Skip to main content
Log in

Morphology Engineering for Covalent Organic Frameworks (COFs) by Surfactant Mediation and Acid Adjustment

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Two-dimensional covalent organic frameworks (COFs) with specific morphologies including nanofibers and nanoplates are highly desired in both nanoscience research and practical applications. Thus far, however, morphology engineering for COFs remains challenging because the mechanism underlying the morphology formation and evolution of COFs is not well understood. Herein, we propose a strategy of surfactant mediation coupled with acid adjustment to engineer the morphology of a β-ketoenamine-linked COF, TpPa, during solvothermal synthesis. The surfactants function as stabilizers that can encapsulate monomers and prepolymers to create micelles, enabling the formation of fiber-like and plate-like morphologies of TpPa rather than irregularly shaped aggregates. It is also found that acetic acid is important in regulating such morphologies, as the amino groups inside the prepolymers can be precisely protonated by acid adjustment, leading to an inhibited ripening process for the creation of specific morphologies. Benefitting from the synergistic enhancement of surfactant mediation and acid adjustment, TpPa nanofibers with a diameter down to ∼20 nm along with a length of up to a few microns and TpPa nanoplates with a thickness of ∼18 nm are created. Our work sheds light on the mechanism underlying the morphology formation and evolution of TpPa, providing some guidance for exquisite control over the growth of COFs, which is of great significance for their practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Z. F.; Zhang, S. N.; Chen, Y.; Zhang, Z. J.; Ma, S. Q. Covalent organic frameworks for separation applications. Chem. Soc. Rev. 2020, 49, 708–735.

    Article  CAS  PubMed  Google Scholar 

  2. Zhao, X. J.; Pachfule, P.; Thomas, A. Covalent organic frameworks (COFs) for electrochemical applications. Chem. Soc. Rev. 2021, 50, 6871–6913.

    Article  CAS  PubMed  Google Scholar 

  3. Esrafili, A.; Wagner, A.; Inamdar, S.; Acharya, A. P. Covalent organic frameworks for biomedical applications. Adv. Healthc. Mater. 2021, 10, 2002090.

    Article  CAS  Google Scholar 

  4. Zhu, D.; Xu, G.; Barnes, M.; Li, Y.; Tseng, C. P.; Zhang, Z.; Zhang, J. J.; Zhu, Y.; Khalil, S.; Rahman, M. M.; Verduzco, R.; Ajayan, P. M. Covalent organic frameworks for batteries. Adv. Funct. Mater. 2021, 31, 2100505.

    Article  CAS  Google Scholar 

  5. Iqbal, R.; Badshah, A.; Ma, Y. J.; Zhi, L. J. An electrochemically stable 2D covalent organic framework for high-performance organic supercapacitors. Chinese J. Polym. Sci. 2020, 38, 558–564.

    Article  CAS  Google Scholar 

  6. Gropp, C.; Canossa, S.; Wuttke, S.; Gandara, F.; Li, Q.; Gagliardi, L.; Yaghi, O. M. Standard practices of reticular chemistry. ACS Cent. Sci. 2020, 6, 1255–1273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sun, D. W.; Huang, L. J.; Pu, H. B.; Ma, J. Introducing reticular chemistry into agrochemistry. Chem. Soc. Rev. 2021, 50, 1070–1110.

    Article  CAS  PubMed  Google Scholar 

  8. Zhu, Y.; Shao, P.; Hu, L.; Sun, C.; Li, J.; Feng, X.; Wang, B. Construction of interlayer conjugated links in 2D covalent organic frameworks via topological polymerization. J. Am. Chem. Soc. 2021, 143, 7897–7902.

    Article  CAS  PubMed  Google Scholar 

  9. Haase, F.; Lotsch, B. V. Solving the COF trilemma: towards crystalline, stable and functional covalent organic frameworks. Chem. Soc. Rev. 2020, 49, 8469–8500.

    Article  CAS  PubMed  Google Scholar 

  10. Kandambeth, S.; Dey, K.; Banerjee, R. Covalent organic frameworks: chemistry beyond the structure. J. Am. Chem. Soc. 2019, 141, 1807–1822.

    Article  CAS  PubMed  Google Scholar 

  11. Smith, B. J.; Overholts, A. C.; Hwang, N.; Dichtel, W. R. Insight into the crystallization of amorphous imine-linked polymer networks to 2D covalent organic frameworks. Chem. Commun. 2016, 52, 3690–3693.

    Article  CAS  Google Scholar 

  12. Huang, W.; Jiang, Y.; Li, X.; Li, X. J.; Wang, J. Y.; Wu, Q.; Liu, X. K. Solvothermal synthesis of microporous, crystalline covalent organic framework nanofibers and their colorimetric nanohybrid structures. ACS Appl. Mater. Interfaces 2013, 5, 8845–8854.

    Article  CAS  PubMed  Google Scholar 

  13. Guan, Q.; Wang, G. B.; Zhou, L. L.; Li, W. Y.; Dong, Y. B. Nanoscale covalent organic frameworks as theranostic platforms for oncotherapy: synthesis, functionalization, and applications. Nanoscale Adv. 2020, 2, 3656–3733.

    Article  CAS  Google Scholar 

  14. Tao, S.; Xu, H.; Xu, Q.; Hijikata, Y.; Jiang, Q.; Irle, S.; Jiang, D. Hydroxide anion transport in covalent organic frameworks. J. Am. Chem. Soc. 2021, 143, 8970–8975.

    Article  CAS  PubMed  Google Scholar 

  15. Geng, K.; He, T.; Liu, R.; Dalapati, S.; Tan, K. T.; Li, Z.; Tao, S.; Gong, Y.; Jiang, Q.; Jiang, D. Covalent organic frameworks: design, synthesis, and functions. Chem. Rev. 2020, 120, 8814–8933.

    Article  CAS  PubMed  Google Scholar 

  16. Liu, R.; Tan, K. T.; Gong, Y.; Chen, Y.; Li, Z.; Xie, S.; He, T.; Lu, Z.; Yang, H.; Jiang, D. Covalent organic frameworks: an ideal platform for designing ordered materials and advanced applications. Chem. Soc. Rev. 2021, 50, 120–242.

    Article  CAS  PubMed  Google Scholar 

  17. Liu, W.; Li, X.; Wang, C.; Pan, H.; Liu, W.; Wang, K.; Zeng, Q.; Wang, R.; Jiang, J. A scalable general synthetic approach toward ultrathin imine-linked two-dimensional covalent organic framework nanosheets for photocatalytic CO2 reduction. J. Am. Chem. Soc. 2019, 141, 17431–17440.

    Article  CAS  PubMed  Google Scholar 

  18. Zhao, W.; Wang, T. P.; Wu, J. L.; Pan, R. P.; Liu, X. Y.; Liu, X. K. Monolithic covalent organic framework aerogels through framework crystallization induced self-assembly: heading towards framework materials synthesis over all length scales. Chinese J. Polym. Sci. 2019, 37, 1045–1052.

    Article  CAS  Google Scholar 

  19. Das, G.; Benyettou, F.; Sharma, S. K.; Sharama, S. K.; Prakasam, T.; Gandara, F.; de la Pena-O’Shea, V. A.; Saleh, N.; Pasricha, R.; Jagannathan, R.; Olson, M. A.; Olson, A. Covalent organic nanosheets for bioimaging. Chem. Sci. 2018, 9, 8382–8387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Peng, Y.; Huang, Y.; Zhu, Y.; Chen, B.; Wang, L.; Lai, Z.; Zhang, Z.; Zhao, M.; Tan, C.; Yang, N.; Shao, F.; Han, Y.; Zhang, H. Ultrathin two-dimensional covalent organic framework nanosheets: preparation and application in highly sensitive and selective DNA detection. J. Am. Chem. Soc. 2017, 139, 8698–8704.

    Article  CAS  PubMed  Google Scholar 

  21. Liu, Y. Y.; Li, X. C.; Wang, S.; Cheng, T.; Yang, H.; Liu, C.; Gong, Y.; Lai, W. Y.; Huang, W. Self-templated synthesis of uniform hollow spheres based on highly conjugated three-dimensional covalent organic frameworks. Nat. Commun. 2020, 11, 5561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, Y.; Xie, M.; Lan, J.; Yuan, L.; Yu, J.; Li, J.; Peng, J.; Chai, Z.; Gibson, J. K.; Zhai, M.; Shi, W. Radiation controllable synthesis of robust covalent organic framework conjugates for efficient dynamic column extraction of 99TcO4. Chem 2020, 6, 2796–2809.

    Article  CAS  Google Scholar 

  23. Gole, B.; Stepanenko, V.; Rager, S.; Grüne, M.; Medina, D. D.; Bein, T.; Würthner, F.; Beuerle, F. Microtubular self-assembly of covalent organic frameworks. Angew. Chem. Int. Ed. 2018, 57, 846–850.

    Article  CAS  Google Scholar 

  24. Zhang, Z.; Shi, X. S.; Wang, R.; Xiao, A.; Wang, Y. Ultra-permeable polyamide membranes harvested by covalent organic framework nanofiber scaffolds: a two-in-one strategy. Chem. Sci. 2019, 10, 9077–9083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sun, Q.; Aguila, B.; Perman, J.; Earl, L. D.; Abney, C. W.; Cheng, Y.; Wei, H.; Nguyen, N.; Wojtas, L.; Ma, S. Postsynthetically modified covalent organic frameworks for efficient and effective mercury removal. J. Am. Chem. Soc. 2017, 139, 2786–2793.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, F.; Zhang, J.; Zhang, B.; Tan, X.; Shao, D.; Shi, J.; Tan, D.; Liu, L.; Feng, J.; Han, B.; Yang, G.; Zheng, L.; Zhang, J. Room-temperature synthesis of covalent organic framework (COF-LZU1) nanobars in CO2/water solvent. ChemSusChem, 2018, 11, 3576–3580.

    Article  CAS  PubMed  Google Scholar 

  27. Yamada, H.; Urata, C.; Higashitamori, S.; Aoyama, Y.; Yamauchi, Y.; Kuroda, K. Critical roles of cationic surfactants in the preparation of colloidal mesostructured silica nanoparticles: control of mesostructure, particle size, and dispersion. ACS Appl. Mater. Interfaces 2014, 6, 3491–3500.

    Article  CAS  PubMed  Google Scholar 

  28. Yang, H.; Coombs, N.; Ozin, G. A. Morphogenesis of shapes and surface patterns in mesoporous silica. Nature 1977, 386, 692–695.

    Article  Google Scholar 

  29. Li, K.; Lin, S.; Li, Y.; Zhuang, Q.; Gu, J. Aqueous-phase synthesis of mesoporous Zr-based MOFs templated by amphoteric surfactants. Angew. Chem. Int. Ed. 2018, 57, 3439–3443.

    Article  CAS  Google Scholar 

  30. Alizadeh, S.; Nematollahi, D. Electrochemically assisted self-assembly technique for the fabrication of mesoporous metal-organic framework thin films: composition of 3D hexagonally packed crystals with 2D honeycomb-like mesopores. J. Am. Chem. Soc. 2017, 139, 4753–4761.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, S.; Wu, X.; Ma, C.; Li, Y.; You, J. Cationic surfactant modified 3D COF and its application in the adsorption of UV filters and alkylphenols from food packaging material migrants. J. Agric. Food Chem. 2020, 68, 3663–3669.

    Article  CAS  PubMed  Google Scholar 

  32. Sahabudeen, H.; Qi, H.; Ballabio, M.; Polozij, M.; Olthof, S.; Shivhare, R.; Jing, Y.; Park, S.; Liu, K.; Zhang, T.; Ma, J.; Rellinghaus, B.; Mannsfeld, S.; Heine, T.; Bonn, M.; Canovas, E.; Zheng, Z.; Kaiser, U.; Dong, R.; Feng, X. Highly crystalline and semiconducting imine-based two-dimensional polymers enabled by interfacial synthesis. Angew. Chem. Int. Ed. 2020, 59, 6028–6036.

    Article  CAS  Google Scholar 

  33. Poyraz, A. S.; Albayrak, C.; Dag, Ö. The effect of cationic surfactant and some organic/inorganic additives on the morphology of mesostructured silica templated by pluronics. Microporous Mesoporous Mater. 2008, 115, 548–555.

    Article  CAS  Google Scholar 

  34. Liang, Y.; Zhu, Y.; Liu, C.; Lee, K. R.; Hung, W. S.; Wang, Z.; Li, Y.; Elimelech, M.; Jin, J.; Lin, S. Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 A precision separation. Nat. Commun. 2020, 11, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Franco, C.; Rodriguez-San-Miguel, D.; Sorrenti, A.; Sevim, S.; Pons, R.; Platero-Prats, A. E.; Pavlovic, M.; Szilagyi, I.; Ruiz Gonzalez, M. L.; Gonzalez-Calbet, J. M.; Bochicchio, D.; Pesce, L.; Pavan, G. M.; Imaz, I.; Cano-Sarabia, M.; Maspoch, D.; Pane, S.; de Mello, A. J; Zamora, F.; Puigmarti-Luis, J. Biomimetic synthesis of sub-20 nm covalent organic frameworks in water. J. Am. Chem. Soc. 2020, 142, 3540–3547.

    Article  CAS  PubMed  Google Scholar 

  36. Kandambeth, S.; Mallick, A.; Lukose, B. V.; Mane, M.; Heine, T.; Banerjee, R. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J. Am. Chem. Soc. 2012, 134, 19524–19527.

    Article  CAS  PubMed  Google Scholar 

  37. Kong, D. Y.; Chen, Z. L. Covalent organic framework TpPa-1 as stationary phase for capillary electrochromatographic separation of drugs and food additives. Electrophoresis 2018, 39, 2912–2918.

    Article  CAS  PubMed  Google Scholar 

  38. Li, Y.; Pei, B.; Chen, J.; Bing, S.; Hou, L.; Sun, Q.; Xu, G.; Yao, Z.; Zhang, L. Hollow nanosphere construction of covalent organic frameworks for catalysis: (Pd/C)@TpPa COFs in Suzuki coupling reaction. J. Colloid Interface Sci. 2021, 591, 273–280.

    Article  CAS  PubMed  Google Scholar 

  39. Pérez-Carvajal, J.; Boix, G.; Imaz, I.; Maspoch, D. The Imine-based COF TpPa-1 as an efficient cooling adsorbent that can be regenerated by heat or light. Adv. Energy Mater. 2019, 9, 1901535.

    Article  Google Scholar 

  40. Shi, X. S.; Ma, D. W.; Xu, F.; Zhang, Z.; Wang, Y. Table-salt enabled interface-confined synthesis of covalent organic framework (COF) nanosheets. Chem. Sci. 2019, 11, 989–996.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hu, X.; Jian, J.; Fang, Z.; Zhong, L.; Yuan, Z.; Yang, M.; Ren, S.; Zhang, Q.; Chen, X.; Yu, D. Hierarchical assemblies of conjugated ultrathin COF nanosheets for high-sulfur-loading and long-lifespan lithium-sulfur batteries: fully-exposed porphyrin matters. Energy Storage Mater. 2019, 22, 40–47.

    Article  Google Scholar 

  42. Tan, J.; Namuangruk, S.; Kong, W.; Kungwan, N.; Guo, J.; Wang, C. Manipulation of amorphous-to-crystalline transformation: towards the construction of covalent organic framework hybrid microspheres with NIR photothermal conversion ability. Angew. Chem. Int. Ed. 2016, 55, 13979–13984.

    Article  CAS  Google Scholar 

  43. Martin-Illan, J. A.; Rodriguez-San-Miguel, D.; Franco, C.; Imaz, I.; Maspoch, D.; Puigmarti-Luis, J.; Zamora, F. Green synthesis of imine-based covalent organic frameworks in water. Chem. Commun. 2020, 56, 6704–6707.

    Article  CAS  Google Scholar 

  44. Sasmal, H. S.; Halder, A.; Kunjattu H. S.; Dey, K.; Nadol, A.; Ajithkumar, T. G.; Bedadur, P. R.; Banerjee, R. Covalent self-assembly in two dimensions: connecting covalent organic framework nanospheres into crystalline and porous thin films. J. Am. Chem. Soc. 2019, 141, 20371–20379.

    Article  CAS  PubMed  Google Scholar 

  45. Nguyen, H. L.; Gropp, C.; Yaghi, O. M. Reticulating 1D ribbons into 2D covalent organic frameworks by imine and imide linkages. J. Am. Chem. Soc. 2020, 142, 2771–2776.

    Article  CAS  PubMed  Google Scholar 

  46. Dong, W. L.; Li, S. Y.; Yue, J. Y.; Wang, C.; Wang, D.; Wan, L. J. Fabrication of bilayer tetrathiafulvalene integrated surface covalent organic frameworks. Phys. Chem. Chem. Phys. 2016, 18, 17356–17359.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21921006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhe Zhang or Yong Wang.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, GH., Zhang, Z., Yin, CC. et al. Morphology Engineering for Covalent Organic Frameworks (COFs) by Surfactant Mediation and Acid Adjustment. Chin J Polym Sci 40, 338–344 (2022). https://doi.org/10.1007/s10118-022-2676-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2676-6

Keywords

Navigation