Skip to main content
Log in

Regulating FUS Liquid-Liquid Phase Separation via Specific Metal Recognition

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Liquid-liquid phase separation (LLPS) or biomolecular condensation that leads to formation of membraneless organelles plays a critical role in many biochemical processes. Mechanism study of regulating LLPS is therefore central to the understanding of protein aggregation and disease-relevant process. We report a fused in sarcoma protein (FUS)-derived low complexity (LC) sequence that undergoes LLPS in the presence of metal ions. The LC protein was constructed by fusing a hexhistidine-tag to the N-terminal low complexity domain (the residues 1–165 in QGSY-rich segment) of FUS. Spontaneous condensation of the intrinsic disordered protein into coacervate droplets was observed in the presence of metal ions that chelate oligohistidine moieties to form protein matrix. We demonstrate the key role of metal ion-histidine coordination in governing LLPS behaviours and the fluidity of biomolecular condensates. By taking advantage of competitive binding using chelators, we show the possibility of regulating dynamic behaviors of disease-relevant protein droplets, and developing a potential approach towards controllable biological encapsulation/release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koga, S.; Williams, D. S.; Perriman, A. W.; Mann, S. Peptide-nucleotide microdroplets as a step towards a membrane-free protocell model. Nat. Chem. 2011, 3, 720–724.

    Article  CAS  PubMed  Google Scholar 

  2. Qiao, Y.; Li, M.; Qiu, D.; Mann, S. Response-retaliation behavior in synthetic protocell communities. Angew. Chem. Int. Ed. 2019, 58, 17758–17763.

    Article  CAS  Google Scholar 

  3. Liu, Z.; Ji, Y.; Mu, W.; Liu, X.; Huang, L. Y.; Ding, T.; Qiao, Y. Coacervate microdroplets incorporating J-aggregates toward photoactive membraneless protocells. Chem. Commun. 2022, 58, 2536–2539.

    Article  CAS  Google Scholar 

  4. Ji, Y.; Mu, W.; Wu, H.; Qiao, Y. Directing transition of synthetic protocell models via physicochemical cues-triggered interfacial dynamic covalent chemistry. Adv. Sci. 2021, 8, e2101187.

    Article  CAS  Google Scholar 

  5. Jia, L.; Ji, Z.; Ji, Y. M.; Zhou, C.; Xing, G. W.; Qiao, Y. Design and fluorescence localization of lipid-rich domains in multiphase coacervate droplets based on AIE-active molecules. ChemSystemsChem 2020, 3, e2000044.

    Google Scholar 

  6. Qiao, Y.; Li, M.; Booth, R.; Mann, S. Predatory behaviour in synthetic protocell communities. Nat. Chem. 2017, 9, 110–119.

    Article  CAS  PubMed  Google Scholar 

  7. Mu, W.; Ji, Z.; Zhou, M.; Wu, J.; Lin, Y.; Qiao, Y. Membrane-confined liquid-liquid phase separation toward artificial organelles. Sci. Adv. 2021, 7, eabf9000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. A. I. Oparin, A. S. The origin of life on the earth. Academic Press, New York, 1957.

    Google Scholar 

  9. Yin, Y.; Niu, L.; Zhu, X.; Zhao, M.; Zhang, Z.; Mann, S.; Liang, D. Non-equilibrium behaviour in coacervate-based protocells under electric-field-induced excitation. Nat. Commun. 2016, 7, 10658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Alberti, S.; Gladfelter, A.; Mittag, T. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell 2019, 176, 419–434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Iglesias-Artola, J. M.; Drobot, B.; Kar, M.; Fritsch, A. W.; Mutschler, H.; Dora Tang, T. Y.; Kreysing, M. Charge-density reduction promotes ribozyme activity in RNA-peptide coacervates via RNA fluidization and magnesium partitioning. Nat. Chem. 2022, 14, 1–10.

    Article  CAS  Google Scholar 

  12. Weber, S. C.; Brangwynne, C. P. Inverse size scaling of the nucleolus by a concentration-dependent phase transition. Curr. Biol. 2015, 25, 641–646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gall, J. G. The centennial of the Cajal body. Nat. Rev. Mol. Cell Biol. 2003, 4, 975–980.

    Article  CAS  PubMed  Google Scholar 

  14. Lamond, A. I.; Spector, D. L. Nuclear speckles: a model for nuclear organelles. Nat. Rev. Mol. Cell Biol. 2003, 4, 605–612.

    Article  CAS  PubMed  Google Scholar 

  15. Anderson, P.; Kedersha, N. Stress granules. Curr. Biol. 2009, 19, 397–398.

    Article  CAS  Google Scholar 

  16. Decker, C. J.; Parker, R. P-bodies and stress granules: possible roles in the control of translation and mRNA degradation. Cold Spring Harb. Perspect. Biol. 2012, 4, a012286.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Shin, Y.; Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 2017, 357, eaaf4382.

    Article  PubMed  CAS  Google Scholar 

  18. Courtney, A. H.; Lo, W. L.; Weiss, A. TCR signaling: mechanisms of initiation and propagation. Trends Biochem. Sci. 2018, 43, 108–123.

    Article  CAS  PubMed  Google Scholar 

  19. Gibson, B. A.; Doolittle, L. K.; Schneider, M. W.; Jensen, L. E.; Gamarra, N.; Henry, L.; Gerlich, D. W.; Redding, S.; Rosen, M. K. Organization of chromatin by intrinsic and regulated phase separation. Cell 2019, 179, 470–484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sabari, B. R.; Dall’Agnese, A.; Boija, A.; Klein, I. A.; Coffey, E. L.; Shrinivas, K.; Abraham, B. J.; Hannett, N. M.; Zamudio, A. V.; Manteiga, J. C. Coactivator condensation at super-enhancers links phase separation and gene control. Science 2018, 361, eaar3958.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Tang, T. D.; Hak, C. R. C.; Thompson, A. J.; Kuimova, M. K.; Williams, D.; Perriman, A. W.; Mann, S. Fatty acid membrane assembly on coacervate microdroplets as a step towards a hybrid protocell model. Nat. Chem. 2014, 6, 527–533.

    Article  CAS  Google Scholar 

  22. Aumiller, W. M.; Keating, C. D. Phosphorylation-mediated RNA/peptide complex coacervation as a model for intracellular liquid organelles. Nat. Chem. 2016, 8, 129–137.

    Article  CAS  PubMed  Google Scholar 

  23. Mason, A. F.; Buddingh’, B. C.; Williams, D. S.; Van Hest, J. C. Hierarchical self-assembly of a copolymer-stabilized coacervate protocell. J. Am. Chem. Soc. 2017, 139, 17309–17312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Love, C.; Steinkühler, J.; Gonzales, D. T.; Yandrapalli, N.; Robinson, T.; Dimova, R.; Tang, T. Y. D. Reversible pH-responsive coacervate formation in lipid vesicles activates dormant enzymatic reactions. Angew. Chem. Int. Ed. 2020, 59, 5950–5957.

    Article  CAS  Google Scholar 

  25. Simon, J. R.; Eghtesadi, S. A.; Dzuricky, M.; You, L.; Chilkoti, A. Engineered ribonucleoprotein granules inhibit translation in protocells. Mol. Cell 2019, 75, 66–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Peeples, W.; Rosen, M. K. Mechanistic dissection of increased enzymatic rate in a phase-separated compartment. Nat. Chem. Biol. 2021, 17, 693–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Abbas, M.; Lipiński, W. P.; Nakashima, K. K.; Huck, W. T.; Spruijt, E. A short peptide synthon for liquid-liquid phase separation. Nat. Chem. 2021, 13, 1046–1054.

    Article  CAS  PubMed  Google Scholar 

  28. Fung, H. Y. J.; Birol, M.; Rhoades, E. IDPs in macromolecular complexes: the roles of multivalent interactions in diverse assemblies. Curr. Opin. Struct. Biol. 2018, 49, 36–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Martin, E. W.; Mittag, T. Relationship of sequence and phase separation in protein low-complexity regions. Biochemistry 2018, 57, 2478–2487.

    Article  CAS  PubMed  Google Scholar 

  30. Murthy, A. C.; Tang, W. S.; Jovic, N.; Janke, A. M.; Seo, D. H.; Perdikari, T. M.; Mittal, J.; Fawzi, N. L. Molecular interactions contributing to FUS SYGQ LC-RGG phase separation and co-partitioning with RNA polymerase II heptads. Nat. Struct. Mol. Biol. 2021, 28, 923–935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, J.; Choi, J.-M.; Holehouse, A. S.; Lee, H. O.; Zhang, X.; Jahnel, M.; Maharana, S.; Lemaitre, R.; Pozniakovsky, A.; Drechsel, D. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 2018, 174, 688–699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sreedharan, J.; Blair, I. P.; Tripathi, V. B.; Hu, X.; Vance, C.; Rogelj, B.; Ackerley, S.; Durnall, J. C.; Williams, K. L.; Buratti, E. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 2008, 319, 1668–1672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Neumann, M.; Sampathu, D. M.; Kwong, L. K.; Truax, A. C.; Micsenyi, M. C.; Chou, T. T.; Bruce, J.; Schuck, T.; Grossman, M.; Clark, C. M. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006, 314, 130–133.

    Article  CAS  PubMed  Google Scholar 

  34. Gu, J.; Wang, C.; Hu, R.; Li, Y.; Zhang, S.; Sun, Y.; Wang, Q.; Li, D.; Fang, Y.; Liu, C. Hsp70 chaperones TDP-43 in dynamic, liquid-like phase and prevents it from amyloid aggregation. Cell Res. 2021, 31, 1024–1027.

    Article  CAS  PubMed  Google Scholar 

  35. Guo, T.; Noble, W.; Hanger, D. P. Roles of tau protein in health and disease. Acta Neuropathologica 2017, 133, 665–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang, S.; Liu, Y. Q.; Jia, C.; Lim, Y. J.; Feng, G.; Xu, E.; Long, H.; Kimura, Y.; Tao, Y.; Zhao, C. Mechanistic basis for receptor-mediated pathological α-synuclein fibril cell-to-cell transmission in Parkinson’s disease. Proc. Natl. Acad. Sci. U.S.A. 2021, 118, e2011196118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sun, Y.; Hou, S.; Zhao, K.; Long, H.; Liu, Z.; Gao, J.; Zhang, Y.; Su, X. D.; Li, D.; Liu, C. Cryo-EM structure of full-length a-synuclein amyloid fibril with Parkinson’s disease familial A53T mutation. Cell Res. 2020, 30, 360–362.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Liu, Z.; Zhang, S.; Gu, J.; Tong, Y.; Li, Y.; Gui, X.; Long, H.; Wang, C.; Zhao, C.; Lu, J. Hsp27 chaperones FUS phase separation under the modulation of stress-induced phosphorylation. Nat. Struct. Mol. Biol. 2020, 27, 363–372.

    Article  CAS  PubMed  Google Scholar 

  39. Luo, F.; Gui, X.; Zhou, H.; Gu, J.; Li, Y.; Liu, X.; Zhao, M.; Li, D.; Li, X.; Liu, C. Atomic structures of FUS LC domain segments reveal bases for reversible amyloid fibril formation. Nat. Struct. Mol. Biol. 2018, 25, 341–346.

    Article  CAS  PubMed  Google Scholar 

  40. Patel, A.; Lee, H. O.; Jawerth, L.; Maharana, S.; Jahnel, M.; Hein, M. Y.; Stoynov, S.; Mahamid, J.; Saha, S.; Franzmann, T. M. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 2015, 162, 1066–1077.

    Article  CAS  PubMed  Google Scholar 

  41. Masuda, A.; Takeda, J.-i.; Okuno, T.; Okamoto, T.; Ohkawara, B.; Ito, M.; Ishigaki, S.; Sobue, G.; Ohno, K. Position-specific binding of FUS to nascent RNA regulates mRNA length. Genes Dev. 2015, 29, 1045–1057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dini Modigliani, S.; Morlando, M.; Errichelli, L.; Sabatelli, M.; Bozzoni, I. An ALS-associated mutation in the FUS 3′-UTR disrupts a microRNA-FUS regulatory circuitry. Nat. Commun. 2014, 5, 1–7.

    Article  CAS  Google Scholar 

  43. Levone, B. R.; Lenzken, S. C.; Antonaci, M.; Maiser, A.; Rapp, A.; Conte, F.; Reber, S.; Mechtersheimer, J.; Ronchi, A. E.; Mühlemann, O. FUS-dependent liquid-liquid phase separation is important for DNA repair initiation. J. Cell Biol. 2021, 220, e202008030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shelkovnikova, T. A.; Robinson, H. K.; Connor-Robson, N.; Buchman, V. L. Recruitment into stress granules prevents irreversible aggregation of FUS protein mislocalized to the cytoplasm. Cell Cycle 2013, 12, 3383–3391.

    Article  CAS  Google Scholar 

  45. Deng, H.; Gao, K.; Jankovic, J. The role of FUS gene variants in neurodegenerative diseases. Nat. Rev. Neurol. 2014, 10, 337–348.

    Article  CAS  PubMed  Google Scholar 

  46. Hofweber, M.; Dormann, D. Friend or foe—post-translational modifications as regulators of phase separation and RNP granule dynamics. J. Biol. Chem. 2019, 294, 7137–7150.

    Article  CAS  PubMed  Google Scholar 

  47. Kang, J.; Lim, L.; Song, J. ATP enhances at low concentrations but dissolves at high concentrations liquid-liquid phase separation (LLPS) of ALS/FTD-causing FUS. Biochem. Biophys. Res. Commun. 2018, 504, 545–551.

    Article  CAS  PubMed  Google Scholar 

  48. Fang, M. Y.; Markmiller, S.; Vu, A. Q.; Javaherian, A.; Dowdle, W. E.; Jolivet, P.; Bushway, P. J.; Castello, N. A.; Baral, A.; Chan, M. Y.; Linsley, J. W.; Linsley, D.; Mercola, M.; Finkbeiner, S.; Lecuyer, E.; Lewcock, J. W.; Yeo, G. W. Small-molecule modulation of TDP-43 recruitment to stress granules prevents persistent TDP-43 accumulation in ALS/FTD. Neuron 2019, 103, 802–819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Babinchak, W. M.; Dumm, B. K.; Venus, S.; Boyko, S.; Putnam, A. A.; Jankowsky, E.; Surewicz, W. K. Small molecules as potent biphasic modulators of protein liquid-liquid phase separation. Nat. Commun. 2020, 11, 1–15.

    Article  CAS  Google Scholar 

  50. Guo, L.; Kim, H. J.; Wang, H.; Monaghan, J.; Freyermuth, F.; Sung, J. C.; O’Donovan, K.; Fare, C. M.; Diaz, Z.; Singh, N. Nuclear-import receptors reverse aberrant phase transitions of RNA-binding proteins with prion-like domains. Cell 2018, 173, 677–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang, L.; Gal, J.; Chen, J.; Zhu, H. Self-assembled FUS binds active chromatin and regulates gene transcription. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 17809–17814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Krainer, G.; Welsh, T. J.; Joseph, J. A.; Espinosa, J. R.; Wittmann, S.; de Csillery, E.; Sridhar, A.; Toprakcioglu, Z.; Gudiskyte, G.; Czekalska, M. A.; Arter, W. E.; Guillen-Boixet, J.; Franzmann, T. M.; Qamar, S.; George-Hyslop, P. S.; Hyman, A. A.; Collepardo-Guevara, R.; Alberti, S.; Knowles, T. P. J. Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions. Nat. Commun. 2021, 12, 1–14.

    Article  CAS  Google Scholar 

  53. Shi, C. Y.; Zhang, Q.; Tian, H.; Qu, D. H. Supramolecular adhesive materials from small-molecule self-assembly. SmartMat 2020, 1, e1012.

    Article  Google Scholar 

  54. Mészáros, B.; Erdős, G.; Dosztányi, Z. IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic acids Res. 2018, 46, 329–337.

    Article  CAS  Google Scholar 

  55. Qamar, S.; Wang, G.; Randle, S. J.; Ruggeri, F. S.; Varela, J. A.; Lin, J. Q.; Phillips, E. C.; Miyashita, A.; Williams, D.; Ströhl, F. FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation-π interactions. Cell 2018, 173, 720–734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fvan Eldijk, M. B.; Schoonen, L.; Cornelissen, J. J.; Nolte, R. J.; van Hest, J. C. Metal ion-induced self-assembly of a multi-responsive block copolypeptide into well-defined nanocapsules. Small 2016, 12, 2476–2483.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 22072159 and 22172007), the Fundamental Research Funds for the Central Universities (No. buctrc202015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yiyang Lin or Yan Qiao.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Lin, Y. & Qiao, Y. Regulating FUS Liquid-Liquid Phase Separation via Specific Metal Recognition. Chin J Polym Sci 40, 1043–1049 (2022). https://doi.org/10.1007/s10118-022-2763-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2763-8

Keywords

Navigation