Skip to main content
Log in

A Facile Strategy for Intrinsic Low-Dk and Low-Df Polyimides Enabled by Spirobifluorene Groups

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Modified polyimides (MPIs) show great potential towards 5G communication applications, due to its excellent thermal stability, mechanical property and chemical stability as compared to most of polymers. Introducing fluoride groups or porous structure is favorable to ultra-low dielectric constant (Dk) and dielectric loss (Df). However, the cost of the fluorinated MPIs is high and their synthetic processes are complicated, and porous MPIs suffer poor mechanical properties. Also, increasing the fraction of free volume is a very effective way to lower Dk through introducing more ultra-low-Dk air component. However, most of this kind of MPIs lag far behind the fluorinated MPIs and the porous MPIs in terms of ultra-low Df, hindering the application of MPIs in high-speed communication devices. Thus, it is highly desirable to develop intrinsic ultra-low-Dk/Df MPIs at high frequency with less fluoric groups and nonporous structure. Herein, we introduce a facile and effective strategy to lower Dk and Df through introducing rigid and large sterically hindered aromatic groups into MPIs. On the one hand, their large steric hindrance effect leads to low Dk by increasing intrinsic free volume. On the other hand, the resulting highly stiff polymer chain and strong intermolecular interaction are favorable to reduce Df by inhibiting dipole orientations. Based on this strategy, the spirobifluorene groups are preferred. The as-prepared MPIs show excellent dielectric performance with low Dk of 2.74–2.76 and low Df of 0.00599 at 10 GHz, to some extent, exceeding the multiple fluorinated MPI with Dk/Df of 2.67/0.00663 at 10 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, L.; Liu, C.; Shen, S.; Xu, M.; Liu, X. Low dielectric constant polymers for high speed communication network. Adv. Ind. Eng. Polym. Res. 2020, 3, 138–148.

    Google Scholar 

  2. Ji, Y.; Bai, Y.; Liu, X.; Jia, K. Progress of liquid crystal polyester (LCP) for 5G application. Adv. Ind. Eng. Polym. Res. 2020, 3, 160–174.

    Google Scholar 

  3. Maier, G. Low dielectric constant polymers for microelectronics. Prog. Polym. Sci. 2001, 26, 3–65.

    Article  CAS  Google Scholar 

  4. Rosenberg, R.; Edelstein, D.; Hu, C. K.; Rodbell, K. Copper metallization for high performance silicon technology. Annu. Rev. Mater. Sci. 2000, 30, 229–262.

    Article  CAS  Google Scholar 

  5. Wilson, D.; Stenzenberger, H. D.; Hergenrother, P. M. Polyimides. Chapman & Hall: London, 1990.

    Book  Google Scholar 

  6. Ge, J. J.; Li, C. Y.; Xue, G.; Mann, I. K.; Zhang, D.; Wang, S. Y.; Harris, F. W.; Cheng, S. Z. D.; Hong, S. C.; Zhuang, X.; Shen, Y. R. Rubbing-induced molecular reorientation on an alignment surface of an aromatic polyimide containing cyanobiphenyl side chains. J. Am. Chem. Soc. 2001, 123, 5768–5776.

    Article  CAS  Google Scholar 

  7. Lim, H.; Cho, W. J.; Ha, C. S.; Ando, S.; Kim, Y. K.; Park, C. H.; Lee, K. Flexible organic electroluminescent devices based on fluorine containing colorless polyimide substrates. Adv. Mater. 2002, 14, 1275–1279.

    Article  CAS  Google Scholar 

  8. Banerjee, S.; Madhra, M. K.; Salunke, A. K.; Maier, G. Synthesis and properties of fluorinated polyimides. 1. Derived from novel 4,4″-bis(aminophenoxy)-3,3″-trifluoromethyl terphenyl. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 1016–1027.

    Article  CAS  Google Scholar 

  9. Hsiao, S. H.; Yang, C. P.; Chung, C. L. Synthesis and characterization of novel fluorinated polyimides based on 2,7-bis(4-amino-2-trifluoromethylphenoxy)naphthalene. J. Polym. Sci., Part A: Polym. Chem. 2003, 41, 2001–2018.

    Article  CAS  Google Scholar 

  10. Li, H.; Liu, J.; Wang, K.; Fan, L.; Yang, S. Synthesis and characterization of novel fluorinated polyimides derived from 4,4′-[2,2,2-triflfluoro-1-(3,5-ditriflfluoromethylphenyl)ethylidene] diphthalic anhydride and aromatic diamines. Polymer 2006, 47, 1443–1450.

    Article  CAS  Google Scholar 

  11. Wu, F.; Zhou, X.; Yu, X. Synthesis and characterization of novel star branched polyimides derived from 2,2-bis[4-(2,4-diaminophenoxy)phenyl]hexaflfluoropropane. RSC Adv. 2017, 7, 35786–35794.

    Article  CAS  Google Scholar 

  12. Zhong, M.; Wu, X.; Shu, C.; Wang, Y.; Huang, X.; Huang, W. Organosoluble polyimides with low dielectric constant prepared from an asymmetric diamine containing bulky m-trifluoromethyl phenyl group. React. Funct. Polym. 2021, 169, 105065.

    Article  CAS  Google Scholar 

  13. Wu, X.; Cai, J.; Cheng, Y. Synthesis and characterization of high fluorine-containing polyimides with low-dielectric constant. J. Appl. Polym. Sci. 2021, 139, 51972.

    Article  Google Scholar 

  14. Zuo, H. T.; Gan, F.; Dong, J.; Zhang, P.; Zhao, X.; Zhang, Q. H. Highly transparent and colorless polyimide film with low dielectric constant by introducing meta-substituted structure and trifluoromethyl groups. Chinese J. Polym. Sci. 2021, 39, 455–464.

    Article  CAS  Google Scholar 

  15. Sun, Y.; Li, T.; Dai, H.; Wang, M.; Xue, R.; Chen, J.; Liu, D. Preparation and characterization of intrinsic low-κ polyimide films. Polymers 2021, 13, 4174.

    Article  CAS  Google Scholar 

  16. Liaw, D. J.; Tseng, W. T. New organosoluble polyimides with low dielectric constants derived from bis[4-(2-trifluoromethyl-4-aminophenoxy)phenyl] Diphenylmethylene. Macromol. Symp. 2003, 199, 351–362.

    Article  CAS  Google Scholar 

  17. Yang, C. P.; Chiang, H. C. Organosoluble and light-colored fluorinated polyimides based on 9,9-bis[4-(4-amino-2-triflfluoromethylphenoxy)phenyl]fluorene and aromatic dianhydrides. Colloid. Polym. Sci. 2004, 282, 1347–1358.

    Article  CAS  Google Scholar 

  18. Liu, C.; Pei, X.; Huang, X.; Wei, C.; Sun, X. Novel non-coplanar and tertbutyl-substituted polyimides: solubility, optical, thermal and dielectric properties. Chin. J. Chem. 2015, 33, 277–284.

    Article  Google Scholar 

  19. Liu, Y.; Qian, C.; Qu, L.; Wu, Y.; Zhang, Y.; Wu, X.; Zou, B.; Chen, W.; Chen, Z.; Chi, Z.; Liu, S.; Chen, X.; Xu, J. A bulk dielectric polymer film with intrinsic ultralow dielectric constant and outstanding comprehensive properties. Chem. Mater. 2015, 27, 6543–6549.

    Article  CAS  Google Scholar 

  20. Chen, W.; Zhou, Z.; Yang, T.; Bei, R.; Zhang, Y.; Liu, S.; Chi, Z.; Chen, X.; Xu, J. Synthesis and properties of highly organosoluble and low dielectric constant polyimides containing non-polar bulky triphenyl methane moiety. React. Funct. Polym. 2016, 108, 71–77.

    Article  CAS  Google Scholar 

  21. Bei, R.; Qian, C.; Zhang, Y.; Chi, Z.; Liu, S.; Chen, X.; Xu, J.; Aldred, M. P. Intrinsic low dielectric constant polyimides: relationship between molecular structure and dielectric properties. J. Mater. Chem. C 2017, 5, 12807–12815.

    Article  CAS  Google Scholar 

  22. Bong, S.; Yeo, H.; Ku, B. C.; Goh, M.; You, N. H. Highly soluble polyimide based on asymmetric diamines containing trifluoromethyl group for high performance dielectric material. Macromol. Res. 2018, 26, 85–91.

    Article  CAS  Google Scholar 

  23. Qian, C.; Bei, R.; Zhu, T.; Zheng, W.; Liu, S.; Chi, Z.; Aldred, M. P.; Chen, X.; Zhang, Y.; Xu, J. Facile strategy for intrinsic low-k dielectric polymers: molecular design based on secondary relaxation behavior. Macromolecules 2019, 52, 4601–4609.

    Article  CAS  Google Scholar 

  24. Qian, C.; Fan, Z. G.; Zheng, W. W.; Bei, R. X.; Zhu, T. W.; Liu, S. W.; Chi, Z. G.; Aldred, M. P.; Chen, X. D.; Zhang, Y.; Xu, J. R. A facile strategy for non-fluorinated intrinsic low-k and low-loss dielectric polymers: valid exploitation of secondary relaxation behaviors. Chinese J. Polym. Sci. 2020, 38, 213–219.

    Article  CAS  Google Scholar 

  25. Meador, M. A. B.; McMillon, E.; Sandberg, A.; Barrios, E.; Wilmoth, N. G.; Mueller, C. H.; Miranda, F. A. Dielectric and other properties of polyimide aerogels containing fluorinated blocks. ACS Appl. Mater. Interfaces 2014, 6, 6062–6068.

    Article  CAS  Google Scholar 

  26. Wu, T.; Dong, J.; Gan, F.; Fang, Y.; Zhao, X.; Zhang, Q. Low dielectric constant and moisture-resistant polyimide aerogels containing trifluoromethyl pendent groups. Appl. Surf. Sci. 2018, 440, 595–605.

    Article  CAS  Google Scholar 

  27. Dong, F.; Li, H.; Lu, L.; Xiong, Y.; Ha, C. S. Superhydrophobic and low-k polyimide film with porous interior structure and hierarchical surface morphology. Macromol. Mater. Eng. 2019, 304, 1900252.

    Article  Google Scholar 

  28. Chen, Z.; Zhu, D.; Tong, F.; Lu, X.; Lu, Q. Low dielectric constant polyimide hybrid films prepared by in situ blow-balloon method. ACS Appl. Polym. Mater. 2019, 1, 2189–2196.

    Article  CAS  Google Scholar 

  29. Ma, Y.; Xu, L.; He, Z.; Xie, J.; Shi, L.; Zhang, M.; Zhang, W.; Cui, W. Tunable dielectric and other properties in highperformance sandwich-type polyimide films achieved by adjusting the porous structure. J. Mater. Chem. C 2019, 7, 7360–7370.

    Article  CAS  Google Scholar 

  30. Chern, Y. T.; Shiue, H. C. Low dielectric constants of soluble polyimides based on adamantane. Macromolecules 1997, 30, 4646–4651.

    Article  CAS  Google Scholar 

  31. Chern, Y. T.; Shiue, H. C. High subglass transition temperatures and low dielectric constants of polyimides derived from 4,9-bis(4-aminophenyl)diamantine. Chem. Mater. 1998, 10, 210–216.

    Article  CAS  Google Scholar 

  32. Lew, C. M.; Li, Z.; Shuang, L.; Hwang, S.-J.; Liu, Y.; Medina, D. I.; Sun, M.; Wang, J.; Davis, M. E.; Yan, Y. S. Pure-silica-zeolite mfi and mel low-dielectric-constant films with fluoro-organic functionalization. Adv. Funct. Mater. 2008, 18, 3454–3460.

    Article  CAS  Google Scholar 

  33. Yuan, C.; Jin, K.; Li, K.; Diao, S.; Tong, J.; Fang, Q. Nonporous low-k dielectric films based on a new structural amorphous fluoropolymer. Adv. Mater. 2013, 25, 4875–4878.

    Article  CAS  Google Scholar 

  34. Wang, J.; Zhou, J.; Jin, K.; Wang, L.; Sun, J.; Fang, Q. A new fluorinated polysiloxane with good optical properties and low dielectric constant at high frequency based on easily available tetraethoxysilane (TEOS). Macromolecules 2017, 50, 9394–9402.

    Article  CAS  Google Scholar 

  35. Zhang, K.; Han, L.; Froimowicz, P.; Ishida, H. A smart latent catalyst containing o-trifluoroacetamide functional benzoxazine: precursor for low temperature formation of very high performance polybenzoxazole with low dielectric constant and high thermal stability. Macromolecules 2017, 50, 6552–6560.

    Article  CAS  Google Scholar 

  36. Liu, F.; Xie, L.-H.; Tang, C.; Liang, J.; Chen, Q.-Q.; Peng, B.; Wei, W.; Cao, Y.; Huang, W. Facile synthesis of spirocyclic aromatic hydrocarbon derivatives based on o-halobiaryl route and domino reaction for deep-blue organic semiconductors. Org. Lett. 2009, 11, 3850–3853.

    Article  CAS  Google Scholar 

  37. Wang, L.; Zhang, J.; Liu, P.; Xu, B.; Zhang, B.; Chen, H.; Inge, A K.; Li, Y.; Wang, H.; Cheng, Y. B.; Kloo, L.; Sun, L. Design and synthesis of dopant-free organic hole-transport materials for perovskite solar cells. Chem. Commun. 2018, 54, 9571–9574.

    Article  CAS  Google Scholar 

  38. Yeo, H.; Goh, M.; Ku, B. C.; You, N. H. Synthesis and characterization of highlyfluorinated colorless polyimides derived from 4,4′-((perfluoro-[1,1′-biphenyl]-4,4′-diyl)bis(oxy))bis (2,6-dimethylaniline) and aromatic dianhydrides. Polymer 2015, 76, 280–286.

    Article  CAS  Google Scholar 

  39. Wang, X.; Li, Y.-F.; Ma, T.; Zhang, S.; Gong, C. Synthesis and characterization of novel polyimides derived from 2,6-bis[4-(3,4-dicarboxyphenoxy)benzoyl]pyridine dianhydride and aromatic diamines. Polymer 2006, 47, 3774–3783.

    Article  CAS  Google Scholar 

  40. Yang, C. P.; Su, Y. Y.; Chiang, H. C. Organosoluble and light-colored fluorinated polyimides from 4-tert-butyl-[1,2-bis(4-amino-2-triflfluoromethylphenoxy)phenyl]benzene and aromatic dianhydrides. React. Funct. Polym. 2006, 66, 689–701.

    Article  CAS  Google Scholar 

  41. Wang, C.; Zhao, X.; Li, G.; Jiang, J. Novel fluorinated polyimides derived from 9,9-bis(4-amino-3,5-difluorophenyl)fluorene and aromatic dianhydrides. Polym. Degrad. Stab. 2009, 94, 1746–1753.

    Article  CAS  Google Scholar 

  42. Wang, X.; Liu, F.; Lai, J.; Fu, Z.; You, X. Comparative investigations on the effects of pendent trifluoromethyl group to the properties of the polyimides containing diphenyl-substituted cyclopentyl cardo-structure. J. Fluor. Chem. 2014, 164, 27–37.

    Article  CAS  Google Scholar 

  43. Park, C. H.; Tocci, E.; Kim, S.; Kumar, A.; Lee, Y. M.; Drioli, E. A simulation study on OH-containing polyimide (HPI) and thermally rearranged polybenzoxazoles (TR-PBO): relationship between gas transport properties and free volume morphology. J. Phys. Chem. B 2014, 118, 2746–2757.

    Article  CAS  Google Scholar 

  44. Kim, J.; Kwon, J.; Kim, M.; Do, J.; Lee, D.; Han, H. Low-dielectric-constant polyimide aerogel composite films with low water uptake. Polym. J. 2016, 48, 829–834.

    Article  CAS  Google Scholar 

  45. Simpson, J. O.; St. Clair, A. K. Fundamental insight on developing low dielectric constant polyimides. Thin Solid Films 1997, 308–309, 480–485.

    Article  Google Scholar 

  46. Joseph, A. M.; Nagendra, B.; Surendran, K. P.; Bhoje Gowd, E. Syndiotactic polystyrene/hybrid silica spheres of POSS siloxane composites exhibiting ultralow dielectric constant. ACS Appl. Mater. Interfaces 2015, 7, 19474–19483.

    Article  CAS  Google Scholar 

  47. Lei, X.; Qiao, M.; Tian, L.; Chen, Y.; Zhang, Q. Tunable permittivity in high-performance hyperbranched polyimide films by adjusting backbone rigidity. J. Phys. Chem. C 2016, 120, 2548–2561.

    Article  CAS  Google Scholar 

  48. Monnerie, L.; Laupretre, F. O.; Halary, J. L. Investigation of solidstate transitions in linear and crosslinked amorphous polymers. Adv. Polym. Sci. 2005, 187, 35–213.

    Article  CAS  Google Scholar 

  49. Cristea, M.; Ionita, D.; Hulubei, C.; Timpu, D.; Popovici, D.; Simionescu, B. C. Chain packing versus chain mobility in semialiphatic BTDA-based copolyimides. Polymer 2011, 22, 1820–1828.

    Article  Google Scholar 

  50. Zhang, S. H.; Jin, X.; Painter, P. C.; Runt, J. Composition-dependent dynamics in miscible polymer blends: influence of intermolecular hydrogen bonding. Polymer 2004, 45, 3933–3942.

    Article  CAS  Google Scholar 

  51. Soong, S. Y.; Cohen, R. E.; Boyce, M. C.; Mulliken, A. D. Rate-dependent deformation behavior of POSS-filled and plasticized poly(vinyl chloride). Macromolecules 2006, 39, 2900–2908.

    Article  CAS  Google Scholar 

  52. Zajac, M.; Kahl, H.; Schade, B.; Rödel, T.; Dionisio, M.; Beiner, M. Relaxation behavior of polyurethane networks with different composition and crosslinking density. Polymer 2019, 111, 83–90.

    Article  Google Scholar 

  53. Liu, Q.; Wang, C.; Guo, Y.; Peng, C.; Narayanan, A.; Kaur, S.; Xu, Y.; Weiss, R. A.; Joy, A. Opposing effects of side-chain flexibility and hydrogen bonding on the thermal, mechanical, and rheological properties of supramolecularly cross-linked polyesters. Macromolecules 2018, 51, 9294–9305.

    Article  CAS  Google Scholar 

  54. Wang, Z.; Zhang, M.; Han, E.; Niu, H.; Wu, D. Structure-property relationship of low dielectric constant polyimide fibers containing fluorine groups. Polymer 2020, 206, 122884.

    Article  CAS  Google Scholar 

  55. Liu, Y.; Shi, G.; Wu, G. Hydrogen bonding-induced anomalous dynamics of polyacrylates mixed with small molecules. Polymer 2020, 201, 122627.

    Article  CAS  Google Scholar 

  56. Jho, J. Y.; Yee, A. F. Secondary relaxation motion in bisphenol A polycarbonate. Macromolecules 1991, 24, 1905–1913.

    Article  CAS  Google Scholar 

  57. Coburn, J. C.; Soper, P. D.; Auman, B. C. Relaxation behavior of polyimides based on 2,2′-disubstituted benzidines. Macromolecules 1995, 28, 3253–3260.

    Article  CAS  Google Scholar 

  58. Araki, H.; Kiuchi, Y.; Shimada, A.; Ogasawara, H.; Jukei, M.; Tomikawa, M. Low Df polyimide with photosensitivity for high frequency applications. J. Photopolym. Sci. Technol. 2020, 33, 165–170.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Key-Area Research and Development Program of Guangdong Province (No. 2020B010182001), the National Natural Science Foundation of China (Nos. U20A20340 and 52001068), National Key R&D Program of China (No. 2020YFB0408100), Guangdong Innovative and Entrepreneurial Research Team Program (No. 2016ZT06C412), the “One-Hundred Young Talents” of Guangdong University of Technology (No. 220413236), and Foshan Introducing Innovative and Entrepreneurial Teams (No. 1920001000108). The data measurement supports by Shengyi Technology Co., Ltd. (SYTECH) and CEPREI Certification Body are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi-Dong Liu, Ting-Ting Cui or Yong-Gang Min.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, WY., Jian, LF., Chen, WP. et al. A Facile Strategy for Intrinsic Low-Dk and Low-Df Polyimides Enabled by Spirobifluorene Groups. Chin J Polym Sci 41, 288–296 (2023). https://doi.org/10.1007/s10118-022-2824-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2824-z

Keywords

Navigation