Skip to main content
Log in

Nonfused-Core-Small-Molecule-Acceptor-Based Polymer Acceptors for All-Polymer Solar Cells

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Polymerizing the narrow bandgap small-molecule architecture with a conjugated linking unit (or called the polymerized small molecule acceptors (PSMAs)) is a promising strategy to design polymer acceptors for efficient all polymer solar cells (all-PSCs). Currently, the fused-ring-based small molecule acceptors (SMAs) are preferred monomers to design efficient PSMAs, leaving the challenge of reducing the materials cost. In this work, we firstly employ nonfused-core SMA with simple synthetic procedures to design PSMAs (namely PBTI-H, PBTI-F and PBTI-Cl) to address this issue. Relative to the fused-ring based counterparts, these three PSMAs exhibit much higher figure-of-merit value. Additionally, a power-conversion efficiency of 8.80% is achieved in the PBTI-Cl-based all-PSC. The results offer an attractive approach to design low-cost PSMAs for efficient all-PSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, G.; Zhu, R.; Yang, Y. Polymer solar cells. Nat. Photonics 2012, 6, 153–161.

    Article  CAS  Google Scholar 

  2. Yang, H.; Cui, C.; Li, Y. Effects of heteroatom substitution on the photovoltaic performance of donor materials in organic solar cells. Acc. Mater. Res. 2021, 2, 986–997.

    Article  CAS  Google Scholar 

  3. Li, Y.; Xu, G.; Cui, C.; Li, Y. Flexible and semitransparent organic solar cells. Adv. Energy Mater. 2018, 8, 1701791.

    Article  Google Scholar 

  4. Bi, P.; Zhang, S.; Wang, J.; Ren, J.; Hou, J. The progress in organic solar cells: Materials, physics and device engineering. Chin. J. Chem. 2021, 39, 2607–2625.

    Article  CAS  Google Scholar 

  5. Liu, B.; Xu, Y.; Xia, D.; Xiao, C.; Yang, Z.; Li, W. Semitransparent organic solar cells based on non-fullerene electron acceptors. Acta Phys. Chim. Sin. 2020, 37, 2009056.

    Article  Google Scholar 

  6. Lee, C.; Lee, S.; Kim, G. U.; Lee, W.; Kim, B. J. Recent advances, design guidelines, and prospects of all-polymer solar cells. Chem. Rev. 2019, 119, 8028–8086.

    Article  CAS  Google Scholar 

  7. Zhao, R.; Liu, J.; Wang, L. Polymer acceptors containing B←N units for organic photovoltaics. Acc. Chem. Res. 2020, 53, 1557–1567.

    Article  CAS  Google Scholar 

  8. Genene, Z.; Mammo, W.; Wang, E.; Andersson, M. R. Recent advances in n-type polymers for all-polymer solar cells. Adv. Mater. 2019, 31, 1807275.

    Article  Google Scholar 

  9. Zhang, Z. G.; Yang, Y.; Yao, J.; Xue, L.; Chen, S.; Li, X.; Morrison, W.; Yang, C.; Li, Y. Constructing a strongly absorbing low-bandgap polymer acceptor for high-performance all-polymer solar cells. Angew. Chem. Int. Ed. 2017, 56, 13503–13507.

    Article  CAS  Google Scholar 

  10. Sun, R.; Wang, W.; Yu, H.; Chen, Z.; Xia, X.; Shen, H.; Guo, J.; Shi, M.; Zheng, Y.; Wu, Y.; Yang, W.; Wang, T.; Wu, Q.; Yang, Y.; Lu, X.; Xia, J.; Brabec, C. J.; Yan, H.; Li, Y.; Min, J. Achieving over 17% efficiency of ternary all-polymer solar cells with two well-compatible polymer acceptors. Joule 2021, 5, 1548–1565.

    Article  CAS  Google Scholar 

  11. Qin, Y.; Balar, N.; Peng, Z.; Gadisa, A.; Angunawela, I.; Bagui, A.; Kashani, S.; Hou, J.; Ade, H. The performance-stability conundrum of BTP-based organic solar cells. Joule 2021, 5, 2129–2147.

    Article  CAS  Google Scholar 

  12. Zhang, Z. G.; Li, Y. Polymerized small-molecule acceptors for high-performance all-polymer solar cells. Angew. Chem. Int. Ed. 2021, 60, 4422–4433.

    Article  CAS  Google Scholar 

  13. Li, S.; Zhan, L.; Liu, F.; Ren, J.; Shi, M.; Li, C. Z.; Russell, T. P.; Chen, H. An unfused-core-based nonfullerene acceptor enables high-efficiency organic solar cells with excellent morphological stability at high temperatures. Adv. Mater. 2018, 30, 1705208.

    Article  Google Scholar 

  14. Yao, H.; Cui, Y.; Qian, D.; Ponseca, C. S.; Honarfar, A.; Xu, Y.; Xin, J.; Chen, Z.; Hong, L.; Gao, B.; Yu, R.; Zu, Y.; Ma, W.; Chabera, P.; Pullerits, T.; Yartsev, A.; Gao, F.; Hou, J. 14.7% Efficiency organic photovoltaic cells enabled by active materials with a large electrostatic potential difference. J. Am. Chem. Soc. 2019, 141, 7743–7750.

    Article  CAS  Google Scholar 

  15. Huang, H.; Guo, Q.; Feng, S.; Zhang, C. e.; Bi, Z.; Xue, W.; Yang, J.; Song, J.; Li, C.; Xu, X.; Tang, Z.; Ma, W.; Bo, Z. Noncovalently fused-ring electron acceptors with near-infrared absorption for high-performance organic solar cells. Nat. Commun. 2019, 10, 3038.

    Article  Google Scholar 

  16. Yi, Y. Q. Q.; Feng, H.; Zheng, N.; Ke, X.; Kan, B.; Chang, M.; Xie, Z.; Wan, X.; Li, C.; Chen, Y. Small molecule acceptors with a nonfused architecture for high-performance organic photovoltaics. Chem. Mater. 2019, 31, 904–911.

    Article  CAS  Google Scholar 

  17. Ma, L.; Zhang, S.; Zhu, J.; Wang, J.; Ren, J.; Zhang, J.; Hou, J. Completely non-fused electron acceptor with 3D-interpenetrated crystalline structure enables efficient and stable organic solar cell. Nat. Commun. 2021, 12, 5093.

    Article  CAS  Google Scholar 

  18. Wen, T. J.; Liu, Z. X.; Chen, Z.; Zhou, J.; Shen, Z.; Xiao, Y.; Lu, X.; Xie, Z.; Zhu, H.; Li, C. Z.; Chen, H. Simple non-fused electron acceptors leading to efficient organic photovoltaics. Angew. Chem. Int. Ed. 2021, 60, 12964–12970.

    Article  CAS  Google Scholar 

  19. Li, C.; Zhang, X.; Yu, N.; Gu, X.; Qin, L.; Wei, Y.; Liu, X.; Zhang, J.; Wei, Z.; Tang, Z.; Shi, Q.; Huang, H. Simple nonfused-ring electron acceptors with noncovalently conformational locks for low-cost and high-performance organic solar cells enabled by end-group engineering. Adv. Funct. Mater. 2022, 32, 2108861.

    Article  CAS  Google Scholar 

  20. Zhou, Y.; Li, M.; Lu, H.; Jin, H.; Wang, X.; Zhang, Y.; Shen, S.; Ma, Z.; Song, J.; Bo, Z. High-efficiency organic solar cells based on a low-cost fully non-fused electron acceptor. Adv. Funct. Mater. 2021, 31, 2101742.

    Article  CAS  Google Scholar 

  21. Cui, C. Recent progress in fused-ring based nonfullerene acceptors for polymer solar cells. Front. Chem. 2018, 6, 404.

    Article  CAS  Google Scholar 

  22. Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H. L.; Lau, T. K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y.; Zou, Y. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 2019, 3, 1140–1151.

    Article  CAS  Google Scholar 

  23. Liu, F.; Wang, D.; Li, J. Y.; Xiao, C. Y.; Wu, Y. G.; Li, W. W.; Fu, G. S. Side-chains engineering of conjugated polymers toward additive-free non-fullerene organic solar cells. Chinese J. Polym. Sci. 2020, 39, 43–50.

    Article  Google Scholar 

  24. Zhang, Z.; Han, F.; Fang, J.; Zhao, C.; Li, S.; Wu, Y.; Zhang, Y.; You, S.; Wu, B.; Li, W. An organic-inorganic hybrid material based on benzo[ghi]perylenetri-imide and cyclic titanium-oxo cluster for efficient perovskite and organic solar cells. CCS Chem. 2022, 4, 880–888.

    Article  CAS  Google Scholar 

  25. Spano, F. C.; Silva, C. H- and J-aggregate behavior in polymeric semiconductors. Annu. Rev. Phys. Chem. 2014, 65, 477–500.

    Article  CAS  Google Scholar 

  26. Hestand, N. J.; Spano, F. C. Expanded theory of H- and J-molecular aggregates: The effects of vibronic coupling and intermolecular charge transfer. Chem. Rev. 2018, 118, 7069–7163.

    Article  CAS  Google Scholar 

  27. Zou, Y.; Dong, Y.; Sun, C.; Wu, Y.; Yang, H.; Cui, C.; Li, Y. High-performance polymer solar cells with minimal energy loss enabled by a main-chain-twisted nonfullerene acceptor. Chem. Mater. 2019, 31, 4222–4227.

    Article  CAS  Google Scholar 

  28. Wang, D.; Yang, Z.; Liu, F.; Xiao, C.; Wu, Y.; Li, W. A benzo[ghi]-perylene triimide based double-cable conjugated polymer for single-component organic solar cells. Chin. Chem. Lett. 2022, 33, 466–469.

    Article  CAS  Google Scholar 

  29. Yao, H.; Wang, J.; Xu, Y.; Zhang, S.; Hou, J. Recent progress in chlorinated organic photovoltaic materials. Acc. Chem. Res. 2020, 53, 822–832.

    Article  CAS  Google Scholar 

  30. Zhao, Q.; Qu, J.; He, F. Chlorination: An effective strategy for high-performance organic solar cells. Adv. Sci. 2020, 7, 2000509.

    Article  CAS  Google Scholar 

  31. Koster, L. J. A.; Mihailetchi, V. D.; Ramaker, R.; Blom, P. W. M. Light intensity dependence of open-circuit voltage of polymer:Fullerene solar cells. Appl. Phys. Lett. 2005, 86, 123509.

    Article  Google Scholar 

  32. Schilinsky, P.; Waldauf, C.; Brabec, C. J. Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors. Appl. Phys. Lett. 2002, 81, 3885–3887.

    Article  CAS  Google Scholar 

  33. Mihailetchi, V. D.; Koster, L. J. A.; Hummelen, J. C.; Blom, P. W. M. Photocurrent generation in polymer-fullerene bulk heterojunctions. Phys. Rev. Lett. 2004, 93, 216601.

    Article  CAS  Google Scholar 

  34. Po, R.; Bianchi, G.; Carbonera, C.; Pellegrino, A. “All that glisters is not gold”: an analysis of the synthetic complexity of efficient polymer donors for polymer solar cells. Macromolecules 2015, 48, 453–461.

    Article  CAS  Google Scholar 

  35. Du, J.; Hu, K.; Zhang, J.; Meng, L.; Yue, J.; Angunawela, I.; Yan, H.; Qin, S.; Kong, X.; Zhang, Z.; Guan, B.; Ade, H.; Li, Y. Polymerized small molecular acceptor based all-polymer solar cells with an efficiency of 16. 16. via tuning polymer blend morphology by molecular design. Nat. Commun. 2021, 12, 5264.

    Article  CAS  Google Scholar 

  36. Zhang, J.; Tan, C H.; Zhang, K.; Jia, T.; Cui, Y.; Deng, W.; Liao, X.; Wu, H.; Xu, Q.; Huang, F.; Cao, Y. π-Extended conjugated polymer acceptor containing thienylene-vinylene-thienylene unit for high-performance thick-film all-polymer solar cells with superior long-term stability. Adv. Energy Mater. 2021, 11, 2102559.

    Article  CAS  Google Scholar 

  37. Jia, T.; Zhang, J.; Zhang, K.; Tang, H.; Dong, S.; Tan, C. H.; Wang, X.; Huang, F. All-polymer solar cells with efficiency approaching 16% enabled using a dithieno[3′,2′:3,4;2″,3″:5,6]benzo[1,2-c][1,2,5] thiadiazole (fDTBT)-based polymer donor. J. Mater. Chem. A 2021, 9, 8975–8983.

    Article  CAS  Google Scholar 

  38. Meng, Y.; Wu, J.; Guo, X.; Su, W.; Zhu, L.; Fang, J.; Zhang, Z.-G.; Liu, F.; Zhang, M.; Russell, T. P.; Li, Y. 11.2% Efficiency all-polymer solar cells with high open-circuit voltage. Sci. China Chem. 2019, 62, 845–850.

    Article  CAS  Google Scholar 

  39. Fan, Q.; Su, W.; Chen, S.; Kim, W.; Chen, X.; Lee, B.; Liu, T.; Mendez-Romero, U. A.; Ma, R.; Yang, T.; Zhuang, W.; Li, Y.; Li, Y.; Kim, T. S.; Hou, L.; Yang, C.; Yan, H.; Yu, D.; Wang, E. Mechanically robust all-polymer solar cells from narrow band gap acceptors with heterobridging atoms. Joule 2020, 4, 658–672.

    Article  CAS  Google Scholar 

  40. Yao, H.; Bai, F.; Hu, H.; Arunagiri, L.; Zhang, J.; Chen, Y.; Yu, H.; Chen, S.; Liu, T.; Lai, J. Y. L.; Zou, Y.; Ade, H.; Yan, H. Efficient all-polymer solar cells based on a new polymer acceptor achieving 10.3% power conversion efficiency. ACS Energy Lett. 2019, 4, 417–422.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 22022509, 51873140 and 51820105003), Jiangsu Provincial Natural Science Foundation (No. BK20190095), Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 21KJA150006), Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and Collaborative Innovation Center of Suzhou Nano Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-Hua Cui.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, XM., Bao, SN., Yang, H. et al. Nonfused-Core-Small-Molecule-Acceptor-Based Polymer Acceptors for All-Polymer Solar Cells. Chin J Polym Sci 40, 960–967 (2022). https://doi.org/10.1007/s10118-022-2769-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2769-2

Keywords

Navigation