng, LK., Li, YD. et al. Statics, Dynamics and Linear Viscoelasticity from Dissipative Particle Dynamics Simulation of Entangled Linear Polymer Melts. Chin J Polym Sci 41, 1392–1409 (2023). https://doi.org/10.1007/s10118-023-2931-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-2931-5

Keywords

Navigation