Skip to main content
Log in

Dynamic Oxime-Urethane Bonds, a Versatile Unit of High Performance Self-healing Polymers for Diverse Applications

  • Review
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Oxime-urethane bond featuring with high reversibility even at room temperature and multiple reactivity is an emerging dynamic covalent bond, and has shown great potential for self-healing polymers, which are one of the most attractive development directions for next generation of polymeric materials. In this review, recent progresses on the oxime-urethane-based self-healing polymers, including their designs and applications in diverse fields such as biomedicine, flexible electronics, soft robots, 3D printing, protective materials, and adhesives, are summarized, and outlooks on the future development of this field are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Diesendruck, C. E.; Sottos, N. R.; Moore, J. S. White S. R. Biomimetic self-healing. Angew. Chem. Int. Ed. 2015, 54, 10428–10447.

    Article  CAS  Google Scholar 

  2. Patrick, J. F.; Robb, M. J.; Sottos, N. R.; Moore, J. S. White, S. R. Polymers with autonomous life-cycle control. Nature 2016, 540, 363–370.

    Article  CAS  PubMed  Google Scholar 

  3. Aguirresarobe, R. H.; Nevejans, S.; Reck, B.; Irusta, L.; Sardon, H.; Asua, J. M. Ballard, N. Healable and self-healing polyurethanes using dynamic chemistry. Prog. Polym. Sci. 2021, 114, 101362.

    Article  CAS  Google Scholar 

  4. Zheng, N.; Xu, Y.; Zhao, Q. Xie, T. Dynamic covalent polymer networks: a molecular platform for designing functions beyond chemical recycling and self-healing. Chem. Rev. 2021, 121, 1716–1745.

    Article  CAS  PubMed  Google Scholar 

  5. Li, C. H. Zuo, J. L. Self-healing polymers based on coordination bonds. Adv. Mater. 2020, 32, 1903762.

    CAS  Google Scholar 

  6. White, S. R.; Sottos, N. R.; Geubelle, P. H.; Moore, J. S.; Kessler, M. R.; Sriram, S. R.; Brown, E. N. Viswanathan, S. Autonomic healing of polymer composites. Nature 2001, 409, 794–797.

    Article  CAS  PubMed  Google Scholar 

  7. Toohey, K. S.; Sottos, N. R.; Lewis, J. A.; Moore, J. S. White, S. R. Self-healing materials with microvascular networks. Nat. Mater. 2007, 6, 581–585.

    Article  CAS  PubMed  Google Scholar 

  8. Hansen, C. J.; Wu, W.; Toohey, K. S.; Sottos, N. R.; White, S. R. Lewis, J. A. Self-healing materials with interpenetrating microvascular networks. Adv. Mater. 2009, 21, 4143–4147.

    Article  CAS  Google Scholar 

  9. Utrera-Barrios, S.; Verdejo, R.; Lopez-Manchado, M. A. Hernandez Santana, M. Evolution of self-healing elastomers, from extrinsic to combined intrinsic mechanisms: a review. Mater. Horiz. 2020, 7, 2882–2902.

    Article  CAS  Google Scholar 

  10. Chen, S.; Bi, X.; Sun, L.; Gao, J.; Huang, P.; Fan, X.; You, Z. Wang, Y. Poly(sebacoyl diglyceride) cross-linked by dynamic hydrogen bonds: a self-healing and functionalizable thermoplastic bioelastomer. ACS Appl. Mater. Interfaces 2016, 8, 20591–20599.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, L.; Liang, J.; Jiang, C.; Liu, Z.; Sun, L.; Chen, S.; Xuan, H.; Lei, D.; Guan, Q.; Ye, X. You, Z. Peptidoglycan-inspired autonomous ultrafast self-healing bio-friendly elastomers for bio-integrated electronics. Natl. Sci. Rev. 2021, 8, nwaa154.

    Article  PubMed  Google Scholar 

  12. Shi, Z.; Wang, Q.; Li, G. F.; Shou, Y. F.; Zong, H. J.; Yan, S. F.; Zhang, K. X. Yin, J. B. Preparation and characterization of attractive poly(amino acid) hydrogels based on 2-ureido-4[1H]-pyrimidinone. Chinese J. Polym. Sci. 2021, 39, 327–336.

    Article  CAS  Google Scholar 

  13. Burattini, S.; Colquhoun, H. M.; Fox, J. D.; Friedmann, D.; Greenland, B. W.; Harris, P. J. F.; Hayes, W.; Mackay, M. E. Rowan, S. J. A self-repairing, supramolecular polymer system: Healability as a consequence of donor-acceptor π-π stacking interactions. Chem. Commun. 2009, 6717–6719.

    Google Scholar 

  14. Burattini, S.; Greenland, B. W.; Merino, D. H.; Weng, W.; Seppala, J.; Colquhoun, H. M.; Hayes, W.; Mackay, M. E.; Hamley, I. W. Rowan, S. J. A healable supramolecular polymer blend based on aromatic π-π stacking and hydrogen-bonding interactions. J. Am. Chem. Soc. 2010, 132, 12051–12058.

    Article  CAS  PubMed  Google Scholar 

  15. Wang, J. J.; Zhang, Q.; Ji, X. X. Liu, L. B. Highly stretchable, compressible, adhesive, conductive self-healing composite hydrogels with sensor capacity. Chinese J. Polym. Sci. 2020, 38, 1221–1229.

    Article  CAS  Google Scholar 

  16. Peng, L.; Zhang, H.; Feng, A.; Huo, M.; Wang, Z.; Hu, J.; Gao, W. Yuan, J. Electrochemical redox responsive supramolecular self-healing hydrogels based on host-guest interaction. Polym. Chem. 2015, 6, 3652–3659.

    Article  CAS  Google Scholar 

  17. Wang, Z.; An, G.; Zhu, Y.; Liu, X.; Chen, Y.; Wu, H.; Wang, Y.; Shi, X. Mao, C. 3D-printable self-healing and mechanically reinforced hydrogels with host-guest non-covalent interactions integrated into covalently linked networks. Mater. Horiz. 2019, 6, 733–742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lai, J. C.; Jia, X. Y.; Wang, D. P.; Deng, Y. B.; Zheng, P.; Li, C. H.; Zuo, J. L. Bao, Z. Thermodynamically stable whilst kinetically labile coordination bonds lead to strong and tough self-healing polymers. Nat. Commun. 2019, 10, 1164.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Li, C. H.; Wang, C.; Keplinger, C.; Zuo, J. L.; Jin, L.; Sun, Y.; Zheng, P.; Cao, Y.; Lissel, F.; Linder, C.; You, X. Z. Bao, Z. A highly stretchable autonomous self-healing elastomer. Nat. Chem. 2016, 8, 618–624.

    Article  CAS  PubMed  Google Scholar 

  20. Li, M. X.; Rong, M. Z. Zhang, M. Q. Reversible mechanochemistry enabled autonomous sustaining of robustness of polymers-an example of next generation self-healing strategy. Chinese J. Polym. Sci. 2021, 39, 545–553.

    Article  CAS  Google Scholar 

  21. Yin, Q. Y.; Dai, C. H.; Chen, H.; Gou, K.; Guan, H. Z.; Wang, P. H.; Jiang, J. T. Weng, G. S. Tough double metal-ion cross-linked elastomers with temperature-adaptable self-healing and luminescence properties. Chinese J. Polym. Sci. 2021, 39, 554–565.

    Article  CAS  Google Scholar 

  22. Sun, L.; Huang, H.; Ding, Q.; Guo, Y.; Sun, W.; Wu, Z.; Qin, M.; Guan, Q.; You, Z. Highly transparent, stretchable, and self-healable ionogel for multifunctional sensors, triboelectric nanogenerator, and wearable fibrous electronics. Adv. Fiber Mater. 2021, DOI: https://doi.org/10.1007/s42765-021-00086-8.

  23. Bose, R. K.; Hohlbein, N.; Garcia, S. J.; Schmidt, A. M. van der Zwaag, S. Connecting supramolecular bond lifetime and network mobility for scratch healing in poly(butyl acrylate) ionomers containing sodium, zinc and cobalt. Phys. Chem. Chem. Phys. 2015, 17, 1697–1704.

    Article  CAS  PubMed  Google Scholar 

  24. Urban, M.W.; Davydovich, D.; Yang, Y.; Demir, T.; Zhang, Y. Casabianca, L. Key-and-lock commodity self-healing copolymers. Science 2018, 362, 220–225.

    Article  CAS  PubMed  Google Scholar 

  25. Susa, A.; Bose, R. K.; Grande, A. M.; van der Zwaag, S. Garcia, S. J. Effect of the dianhydride/branched diamine ratio on the architecture and room temperature healing behavior of polyetherimides. ACS Appl. Mater. Interfaces 2016, 8, 34068–34079.

    Article  CAS  PubMed  Google Scholar 

  26. Zou, Z.; Zhu, C.; Li, Y.; Lei, X.; Zhang, W. Xiao, J. Rehealable, fully recyclable, and malleable electronic skin enabled by dynamic covalent thermoset nanocomposite. Sci. Adv. 2018, 4, eaaq0508.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Taynton, P.; Yu, K.; Shoemaker, R. K.; Jin, Y.; Qi, H. J. Zhang, W. Heat- or water-driven malleability in a highly recyclable covalent network polymer. Adv. Mater. 2014, 26, 3938–3942.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, Y.; Ying, H.; Hart, K. R.; Wu, Y.; Hsu, A.J.; Coppola, A. M.; Kim, T. A.; Yang, K.; Sottos, N. R.; White, S. R. Cheng, J. Malleable and recyclable poly(urea-urethane) thermosets bearing hindered urea bonds. Adv. Mater. 2016, 28, 7646–7651.

    Article  CAS  PubMed  Google Scholar 

  29. Ying, H.; Zhang, Y. Cheng, J. Dynamic urea bond for the design of reversible and self-healing polymers. Nat. Commun. 2014, 5, 3218.

    Article  PubMed  CAS  Google Scholar 

  30. Lai, J. C.; Mei, J. F.; Jia, X. Y.; Li, C. H.; You, X. Z. Bao, Z. A stiff and healable polymer based on dynamic-covalent boroxine bonds. Adv. Mater. 2016, 28, 8277–8282.

    Article  CAS  PubMed  Google Scholar 

  31. Cash, J. J.; Kubo, T.; Bapat, A. P. Sumerlin, B. S. Room-temperature self-healing polymers based on dynamic-covalent boronic esters. Macromolecules 2015, 48, 2098–2106.

    Article  CAS  Google Scholar 

  32. Sun, Y.; Ren, Y. Y.; Li, Q.; Shi, R. W.; Hu, Y.; Guo, J. N.; Sun, Z. Yan, F. Conductive, stretchable, and self-healing ionic gel based on dynamic covalent bonds and electrostatic interaction. Chinese J. Polym. Sci. 2019, 37, 1053–1059.

    Article  CAS  Google Scholar 

  33. Kim, S. M.; Jeon, H.; Shin, S. H.; Park, S. A.; Jegal, J.; Hwang, S.Y.; Oh, D. X. Park, J. Superior toughness and fast self-healing at room temperature engineered by transparent elastomers. Adv. Mater. 2018, 30, 1705145.

    Article  CAS  Google Scholar 

  34. Lei, Z. Q.; Xiang, H. P.; Yuan, Y. J.; Rong, M. Z. Zhang, M. Q. Room-temperature self-healable and remoldable cross-linked polymer based on the dynamic exchange of disulfide bonds. Chem. Mater. 2014, 26, 2038–2046.

    Article  CAS  Google Scholar 

  35. Guo, Y.; Chen, S.; Sun, L.; Yang, L.; Zhang, L.; Lou, J. You, Z. Degradable and fully recyclable dynamic thermoset elastomer for 3d-printed wearable electronics. Adv. Funct. Mater. 2021, 31, 2009799.

    Article  CAS  Google Scholar 

  36. Reutenauer, P.; Buhler, E.; Boul, P. J.; Candau, S. J. Lehn, J. M. Room temperature dynamic polymers based on Diels-Alder chemistry. Chemistry 2009, 15, 1893–1900.

    Article  CAS  PubMed  Google Scholar 

  37. Capelot, M.; Montarnal, D.; Tournilhac, F. Leibler, L. Metal-catalyzed transesterification for healing and assembling of thermosets. J. Am. Chem. Soc. 2012, 134, 7664–7667.

    Article  CAS  PubMed  Google Scholar 

  38. Montarnal, D.; Capelot, M.; Tournilhac, F. Leibler, L. Silica-like malleable materials from permanent organic networks. Science 2011, 334, 965–968.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, L.; Liu, Z.; Wu, X.; Guan, Q.; Chen, S.; Sun, L.; Guo, Y.; Wang, S.; Song, J.; Jeffries, E. M.; He, C.; Qing, F. L.; Bao, X. You, Z. A highly efficient self-healing elastomer with unprecedented mechanical properties. Adv. Mater. 2019, 31, 1901402.

    Article  CAS  Google Scholar 

  40. Liu, W. X.; Zhang, C.; Zhang, H.; Zhao, N.; Yu, Z. X. Xu, J. Oxime-based and catalyst-free dynamic covalent polyurethanes. J. Am. Chem. Soc. 2017, 139, 8678–8684.

    Article  CAS  PubMed  Google Scholar 

  41. Liu, Z.; Zhang, L.; Guan, Q.; Guo, Y.; Lou, J.; Lei, D.; Wang, S.; Chen, S.; Sun, L.; Xuan, H.; Jeffries, E. M.; He, C.; Qing, F. L. You, Z. Biomimetic materials with multiple protective functionalities. Adv. Funct. Mater. 2019, 29, 1901058.

    Article  CAS  Google Scholar 

  42. Wicks, D. A.; Wicks, Z. W. Blocked isocyanates iii: Part A. Mechan. Chem. Prog. Org. Coat. 1999, 36, 148–172.

    Article  CAS  Google Scholar 

  43. Delebecq, E.; Pascault, J. P.; Boutevin, B. Ganachaud, F. On the versatility of urethane/urea bonds: reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chem. Rev. 2013, 113, 80–118.

    Article  CAS  PubMed  Google Scholar 

  44. Fu, D.; Pu, W.; Wang, Z.; Lu, X.; Sun, S.; Yu, C. Xia, H. A facile dynamic crosslinked healable poly(oxime-urethane) elastomer with high elastic recovery and recyclability. J. Mater. Chem. A 2018, 6, 18154–18164.

    Article  CAS  Google Scholar 

  45. Wang, S.; Liu, Z.; Zhang, L.; Guo, Y.; Song, J.; Lou, J.; Guan, Q.; He, C. You, Z. Strong, detachable, and self-healing dynamic crosslinked hot melt polyurethane adhesive. Mater. Chem. Front. 2019, 3, 1833–1839.

    Article  CAS  Google Scholar 

  46. Liu, X.; Liu, X.; Li, W.; Ru, Y.; Li, Y.; Sun, A.; Wei, L. Engineered self-healable elastomer with giant strength and toughness via phase regulation and mechano-responsive self-reinforcing. Chem. Eng. J. 2021, 410, 128300.

    Article  CAS  Google Scholar 

  47. Meng, X.; Xing, Z.; Hu, X.; Huang, Z.; Hu, T.; Tan, L.; Li, F. Chen, Y. Stretchable perovskite solar cells with extremely recoverable performance. Angew. Chem. Int. Ed. 2020, 59, 16602–16608.

    Article  CAS  Google Scholar 

  48. Gao, H.; Xu, J.; Liu, S.; Song, Z.; Zhou, M.; Liu, S.; Li, F.; Li, F.; Wang, X.; Wang, Z. Zhang, Q. Stretchable, self-healable integrated conductor based on mechanical reinforced graphene/polyurethane composites. J. Colloid Interface Sci. 2021, 597, 393–400.

    Article  CAS  PubMed  Google Scholar 

  49. Lou, J.; Liu, Z.; Yang, L.; Guo, Y.; Lei, D. You, Z. A new strategy of discretionarily reconfigurable actuators based on self-healing elastomers for diverse soft robots. Adv. Funct. Mater. 2021, 31, 2008328.

    Article  CAS  Google Scholar 

  50. Wang, M.; Zhou, J.; Jiang, X.; Sheng, Y.; Xu, M. Lu, X. Preparation of mechanically robust and autonomous self-healable elastomer based on multiple dynamic interactions. Eur. Polym. J. 2021, 146, 110257.

    Article  CAS  Google Scholar 

  51. Zuo, H.; Liu, Z.; Zhang, L.; Liu, G.; Ouyang, X.; Guan, Q.; Wu, Q. You, Z. Self-healing materials enable free-standing seamless large-scale 3D printing. Sci. China Mater. 2021, 64, 1791–1800.

    Article  Google Scholar 

  52. Wang, W.; Song, Q.; Liu, Q.; Zheng, H.; Li, C.; Yan, Y. Zhang, Q. A novel reprocessable and recyclable acrylonitrile-butadiene rubber based on dynamic oxime-carbamate bond. Macromol. Rapid Commun. 2019, 40, 1800733.

    Article  CAS  Google Scholar 

  53. Guo, Z.; Wang, W.; Yang, Y.; Majeed, K.; Zhang, B.; Zhou, F. Zhang, Q. Preparation of multi-functional polyamide vitrimers via the ugi four-component polymerization and oxime-promoted transcarbamoylation reaction. Polym. Chem. 2021, 12, 2009–2015.

    Article  CAS  Google Scholar 

  54. Zhang, L.; Liu, Z.; Sun, L.; Xiao, L.; Guan, Q. You, Z. Simple solvent-free strategy for synthesizing covalent adaptable networks from commodity vinyl monomers. Macromolecules 2021, 54, 4081–4088.

    Article  CAS  Google Scholar 

  55. Jiang, C.; Zhang, L.; Yang, Q.; Huang, S.; Shi, H.; Long, Q.; Qian, B.; Liu, Z.; Guan, Q.; Liu, M.; Yang, R.; Zhao, Q.; You, Z.; Ye, X. Self-healing polyurethane-elastomer with mechanical tunability for multiple biomedical applications in vivo. Nat. Commun. 2021, 12, 4395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Qiao, Z.; Yang, Z.; Liu, W.; Wang, X.; Gao, Y.; Yu, Z.; Zhu, C.; Zhao, N. Xu, J. Molecular weight switchable polyurethanes enable melt processing. Chem. Eng. J. 2020, 384, 123287.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key Research and Development Program of China (No. 2021YFC2101804), the National Natural Science Foundation of China (No. 21991123), the Natural Science Foundation of Shanghai (No. 20ZR1402500), Belt & Road Young Scientist Exchanges Project of Science and Technology Commission Foundation of Shanghai (No. 20520741000), Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-dimension Materials (Donghua University) (No. 18520750400), Science and Technology Commission of Shanghai Municipality (No. 20DZ2254900), the Fundamental Research Funds for the Central Universities, DHU Distinguished Young Professor Program (No. LZA2019001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengwei You.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., You, Z. Dynamic Oxime-Urethane Bonds, a Versatile Unit of High Performance Self-healing Polymers for Diverse Applications. Chin J Polym Sci 39, 1281–1291 (2021). https://doi.org/10.1007/s10118-021-2625-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2625-9

Keywords

Navigation